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Vibration of T-type Timoshenko frames subjected
to moving loads
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Abstract. In this study, a theoretical method to analyze the vibration of a T-type Timoshenko frame is
proposed. The effects of axial inertia, rotatory inertia and shear deformation of each branch are considered.
The orthogonality of any two distinct sets of mode shape functions is also demonstrated. Vibration of the
frame due to moving loads is studied by the method and the response characteristics of the frame are in-
vestigated. Furthermore, the effect of column length on the response of the frame is also studied.
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1. Introduction

The vibration of frames is normally studied with the Bernoulli-Euler beam theory (Rubinstein
and Hurty 1961, Levien and Hartz 1963). The theory leads to more erroneous results for beams
with a large ratio of radius of gyration of cross section to length (Clough 1955). Moreover, the
velocity of bending wave predicated by the theory is unreasonable within the high frequency
range (Kolsky 1963). The error due to the theory can be fortunately corrected by including the
effect of rotatory inertia and shear deformation of beam (Timoshenko 1921). Numerous studies
based on the Timoshenko beam theory have been reported in previous literature (Herrmann 1955,
Huang 1961, Sheng, et al. 1994). The Timoshenko beam theory has also been extended to study
the vibration of frames (Cheng 1970, Warburton and Henshell 1969, Wang and Kinsman 1971).
A frame is not in equilibrium without including the axial inertia effect of every branch of the
frame. In studying the vibration of frame structures, the effects of axial inertia, rotatory inertia
and shear deformation of every branch must be simultaneously considered (Wang and Jeng
1996).

T-type frames subjected to moving loads are widely encountered in elevated guideways. The
finite element method has been adopted to study the problem of a T-type frame subjected to a
moving concentrated load (Wang and Jeng 1996). Results indicate that the first modal frequency
of a Timoshenko frame is less than that of a Bernoulli-Euler frame. Moreover, the maximum de-
flection of the Bernoulli-Euler frame is less than that of the Timoshenko frame. Furthermore, the
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cost of computational time causes the finite element method to be an inefficient tool for study-
ing the problems of moving loads on frames. Consequently, a more efficient method of analyz-
ing the vibration of Timoshenko frames must be investigated.

In this study, transfer matrix and analytical method are combined to calculate the modal fre-
quencies and their corresponding mode shape functions of a T-type frame. The orthogonality of
any two distinct sets of the mode shape functions has also been investigated to guarantee the ap-
propriateness of the modal analysis method. A concentrated load and a uniformly distributed
load moving on a T-type frame at a constant velocity are taken as two examples. Numerical
results obtained by the method are, therefore, presented herein the paper to demonstrate the
responses characteristics of the T-type frame due to moving loads. Furthermore, the effect of
column length on the responses of the frame is also studied.

2. Equations of motion

Fig. 1 shows a T-type Timoshenko frame subjected to a uniformly distributed load f{x, f). The
frame structure contains three homogeneous and isotropic branches with Young's modulus E,
shear modulus G, Poisson's ratio u, density p and shear coefficient x. This figure also presents
the series number of each branch. The ith branch has length L, cross-sectional area A;, and mo-
ment of area /. Furthermore, the axial force, transverse shear force and bending moment of the
ith branch are denoted, respectively, as n,, g;, and m; which are

aui _ aw,' _ all,,
n,' —EAi'a_Xi—, qi—KGA,' "5x'l— '.V, ’ mi— EI, axi (1)

where x; is the axial coordinate, u; is the longitudinal displacement, w; is the transverse dis-
placement and y; is the bending slope. The applied forces and displacements at both ends of the
ith branch (see Fig. 2) are denoted as

{uw yla@)={uw y}:0,0),{n g m},(t)={-n-qm}0,1) (22)
{uw vl @)={uw y}iLi,t),{n gm}y(t)={ng-—m}(L;,1) (2b)

f(x,t)

Fig. 1 A uniformly distributed load fix, f) on a T-type frame.
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Fig. 2 Applied end forces and displacements for the ith branch.
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Fig. 3 Applied forces and displacements at the conjunction of three branches.

to correspond with the sign convention of displacements and forces presented by Warburton
(1976). The equations of motion of two horizontal branches are as follows:

g—)’z = pAi%“zi (22)
3 65 =, 2 @)
g - %’;’ =pl, aa;” ,i=1,2 (20)
Furthermore, the equations of motion of the vertical branch are
e @
s 6
q;- %’: =pl; a;;’f (30)

The boundary conditions of the fixed ends of the frame are

U, (@)=up()=us3()=0, wi,(t)=wyu(t)=w;(t)=0,
Wia (1) = Yo (£) = Y3 (1) =0 (42)



232 Rong-Tyai Wang and Jin-Sheng Lin

Moreover, the forces balance and displacements continuity at the junction of three branches
(see Fig. 3) are

Vi (1) = Yo (1) = Y (1), Uy ()= () =—w3 (),

Wi (t)=wo (1) =13, (1) (4b)
My () +mo (@) +ms, (1)=0, g1, () +q20(t)+ns, (t)=0,
Ny () +n2()—q5,(t)=0 (4c)

Egs. (1)-(4c) constitute the equations of motion of the T-type frame.

3. Modal frequencies

To calculate the modal frequencies of the frame, the displacement components, bending slope,
axial force, transverse shear force and bending moment of the ith branch are expressed as

{uw y} (6, )={U W ¥}, (x.) sin(ot) (52)
{nqm} (x,t)={N Q M} (x;) sin(wt) (5b)

in which @ is the circular frequency. The corresponding longitudinal displacement Uy(x;) and
two axially nodal forces N;, and N, are

U,(x;)=B; cos(Ax;)+B sin(Ax;) (62)
N, =_EAiw2i (6b)
N, =EA,A{ —B; sin(AL;)+ B cos(AL;)} (6¢c)

where, B, and B, are two constants and A=(p/E)"”®. The radius of gyration of the cross section
of beams is denoted as 7). The transverse displacement, bending slope, bending moment and
shear force of a Timoshenko beam can be found in Huang's paper (1961). In this study, the
transverse displacement W{x,), bending slope ‘¥(x;), two bending moments M,, and M, and
transversely shear forces Q,, and Q,, at the nodes are given by

case 1: for A2< —~
2(1+wn?
W, (x;)=B 3 cosh (px;)+Bysinh(pyx;)+Bs cos(pyX; ) +B e sin(p ;) - (7a)
¥, (x,)=B.(p1)[Bucosh(px;)+Bysinh (puxi)]+ B p2)IBsisin(pyix;)—B g cos(p ;)] (7b)
Qi =—Y(Pu)Ba +Y(p2)Bsi (70)
Qs +Y(pu)[Businh(pyLi)+Bay cosh (p L)+ 7(p)Bsisin(pyul;)—Be cos(pxL;)} (7d)
M, =—ou(pii)Bs — (p2)Bs (7e)

M, =oy(p i )[Bsicosh (puli)+B. sink (p L))+ 06(pa )Bsicos(paL; )+Bgsin(pyL; ) (7D
where the parameters py; and p,, the functions Bi( ), B ), ou( ), o ) and A ) are

172

2 4 2 2 4
P2':_L 1+_2(_1-’ﬂ + i 1+M + L_2(1+”)A‘ >0,
Vo2 K 4 K n2 K



Vibration of T-type Timoshenko frames 233

12

péz_ﬁ[uz_m_m} L“{HM]Z[L%H_M] .0,
2 v K 4 K n? K
ﬁl(p)=§[p2+ AL } ﬁz(P)_“[ +2£+7j—‘2*—}
ou(p)=El [wﬂx“)—’l} o(p)=El, [—p2+—2(1+(”)’i}
(=20 +;2/1 GA,
case 2: for 2> — &
2(1+wn?
W;(x;) =By; cos(px;) +By; sin(p;x; )+ B3 cos(pyx;)+B 4 sin(pyx;) (8a)
Yi(x.)=B(pu) [Bs sin(p1x;)— By cos(p1x;)]+ Bo(p ) [Bsisin(px;)—Bg cos(pyx; )] (8b)
Qi =Y(pu)Byu+Y(p2)Bs (8c)
Qs =Y(P1) [Bysin(pyL;)—B4cos(py L))+ Y(px) [Bsisin(pyuL;)—Bgcos(pyL;)]  (8d)
M, =—0(p1)Bs —0,(py)Bs (8e)

My, =+ 0o(p1)[Baicos(puLi)+Bysin(p L)+ 0o(p)[Bsicos(pauLli )+ Basin(pxL:)]  (8f)
where the parameters p,; and p,, the functions B,( ), o, ( ) and y( ) are

2

pp=dus Xy L AW p B A
:}5[1+2(1;ﬂ)]+{17[ 2(1+u)] [1/}1 2(1+Ku)/1]}m>0’
Bip) =5 pr+ 2B o) = [y 2LHIA,

__ 21+wAGA;
np)=-———pj——

All B;; are constant for i=1~3 and j=3~6.

Egs. (6a)-(6c) and (7a)-(7f) or Egs. (6a)-(6c) and (8a)-(8f) may be symbolically arranged into
the vector forms as

(D, F}/=[R}: B, i=1-3 (9a)
(D, FA7=[K}B,, i=1-3 (9b)

where,

E)i={Bl B, B; B, Bs Bg}/, i=1~3
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{D.} ={Us Wy ¥}, {D}i={Us W, ¥,}'
{F.}; ={N» O My}, {F.}:={Ni Qu M.}, i=1,2
{D:}s={-Ws3 Us lP3b}T; {Di}ys={-Ws, U, ¥}
{F;}3={0un N3 Mab}TQ {Fi}s={0xn N, M3u}T

By solving the constant vector l?l in terms of {D;}; and {F}}; fram Eq. (9a), then substituting the
constant vector into Eq. (9b) and arranging the results to the desired form yields

D, B Zyw Zy| |Di .
F[,7|zy zn| (R[> 17173 (10)

Employing the boundary conditions of fixed bottom of the third branch into Eq. (10) yields
the force-displacement relation at the top of the branch in the form

{Fi}s=—[Z*]: {D:}s (11)

where, [Z*[:=[Z1,]s ' [Z11], The conditions of displacements continuity and forces balance at the
junction of these branches are

{D-h={D:i}s={D:}» (12a)
{F.}s+{F. }1+{F;},={0 0 0}" (12b)
Combining Egs. (11)-(12b) yields
Dl I3>< 3 0 Dr
F| Tl zy | |F, (13)
2
where I, is an identity matrix of order 3 and O is a zero matrix, Substituting Eq. (13) into Eq.
(10) yields
Dr Pll P12 DI
F.[,”|Px Px||F (14)
1
in which
Py Py u Zi| |Iixs O Ly Zp
Py Pyp| |Zn Zn ) Z5 —Asxs| |2y Zy
1
The boundary conditions of
{D,}1={0 0 0}, {D/},={00 o} (16)

imply that the jth modal frequency @, and the corresponding eigenvector {F,} ,; satisfy
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[Py] {F:}={0 0 0} an

{D\},; is always a zero vector. Substituting {F;},; and {D;},; into Eq. (10) yields {F.,},; and
{D.}1; {Fi},; and {D,},; can then be obtained by solving Eq. (13). Moreover, {F}s; and {D}},
are obtained from Eqgs. (12a) and (12b). The _c)orresponding constant vectors B ,; is then obtained
by solving Eq. (9a). Substituting the vectors B ;; into Eqgs. (6a)-(6c) and Eqs. (7a)-(7f) or (8a)-(8f)
yields the jth mode shape functions of longitudinal displacement U, (x;), transverse deflection W,
(x;), rotatory angle ‘F,(x;), axial force N,(x,), shear force Q,(x;) and bending moment M,(x,) of
the ith branch, where i=1~3.

4. Orthogonality of mode shape functions

The set of the jth mode shape functions {U;; W,; '¥,;} (x;) of the ith branch satisfies the fol-
lowing equations,

pA U, = -% (182)
A0} W, == (180)
pl,w? ¥, =—Qi,j+d—34x% i=1,2,3 (18¢)
By omitting the description of the procedures of derivation, the following equations are obtained
PA; (wF - wkz)'LLiUi,j Uisdx; =Ny U j +Nig g Uia j =N jUip g =N jUsa g (192)
PA(@7 0D [ Wi, Wiad = [ |~ 0us T 40, T o
+Qi s Wirj +Qia s Wia,j — Qi Winx = Qia,j Wia i (19b)
plL(@F - 0d)[" ¥, Wiad = [ Qi oy~ Qs W)
+My ‘P,,,,, My Ve M,,,] Vs ~Miy; Vs (19¢)

Performing the summation of Eqgs. (19a), (19b) and (19¢) for i=1-3 then adopting the conditions
of Eqgs. (12a) and (12b) into the result yields the orthogonality of any two distinct sets of the
mode shape functions

(@}~ wE)ZI (pAU,,U,ﬁpA Wi+l ¥, ¥, )dx,:o, j#k (200

which also implies

< dN;, do;, M, ;
ZIJO[ ,} + Wi dx,.] i Qi — & }dx,:o (20b)
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5. Forced vibration

While studying the forced vibration, the responses of each branch can be expanded into the
generalized Fourier series forms of

{u’w’ W}t (xi,t)=2Ck(t){U,W, .P}i,k(xi) i=1’2:3 (Zla)
{n,q,m}i(x,~,t)=2ck(t){N,Q,M},-,k(xi) =123 (21b)

in which c¢(f) is the kth modal amplitude. Substituting Eqs. (21a) and (21b) into Eq. (3a) or Eq.
(4a), then multiplying by U,(x;) and integrating the result from x,=0 to x,=L; yields

le, d Cy

S U, Gt du =3

Similarly, the following equations can be obtained

jL‘pA Udy,,  i=1~3 (222)

d d’
z j Q”‘ +j F O, W, dx; = dtc*j pAW,,W,kdx,, i=1,2 (22b)
kl
L d d’c
j3W3, LVTRPN ;‘j PA W3, W dxs (220)
= at o
ECkf Fii | Qix - thk dx; = ke :ipi'f’i.j‘f'i,kd"i, i=1~3 (22d)

2
k=1 dt

Summing the values of Egs. (22a)-(22d) and employing the conditions of Eqgs. (20a) and (20b)
into the above result yields
2

c;
e +a)2c =g;(t) (23)

where @, is the jth modal frequency and the corresponding modal excitation is g(?) is

2 oL
gj(t)zz_[of(xi, )W, dx;/s,
i=1

in which s; is the jth modal mass

=ij‘:’[ (UL +W2)+pl, V2 ]dx,

i=1

6. Moving loads

In this section, we consider two types of moving loads, viz. concentrated load and uniformly
distributed load.

6.1. Moving concentrated load
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Fo
—- Vv
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Fig. 4 A concentrated load moves on the T-type frame.

Fig. 4 depicts a concentrated load of magnitude F, moving at a constant velocity V on the
frame. The form of the load is

f(x,t)=Fy8x—-Vt), 0<x<L,+L, (24)
The histories of the jth modal excitation, amplitude and velocity of the frame, respectively, are
1) 0<t<T,(=L,/V)

g ()=F,W,, (Vt)/s, (252)
¢,(t) = ¢;(0) cos(@; 1) +¢, (0){81“;“”' J ] +f! Sin[“’g’ —9 o (vdz (25b)
¢;(t) =—;c;(0)sin(w, 1) +c; (0) cos(; 1) +J'(: cosfw;(t —1)]g;(nNd 7 (25¢)

D) T,<t<T,, To=@+L)V
g8 t)=F,W,; (Vt)/s; (26a)
¢,(6) = ¢ (T cos[, (¢t = T)] +¢,(T) (Si“ 2,0 L] J+ oo =0 g ar o)

(1) =@y, () sinfe, ¢ =T )]+ ¢ (Tr) cosle, (¢ =T )]+ cos[e, (¢ ~ )] g, (Dd T (260)

3) T,<t
g (=0 @72)
sin [@,(t = T)] J

(27b)

;

¢;(t)=c;(Ty)cos[w;(t —=T)]+c;(T>) (

¢;(t)=~a; c;(Ty)sin[w;(t —T,)]+c,;(T,)cos[w;(t —T)] (27¢)
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6.2. Moving uniformly distributed load

Fig. 5 depicts the T-type frame subjected to a uniformly distributed load f, with a constant
velocity V. The equation of the load is

f(x,t)=fo[H(x +d —Vt)—-H(x —Vt)] (28)

where H is the unit step function and the distributed length d is equal or less than both length
of horizontal branches of the frame. The histories of the jth modal excitation, amplitude and
velocity of the frame, respectively, are

1) 0<t<t,(=d/V)

gj(t)zfo‘[:twl,j(xl)dxl/sj (292)
¢;(£) = ¢; (0) cos(@; ) +¢;(0) &g"’t—) +j;%;ff"fl]— g,(dr (29b)
¢;(t) = —w;c; (0)sin(w; 1) +¢,(0) cos(w; ) + j; cos[w; (t —1)] g;(DdT (29¢)

2) 1, <t<T,
gi(t)zfol[:_d Wy (x1)dx,/s; (30a)

() = ¢ () cosl@, (1 —1)]+é, (1) | L =1)] +rmg_

)
> ) - g, (Ddt (30b)

é,(t) =~ @yc; (0 sinfe ( ~ )]+, (1) coslo, (¢t —1)] + [ cos[@, (¢ ~D] g, (DT (300)

3) T,<t<T,+t,

git)=rfo (JLW Wy, (xz)dx2+J.;1_d Wi (xl)dxlj/sj (31a)
fo
2 d 1 2 Z
l vt 3
20

Fig. 5 A uniformly distributed load moves on the T-type frame.
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¢;(t)=c;(T,)cos[w; (¢t =T )]+c;(Ty)

sinfw, ¢ =T)] |, [l S, €291 247 320)

; 1 ;
(0=~ 0, (T sinfwy (¢ ~T)] +¢; (T1)cosl, ¢ ~ )]+ [ cosl; ¢ -] g, (Dd T (320)
4) T,+1,<t<T,

giO)=fof " Wy ()dess, (332)

ci(t)=c;(T,+t)cos[w;(t =T, —1,)]

sin (;(t =T, —t,)] +J.t sin [w; (t —7)]

;

+c;(T,+ty) gi(ndr (33b)

Ty+tq (DJ

¢j()==wjc; (Ty+ty)sin[@;(t =T, ~1,)]+¢;(T1+1,) cos[w, (t =T, ~1,)]

+[0 cos[ay(t - D] g; (dt (33¢)
T1+t1
S) T,<t<T,+t,
git)=fo I:_z Wa; (x2)dxy/s; (34a)

sin [w; (t = T,)] N Jx sin[w; (t — 7))

; T2 0,

c;j(t)=c;(Ty)cos[w; (t —T))+c; (T,) g; (1) d 7 (34b)

¢;(t) =~ w;c;(Tysin[@; (¢ —T,)]+¢;(T,)cos[w; (t —T)] +JTt cos[; (t - 1)] g; (D) d T (34c)

6) T,+t,<t
g (#)=0 (352)
¢;(t) = c;(To+t)cos[@; (t =T,—1)]+¢;(T,+1,) sin[o, (ta;T 2=h)] (35b)
c;(t)=- @;c;(T;+t)sin[@;(t =T, ~t)]+c¢;(T,+1;) cos[w; (t —T,~1,)] (35¢)

7. Examples

In this section, both horizontal branches are considered to have equal L length. Moreover,
three branches of the frame have the same cross-sectional area A, moment of area I and the ra-
dius of gyration ) of the cross-sectional area. To simplify the numerical computation in the pap-

er, the non-dimensional variables are introduced as

E,-=ui/L, W,-=w,~/n, W-_—Ll,/,/n, .?_C-i=x,-/L, rb=T)/L,
m=n/EA, g=qL7EIn, m=mLYEIn, i=1,2
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us=uy/Ls, wi=wy/n, Y=Ly/n, x;=x/L;, L.=Ly/L,
ns=ny/EA, Gs=q;L3i/EIn, my=m;LZ/EIn, V=V (0/E)"7r,,
d=d/L, Fy=FLYEIn, f.=f,LYEIn, T=(El/pAL*)"*, e=E/xG

where /, is the length ratio of column to one horizontal beam. Moreover, the shear coefficient x=
2/3 and Poisson’s ratio =1/3 of each branch are considered in this section. Both values of F,
and f, d are assumed to be unity.

The following parameters are defined to illustrate the numerical results,

non-dimensional frequency, @(=100w (p/E)"* L);

maximum deflection during the motion of load, W,,,;
maximum moment during the motion of load, M,,,;

velocity ratio, & (=100V(p/E)"?); -
position of maximum deflection during the motion of load, xy;

Figs. 6(a)-6(c) display the lowest three modal frequencies and their corresponding mode shape
of a T-type frame with r,=0.03 and [=0.5. The first mode is the frame's bending mode. The
result obtained by the modal analysis method converges rapidly. Therefore, the lowest sixteen
modal frequencies and their corresponding mode shape functions of the frame are sufficient to
be considered in the study of forced vibration of the structure. The initial conditions of the
frame are set at zero. Furthermore, the velocity range 0 < @<16 of loads is considered.

Fig. 7 displays the effects of two ¢« values on the deflection histories of the middle point of
the second branch of a frame with r,=0.03 and /,=0.5 induced by a concentrated moving load.
This figure indicates that the maximum deflection at the point occurs during the load moves on
the frame at a low speed. However, the maximum deflection occurs after the high speed load
has left the frame.

y e ¥
4

w3=133.78

©
Fig. 6 The lowest three modal frequencies and their corresponding mode shapes of a T-type frame with
r,=0.03 and 1=0.5: (A) the first mode, (b) the second mode and (c) the third mode.
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Figs. 8(a) and 8(b) display the effects of distributed length of load on the W, - and M,,-&
distributions, respectively, for a frame with r,=0.03 and /,=0.5. According to those figures, the
more narrowly distributed length of load implies the larger the deflection and moment of the
frame. Both figures reveal that there are two respective critical velocity o, and o, at which the
maximum deflection and maximum moment become absolute maximum. Furthermore, the more
narrow the load implies the more apparent both ¢, and 0y, of the frame are. Fig. 9 presents the
Xy~ distribution of the frame to a concentrated moving load, indicating that the maximum de-
flection always occurs at the middle point of one horizontal branch. The maximum moment of
the horizontal branches always occurs at one fixed end of the frame.

Figs. 10(a) and 10(b) compare three [, effects on the W, -« and M,,.-o distributions of a
frame with r,=0.03 to a concentrated moving load, respectively. Table 1 compares the effects of
three different values of /, on the fundamental three modal frequencies @ of a T-type frame with

—a=3.19, - a=14.37.

Fig. 7 Comparison of two o effects on the history of the middle-point deflection of the second branch of
a T-type frame with r,=0.03 and /=0.5 due to a concentrated load.

2.0
~N
O
é 1.0
=
0.0 — : : 0 : -
0 4 8 12 16 0 4 8 12 16
(a) X (b) X

(1) —: Concentrated, (2) —: d=0.25, (3) — : d=0.5, (4) —: d=1

Fig. 8 Comparison of distributed loads on the (a) W,,.-a and (b) M,,-c distributions of the T-type frame
with r,=0.03 and /=0.5.
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r,=0.03. According to those results, the shorter column length results in higher frequencies. The
shorter the column the higher the first modal frequency means that a shorter column induce a
more stiffness of the frame. Within the low velocity range 0< <4 the load can be regarded as
a quasi-static load. Consequently, the shorter column implies that the less value of W,,, is within
the velocity range. However, those three /, effects on the differences of M,,, are not obvious
within the velocity range. The first modal frequency of the structure dominates the frame's vi
bration. The first mode shape is a bending mode. Therefore, the bending wave is the dominant
factor on the vibration of the frame. Consequently, both values of o and o, are determined by

.QJ
pese o 9 ,° o PLITAALL T PPrrs PYTAA44

> T}

00 O o e’ seone

0 : : :
0 4 8 12 16

(04

Fig. 9 The Xy~ distribution of the T-type frame with 7,=0.03 and /,=0.5 due to a concentrated load.

5
O 47
3 3
£
|=
2 L
0.5 4 A L 1 1 5 ]
0 4 8 12 16 0 4 8 12 16
(@) X (b) X

Q) —:I=1, (2) ~:1=0.5, (3) = :1=1.2

Fig. 10 Comparison of three I, values on the (a) W,,-c and (b) M,,.-c distributions of the T-type frame
with r,=0.03 due to a concentrated load.

Table 1 Comparison of [, effects on the fundamental three modal
frequencies @ (=100 wL(p/E)") of a T-type frame with r,=0.03

1=0.5 1=1.0 =12
@, 50.17 43.85 36.13
@, 59.43 56.88 5255

s 133.76 60.79 55.68
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the bending wave. The higher the first modal frequency implies the higher velocity the bending
wave. Therefore, both Figs. 10(a) and 10(b) reveal that the shorter the column produces (a) both
higher values of a, and o, and (b) the greater absolute values of both W, and M,,,..

8. Conclusions

For a constant-velocity load moving on a T-type Timoshenko frame, there exist a critical velo-
city at which the displacement of the structure frame becomes absolute large. The maximum de-
flection at a point of the frame occurs as a load moves at a subcritical velocity on the frame.
However, the maximum deflection at the same point will occur after the load left the frame at a
supercritical velocity. The critical velocity is larger for the shorter column. The maximum mo-
ment always occurs at fixed ends. The maximum deflection always occurs near the middle of
one span of horizontal branches.
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