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Elasto-plastic analysis using shell element
considering geometric and material nonlinearities

N. Siva Prasadt and S. Sridhar}

Department of Mechanical Engineering, Indian Institute of Technology, Madras-600 036, India

Abstract. An elasto-plastic finite element procedure using degenerated shell element with assumed
strain field technique considering both material and geometric nonlinearities has been developed. This as-
sumes von-Mises yield criterion, von-Karman strain displacement relations and isotropic hardening. A few
numerical examples are presented to demonstrate the correctness and applicability of the method to dif-
ferent kinds of engineering problems. From present study, it is seen that there is a considerable im-
provement in the displacement valuse when both material and geometric nonlinearities are considered. An
example of the spread of plastic zones for isotropic and anisotropic materials has been illustrated.
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1. Introduction

The classical degenerated shell elements produce over stiff solutions when applied to thin
shell structures. This phenomena occurs due to shear and/or membrane locking (Pugh 1978,
Zienkiewicz 1971). To eliminate the above locking problem, reduced and selective integration
techniques are employed (Hinton, et al. 1978), but when coarse meshes are used the results are
not reliable. Moreover spurious energy modes or mechanisms occur when lightly constrained
boundaries are used which spread to all the elements resulting in incorrect solutions. To el-
iminate the above drawbacks (Huang and Hinton 1986), assumed strain field technique was used.
In this reference, it was applied to problems with material nonlinearity but geometric non-
linearity was not considered. In many problems involving large displacements, it is essential to
consider both geometric and material nonlinearity. In this paper, an attempt has been made to
modify the Huang procedure to take care of both material and geometric nonlinearities. Num-
erical solutions have been obtained for example problems considering isotropic and anisotropic
material properties. An example of spread of plastic zones for isotropic and anisotropic materials
has been illustrated.

2. Finite element formulation of degenerated shell element
2.1. Assumptions

The assumptions made in the present procedure for a shell element, obtained from 3-D solid
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element are given below.

1) Normals to the middle surface of the element before and after deformation remain straight.

2) Normal stress component in the thickness direction is zero and eliminated from the con-

stitutive equations.

In the nodal point of a degenerated shell element there are three displacements u, v, w in the
global x, y, z directions and two normal rotations f; and B, as shown in Fig. 1.

The basic formulations an notations have been followed in line with the reference (Huang and
Hinton 1986) which gives the procedure for the elasto-plastic analysis using assumed strain field
technique. In the present paper the following modifications have been carried out to incorporate
the geometric nonlinearity.

2.2. Geometric nonlinearity

For the degenerated shell elements employed in this work a specific and appropriate Total
Lagrangian formulation is adopted in which large deflection and moderate rotations (in the sense
of von-Karman hypotheses) are accounted for. Hence the strain displacement relations in the lo-
cal coordinate system are

gﬁ: 1(ow ’
& ay/ 2 Bx’
& W 1w Y
E=\Yy =y t=5¢ t — 1
%//,y' ay ox ) 2 ( ay/ j i ( )
; ‘ ou'  ow ' \ (9w’
7 o7 o i
N | oW o J{ oy
o7 8

y(v)

NI

X T

o
Global Coordinate System 5\ Nodal Coordinate System
at node k

Fig. 1 Nodal and curvilinear systems for a degenerated shell element.
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2.3. Elasto-plastic stress-strain relations

2.3.1. Elasticity matrix

The material is assumed to possess a state of anisotropy with three mutual orthogonal planes
of symmetry. If the reference system of the orthogonal axis is parallel to the principal material
axes, the stress strain relations are given by

£ =C110, 1130, +C1303

£,=C 1301+ €10+ 03

&=C13011 €530, T C3303
- > 2

Yi2=CasTiz

Y3 =CssTi3

Yo3=Ce6T23

where nine elastic constants C;; can be expressed as functions of E, u and G. For our case 0, =
6; =0, and the elasticity matrix [D] which relates streses and strains, is given by

(D, Dy, 0 0 0
Dy, D, 0 0 0
[D]I=| 0 0 D, 0 0O G)
0 0 0D, O
i 0 0 0 0 D
where
E, E,
S D=——2 D.=G
1 (1 -tz o) ’ (1= sz 1) R
E
12:¢ D;=G, Ds=Gy
(1= 2 )
2.3.2. Huber-Mises yield criterion
The yield criterion used is of the form
02 =a 10-12 + 2a 120-10-2 +a 20-22 +a 3T122 +a 47123 +a 51223 (4)
where a,, a,,, a,, a;, a, and a5 are the anisotropic parameters.
2.3.3. Elasto-plastic matrix
The total strain increment (d€) is given by
de=dg +de G

where de° is the elastic component and de” is the plastic component.
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The plastic strain increment is given by

r_arof
de’ =dag 6)

since we assumed associated plasticity theory. The elasto-plastic incremental strain relationship
is given by

do=[D],de 7
in which
_in1_[Dlaa’[D]
[Dv]ep—[D] A+a'[D]a ®
and
d=§—f ©)

and A is the hardening parameter.
2.4. Solution procedure

During the general stage of the incremental/iterative solution of a finite element elasto-plastic
problem the equilibrium equations will not be exactly satisfied and a system of residual forces y
will exist such that

n

yr={"-pr=f - | B'orav=0 (10)

in which f and p are respectively external applied force and internal equivalent force vectors, B
is the strain displacement matrix and © is the current stress field satisfying the yield condition,
V denotes the volume of the solid, the superscript n signifies the load increment number, and
subscript i the iteration cycle number within that increment. Taking the variation of Eq. (10)
with respect to displacement da, the tangential stiffness matrix for a geometrically non-linear
problem is given by

Kda=dp=[B"dgdV + [ dB" cdV 11)

The strain displacement matrix B may be separated into the usual part B, and non-linear con-
tribution B, so that

B=B, +B, 12)

Consequently dB” = dB;. Defining the initial stress or geometric stiffness K, as
K, da=[(dB! 0)dV (13)
K=K+K, (14)

in which
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K=[B"D,BdV

where D, is the elasto-plastic constitutive matrix.
From the Eq. (1),

§:§o +§L
where
1
§L=E§B.
where
aw, 0 aw’ 00
. | ox dy
S = ow’ ow’
0 v - 00
dy’ ox
and
ow’
| ox" | _
R=| 5,7 [=Ga
ay’

221

(15)

(16)

17)

(18)

(19)

The term G is a matrix with two rows and number of columns equal to the total number of

element nodal variables.
Taking the variation of Eq. (17)

dg =

and by definition we have

Also we have,

where
dS" o=[0]Gda
in which
1 O Tey
0=\, o
and hence

K.= [ [GY [a][G]aV
\4

(20)

eay)

(22)
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Using the above formulation and adopting the material non-linearity constitutive relations
given in (Huang 1986) a finite element procedure is developed. A few numerical examples are
given below to validate the above procedure.

3. Numerical applications

The numerical results of the present method are compared with the reference (Hinton and
Owen 1984). The computations are done using the program given in the reference (Hinton and
Owen 1984) for accurate-numerical values, as published literature (Owen and Figueiras 1983) is
in the form of graphs.

3.1. Clamped square plate subjected to concentrated load

Fig. 2(a) shows a clamped square plate subjected to a concentrated load at the centre. Due to
its symmetry one quarter of the plate is discretized. In order to ascertain the convergence of the
solutions. different mesh size are considered. Both isotropic and anisotropic material properties
are taken into account and the displacements at final load step are tabulated in Table 1. The dis-
placements are compared with (Owen, et al. 1983) and was found that the present analysis with
assumed strain field technique gives better results even with coarse mesh when compared to the
results obtained in the reference (Owen, et al. 1983).

The displacements at the centre for various load increments for isotropic and anisotropic cases
is shown in Fig. 2(b).

ANN

THICKNESS = 0.2
MATERIAL PROPERTIES (UNITS MN, m)

Isotropic ;

E, = E =230X10° v =03 G, = C,=Cs =11540.0 p.s.i
T = G = Gy = Oos = 30.0

Torz = Tois = Tozs = 17.32

E, = B = By = Bu= 300 G, = 100.0

Anisotropic ;

Gy = 40.0 Gs = 350 Toe = 20.20
Remaining values are same as for the Isotropic case

Fig. 2(a) Clamped square plate subjected to concentrated load at centere.
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Fig. 2(b) Load vs vertical displacement at centre.

3.2. Clamped quadratic shell subjected to concentrated load at the centre

An elasto-plastic analysis of a clamped quadratic shell subjected to concentrated load at its
centre is taken. The material properties and geometric characteristics are given in Fig. 3(a). Dif-
ferent meshes are used to study the variation in the displacements. The displacement at the cen-
tre for various load increments for isotropic and anisotropic cases is shown in Fig. 3(b). Dis-
placements at final load step are compared with that of (Owen, et al. 1983), and (Huang, et al.
1986) and are tabulated in Table 2. It is found that with the present analysis there is an im-
provement in results compared to semiloof thin formulation.

GEOMETRIC CHARACTERISTICS

L
C:C1:C2:W
2 2
Z ( X"+ Y)

T (wer

THICKNESS = 0.20

MATERIAL PROPERTIES
SAME AS IN EXAMPLE 1

Fig. 3(a) Clamped quadratic shell with concentrated load at center.
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5.00 4 CLAMPED QUADRATIC SHELL SUBJECTED TO
CONCENTRATED LOAD AT THE CENTRE
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Fig. 3(b) Load vs vertical displacement at centre.

In Fig. 3(c), the plastic zone distributions are shown in quarter of the shell for the final load
step. The difference between the isotropic and anisotropic material behaviours are highlighted by
considering the intensity of the plastic strain. A lack of symmetry is seen in the distribution of
plastic zones for the anisotropic case.

To obtain the above results for a mesh size of 6X6, the computational time taken for the
present analysis is 35 minutes, on a PC 486 with 8 MB RAM. Compared to the Hinton and
Owen method, saving in the computational time is 170 per cent on the same system with the
present method.

3.3. Cylindrical shell subjected to self weight

The classical example of the cylindrical shell roof shown in Fig. 4(a) subjected to self weight
loading is considered. The isotropic results obtained with the present analysis is compared with
the exact deep shell solution (Huang, ef al. 1986) and found to be in excellent agreement. The
displacements at final loa step for different mesh sizes considering both isotropic and anisotropic
material characteristics are tabulated in Table 3. The displacements at the centre for various load

Table 1 Clamped square plate subjected to concentrated load at the centre

Deflection, m

I:Iizih Isotropic Anisotropic

Present Owen Present Owen
3x3 —-0.002859 —0.001923 -0.002859 —-0.001923
4 X 4 —0.196000 —0.089281 -0.071220 —0.064280
6 X6 —0.341000 —0.194000 —0.136600 -0.1261000

Table 2 Clamped quadratic shell subjected to concentrated load at the centre

Deflection, m

Mesh Isotropic Anisotropic
Size Present Haung Owen Present .Owen
with GNL with GNL  without GNL with GNL
3x3 -0.05618 —-0.05584 —0.06548 —-0.06467 -0.02339 —-0.03649
4 X 4 -0.09235 ~-0.09124 —-0.17990 -0.10627 -0.05034 —-0.08727

6 X6 —-0.12580 -0.12366 —0.22760 -0.20761 —0.08385 - 0.12540
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Fig. 3(c) Camped quadratic shell under central plint load-spread of plastic zones.
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Fig. 4(a) Cylindncal roof configuration.

increments for isotropic and anisotropic material conditions are shown in Fig. 4(b).

4. Conclusions

The elasto-plastic anlysis using assumed strain field degenerated shell element for both thick
and thin isotropic and anisotropic shells and plates taking into account the geometric and ma-
terial nonlinearities is carried out. Numerical examples have been presented and the dis-
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Table 3 Cylindrical shell subjected to self weight

Mesh size Present analysis ' Exact deep shell solution
Deflection, m
Isotropic Anisotropic Isotropic
at C* at A* at C at A at C at A
3x3 0.0124 -0.0797 0.0123 -0.0791
4 x4 0.0131 - 0.0855 0.0130 ~0.0848 0.0137 -0.0917
6 X6 0.0139 -0.0921 0.0136 ~0.0907

*C and A are the locations as shown in the Fig. 4(a).
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Fig. 4(b) Load vs vertical displacement at centre.

placement values show that the present analysis gives better results compared to that of values
reported in literature. An unsymmetric spread of plastic zones across the lamina has occured for
anisotropic case and it is symmetric for isotropic case. The analysis establishes the improvement
in results by considering the geometric and material nonlineatity together while applying to ap-
propriate engineering problems.
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Notations

a displacement vector

B, B,, B, strain displacement matrices

D, elasto-plastic constitutive matrix

K, K, total stiffness and geometric stiffness matrices respectively
u, v, w  global displacements

u', v\, w local displacements

14 volume of the domain

XYz global cartesian coordinates

x, ¥, 2z local cartesian coordinates

B, B normal rotation

£ von-Karman strain

o} 2nd Piola-Kirchhoff stress

v f,p residual, external applied force and internal equivalent force vectors, respectively
£ n, ¢  natural curvilinear coordinates





