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Boundary stress resolution and its application to
adaptive finite element analysis
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Abstract. A novel boundary stress resolution method is suggested in this paper, which is based upon
the displacements of finite element analysis and of high precision with stress boundary condition strictly
satisfied. The method is used to modify the Zienkiewicz-Zhu (Z%) a posteriori error estimator and for
the h-version adaptive finite element analysis of crack problems. Successful results are obtained.
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1. Introduction

Discretization should be carried out on the domain to be solved while using finite element
method (FEM) to solve an engineering problem. This dicretization procedure, however, makes
the numerical solution of FEM approximate to the true solution only to a limited extent, viz.,
there exists discretization error. The purpose of adaptive FEM is to estimate the magnitude
of the dicretization error quantitatively and feedback the error information to the mesh parameters,
then gain specified computation precision economically and effectively through continuous adjust-
ment and optimization of meshes.

The adaptive finite element method was introduced in the early 1970’s. Due to the creative
work of Babuska, Zienkiewicz and Zhu, etc., the method has been developing rapidly in recent
years. Briefly, the method comprises three basic aspects:

1) estimation of the magnitude of discretization error quantitatively (a posteriori error estimator);

2) feedback of the error information to mesh parameters (adaptive strategy) and

3) implementation of adaptive strategy.

Among them a posteriori error estimator is of paramount importance, its precision is closely
related both to the optimizing extent of meshes and to the amount of computation work. This
paper suggests a method for resolving boundary stresses, which strictly meets stress boundary
condition with resolved stresses of high precision. The method is used to modify the Zienkiewicz-
Zhu (Z° a posteriori error estimator. h-version adaptive finite element analysis is carried out
using both modified Z? error estimator and the original one. Numerical results show that the
modified estimator is more accurate than the original one, so faster convergence rate and better
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optimized mesh can be obtained. The technique is also used for the A-version adaptive finite
clement analysis of crack problems with satisfactory results achieved.

2. Boundary stress resolution

The stress boundary condition in terms of displacements at stress boundary I, is

[G(“:;/‘Hl_,:f)ﬁL/1 Sylis ] n=r ey
In addition, at I, there exists the following identical equation
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where G and A are Lame constants; ¢ the force acting on the boundary I3; §; Chronecker
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For 2-dimensional problems, each of Egs. (1) and (2) contains two equations, u;; includes
four unknowns, while for 3-dimensional problems, Egs. (1) and (2) contain three and six equations
respectively and u;; includes nine unknowns. Consequently u;; can be solved uniquely. Taking
plane stress problem as an example, for four node quadrilateral clement, the above equation
system can be written in matrix form as
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E., u are Young's module and Poisson’s ratio respectively: u,. u>. vi. v, [ are the displacements
of finite element analysis of any two adjacent nodes at stress boundary I7, and the length of
them: n,, n.. are outer normal directional cosine of the stress boundary.

For |4]=—D,G+#0, u,; exists uniquely. As for node stresses at boundary. they can be calculated
from geometrical and physical equations.
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3. Z2 error estimator and its modification
3.1. Z? error estimator

For a linear elastic problem, it follows the basic equation expressed by Eq. (4)
Lu—b=S"DSu—b=0 4)

where S is the matrix of strain derivatives; D the matrix of elastic coefficients; b vector of body
forces and L the linear operator, L=S"DS

The system equation of finite element method with displacements as basic variables is generally
established based on the theorem of minimum energy. Provided u and & are the accurate and
the FEM solutions of displacements respectively, the accurate and FEM solution of stresses
o, 6 can be obtained from Eq. (5)

o=DSu, c=DSu (%)
Define local errors of displacements and stresses as
ey=U—U, 6,~0—0C 6)

and error of the discrete system in energy norm as
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Generally, accurate stresses can not be obtained. except for simple problems. Errors can be
approximately calculated from relatively accurate modified stress, o*, viz.

le*| :[f (c*—0)'D ' (c*—0)d]"” (8)
o

The relative error of the system n and the effective index of error estimator 6 are defined
as

~ le*]
"= Tlal+ Ll ®)
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Zienkiewicz and Zhu, based upon the following intuition, proposed the error estimator: for
the displacement approximation of C, order, stresses are neither continuous nor accurate in
the domain. If stresses are so treated through stress smoothing that they could be as continuous
in the domain as displacements, then the modified stresses are more accurate than those from
FEM analysis. Assuming that stresses can be expressed by the same shape function as that
of displacements, viz.,
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o*=Nc* (11)

then the modified node stresses can be obtained through Eq. (12b) according to Eq. (12a) establi-
shed by least square method.

f NT(c*—6)d2=0 (12a)
o
o*=B"" f N &df2 (12b)
where :
B= f NTNdQ?
Q

When the modified stresses are calculated, the errors defined as in Eqgs. (8) and (9) can be
obtained. if the domain for integration in Eq. (7) to (9) is changed into elements, then the
errors of elements can also be obtained.

3.2. Modified Z? error estimator

Z? error estimator has been proved right in theory and numerical experiments have shown
that it is quite effective for linear elastic problems. It should be pointed out, however, that the
modified stresses obtained from Eq. (12) only meet the requirement of stress continuity in the
domain, stress boundary condition is still not satisfied. If we could make the modified stresses
meet stress boundary condition, the precision of error estimation should be increased. The method
described in Eqgs. (1) and (2) can provide more accurate boundary stresses, so a modified scheme
of Z? error estimator is suggested as follows.

(1) Calculate the modified node stresses of system using Eq. (12);

(2) Remodify node stresses at stress boundary, I,, according to Egs. (1) and (2);

(3) Force shear stresses of the nodes at sliding displacement boundaries to be zero;

(4) Calculate the errors of both elements and system using Egs. (8) and (9):

Fig. 1 Mesh of a think-wall cylinder (quarterly).
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Table 1 Comparison of boundary stresses

accurate stress Modified values Modified values
nodes values of Z? in this paper
o o, Ty o o, Ty o, o, Ty

1 —1000 11.33 000 —462 1161 —162 —978 1045 0.00

nodes at 5 —6.88 821 —754 —225 922 —574 —682 749 —7.15
inner 9 0.67 0.67 —10.67 349 349 —8.11 033 033 —10.12
boundary 13 821 —688 —754 922 —225 —574 749 —682 715
17 11.33 —10.00 0.00 1161 —462 —162 1045 —9.78 0.00
4

0.00 133 000 —055 101 =015 0.05 1.22 0.00

nodes at 8 0.20 .14 —-047 —032 0.78 —055 0.22 105 —042
outer 12 0.67 067 —067 0.23 023 —0.78 0.64 064 —059
boundary 16 1.14 020 —047 078 —032 —0.55 1.05 022 —042
20 133 0.00 0.00 101 —055 —0.15 1.22 0.05 0.00

Table 2 Comparison of relative errors and effective indices

No. of accurate estimated value by Z° estimated value by modified scheme
elements  error error(%) effective index error(%) effective index
1 3647 29.66 0.81 3427 094
3 17.46 24.39 1.40 21.21 1.21
4 34.46 3231 0.89 34.28 0.94
6 17.50 23.70 1.35 21.27 1.22
7 3646 32.31 0.89 34.28 094
9 17.50 23.70 1.35 21.27 1.22

10 3647 29.66 0.81 3427 094

12 17.46 24.39 1.40 21.21 1.21

system 28.64 28.39 0.99 28.69 1.00
Example 1.

Shown in Fig. 1 is a thick-wall cylinder with an inner diameter of 2m, an outer one of
8m and bearing an inner pressure of 10 MPa. Table 1 lists the node stresses at boundaries
and Table 2 lists the relative errors of boundary elements and the effective indices of error
estimation. It can be seen from the Tables, that the modified scheme proposed above can give
a high accuracy of boundary stresses and make more accurate error estimation.

4. h-version adaptive finite element analysis
4.1. Adaptive strategy

The aim of adaptive analysis is to make the relative system error, 7, less than or equal to
a given value, 1, (5~10% in general), viz.,

n<m (13)
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If n> no, then the meshes need to be enriched. The enriching index, &, of elements is defined
as

é = Tli/ o (14)

So, the elements to be enriched are those with £>1, n; is the relative error of the element /.
The adaptive analysis requires that all elements have the same precision or error, viz., optimized
mesh, so the allowable error of element i/ for the next analysis can be obtained from Eq. (15)

241512 T
lert = LI | 15

Where NE is the number of elements in the system. According to the theory of FEM,
“e” o hmin(P,/l) (16)

where 4 is the element size, P the order of interpolation shape function, A stress singularity
index of the problem to be solved (A=0.5~0.711).

Combine Egs. (14), (15) and (16), the element size for the next analysis can be obtained as
follows

h=¢& "Ph, (17
and around the singularity,
h=& V*h; (18)

where h; is the size of element / being under computation.
4.2. Implementation

The adaptive strategy described above can be implemented by adaptive remeshing. The reader
is refered to references for detailed mesh generation technique. The procedure of adaptive reme-
shing is as follows.

(1) Preparation of initial background mesh and mesh parameters (viz. element size);

(2) Auto-generation of meshed and finite element computation;

(3) Estimation of analysis precision

goto (5), if precision is reached,
goto (4), if precision not reached;

(4) Take the mesh of current analysis as background mesh (according to principle of maximum
interior angle, each quadrilateral element is divided into two triangles), and then calculate
background mesh parameters from Eq. (17) or Eq. (18), goto (2);

(5) end.

Example 2. Thick-wall cylinder

Take the mesh shown in Fig. 1 as one for initial analysis and employ Z* error estimator
and modified Z> estimator respectively to perform adaptive analysis. Let 7,=5%. The results
of adaptive analysis for two times are all convergent to the given precision. In Fig. 2(a), shown
is the final mesh using Z? error estimator, having 501 nodes (M =501) and 450 elements (VE =450),
and 1n,2=47%; in Fig. 2(b), shown is the final mesh using the modified estimator, M=439,
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(a) Z* eror estimator (b) modified Z* estimator

Fig. 2 Final mesh of the adaptive analysis of a thick-wall cylinder.
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Fig. 3 Bar diagram of the distribution of effective enriching index.

NE=393, ny.2=5.0%.

There exists a theoretical solution to this example, so errors can be obtained accurately to
compare the optimization extent and the convergence rate of the two error estimators. Fig. 3
gives the bar diagram of the effective enriching index distribution of two sets of meshes and
Fig. 4 shows the convergence rate of two error estimators, viz., log NDF—Ilogn, curve. NDF is
the number of degrees of the system and 7, is the accurate value of relative error. From the

figures, it can be seen that compared with Z* error estimator, the modified estimator achieves
more optimized mesh and faster convergence rate.

5. Crack problem under compression and shearing

Goodman joint model is employed to simulate cracks. As the stresses of a Goodman element
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Fig. 4 Diagram of convergence rate.
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Fig. 5 Adaptive analysis for a crack problem.

are a linear function of its displacements, its stresses and displacements have the same order
of precision. From Eq. (5), it can be known that the stress precision of general elements is
one order lower than that of displacements, that is, the stress precision of joint elements is
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one order higher than that of general elements. Consequently, it is reasonable to consider that
compared with the stresses of general elements, the stresses of joint elements can be assumed
to be accurate, so the errors of them are zero. In the adaptive process, cracks are taken as
internal stress boundary and the stresses of general elements at the upper and lower banks
of cracks are corrected using joint element stresses according to Egs. (1) and (2). The enrichment
of joint elements depends upon the mesh compatability required by the enrichment of general
elements at the two banks of cracks.

Example 3. Block with a single crack

Shown in Fig. 5(a) is a block (20X20 cm in size) with a single crack of 6 cm long at an
angle of 30° to horizon. Parameters for the analysis are as follows: for the block, young’s module,
E=15000 MPa, Poison’s ratio, u4=0.24; and for the crack, normal stiffness, K,=25 MPa/M, shea-
ring stiffness, K,=10 MPa/M. The problem is of plane stress with weight neglected. The aim
of adaptive analysis is 7,=5%. The optimized mesh after adaptive analysis for three times is
shown in Fig. 5(b), having 1247 nodes, 1222 elements and 7,.2=4.5%, being convergent to the
given precision. Fig. 5(c) is the diagram of convergence rate. The example has a singularity
index of A=0.5, a higher convergence rate is still achieved.

6. Conclusions

This paper suggests a method for boundary stress resolution, which strictly meets stress boun-
dary condition and has a high precision. When used for the modification of Z? error estimator,
the method can increase the precision of error estimator, making convergence rate higher and
adaptive mesh more optimum with a little calculation added. In addition, the method, when
used for crack problems, can widen the appliction scope of adaptive approches, viz., to the
adaptive analysis of discontinuous media.
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