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Abstract. The research and applications of numerical methods of design optimization on structural
dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimiza-
tion of aerospace structures, particularly those composed of composite laminate and sandwich plates.
The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimiza-
tion solution approaches are presented. The numerical examples of sensitivity analysis and dynamic
structural design optimization are given to demonstrate the effectiveness of the numerical methods.
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1. Introduction

The structural design optimization is an important research and application branch of the

- computational mechanics. The research of modern theories and methods of structural design
optimization is closely related with the finite element method. Although most of the research
work has been concentrated on the design optimization of static behaviors of the structures,
much attention has been focused on the optimum design concerning structural dynamic behaviors
(Fox and Kapoor 1969). Compared with the static behavior design of structures, the dynamic
behavior design is more difficult, since the structural dynamic properties are more implicitly
related to the design parameters and there are fewer design criteria and experiences on them.
Aecrospace structures are typically large scale flexible ones made of light-weight materials such
as composite materials. Therefore the natural frequencies of the structures are relatively low.
Moreover, some part of the structures may be subjected to external excitations caused by eccentric-
ity, collision and so on. For this reason, the structural dynamic behaviors such as vibration
frequencies, dynamic deformation and stress responses are usually critical design requirement
for aerospace structures. For example, the vibration frequencies of flexible space structures such
as satellite and its wing structures must be designed higher enough to ensure the required control-
ling performance. Along with the advances of scientific research and industrial technologies,
in more and more structural designs the dynamic property requirement becomes dominant. Due
to the complicated relationships between the structural dynamic properties and design parameters,
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and the lack of design experience on the structural dynamic properties, the traditional design
methods are tedious or even impracticable in the design of the aerospace structures. Consequently,
it is important to applying the optimization techniques in the design process to obtain an optimum
design which satisfy both the dynamic property requirements and other ones.

The structural optimization method is an important and efficient tool for dynamic property
design. The present paper addresses the research and applications of this numerical method
to the dynamic design, particularly, the design of space structures. In the design of space structures,
the weight minimizing is desired for economic consideration and the structural vibration frequen-
cies are strictly limited by the design requirements on working performance and operating control.
It is very difficult to make balance between these two conflicting requirements. Part of the difficulty
arises from the great number of design variables and complicate relations between the structural
dynamic properties and the design variables. Moreover, the space structures are usually composed
of composite materials which are very flexible and possess very low vibration frequencies due
to their shape and size features and the material properties. This makes the structural dynamic
analysis and sensitivity analysis more difficult. On the other hand, the composite components
used in space structures, e.g. laminate plates, sandwich plates, composite thin-walled beams, pro-
vide more design possibilities too. On the basis of the research work (Gu and Cheng 1990),
the structural analysis and design optimization program MCADS was extended to the dynamic
design optimization of structures. The design optimization is based on the versatile structural
modeling and finite element analysis for general structures and composite space structures, for
which the optimization facilities of laminate and sandwich plates are developed. Linear approxi-
mation of the behavior constraint is usually needed if mathematical programming methods are
employed to search for optimal solutions. The sensitivity analysis for vibration frequency and
dynamic responses, particularly, a direct derivation method for the latter, is studied. The optimiza-
tion method with basic sequential linear programming algorithm has been improved stable and
efficient for dynamic design and multi-objective optimization. These numerical methods and
the program MCADS have been applied to space structures such as satellites.

2. Structural design modeling

The practical applicability of design optimization program is principally determined by the
structural design and analysis modeling. The modeling of structural analysis with finite element
method is normally presented by the types of elements, loading and boundary conditions, while
the design modeling is described with design variables, constraint and objective functions of
structural behaviors. The structural modeling of MCADS is developed to optimize general struc-
tures and, particularly, the composite space structures made of laminate plates, sandwich plates,
and special thin-walled beams. The element library is composed of bar, beam, membrane, plate,
shell, 3D solid brick, axisymmetric solid and shell, spring, composite honeycomb sandwich plate
and laminate plate. To deal with the laminate plate and sandwich plate, the quadrilateral and
triangular Mindlin-type lower-order plate elements free of shear locking have been developed.

The design variables of MCADS can be classified into three categories:

(1) Size design variables, including the cross section area of bar; thickness of membrane,

plate and shell; cross section sizes of beam with various shaped cross sections.

(2) Composite design variables, including the ply orientation angles and the layer thickness
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of laminate plate and faces of sandwich plate, the height of honeycomb core, and the
material parameters of some kinds special composite plates.

(3) Shape design variables, including the coordinates of special nodes and geometric parameters
used in the shape description of structural boundaries, e.g interpolation parameters and
interpolation point positions of curves or surfaces.

Particularly, for the beam elements extensively used in engineering structures, the design variab-
les can be any size of cross section. Furthermore, a cross section library has been built for
commonly used cross sections of beam. The design variables and stress calculation of beam
cross section within this library can be dealt with uniformly.

The constraint functions of dynamic design optimization with MCADS cover the following
structural behaviors: structural weight, vibration frequencies, dynamic displacement and stress
responses. The objective function of design optimization can be selected from above constraint
functions or be combination of several constraint functions. This way, the objective of design
optimization can meet different design requirements such as reducing structural weight, increasing
structural fundamental frequency, adjusting the distribution of a group of vibration frequencies,
or minimizing structural dynamic responses.

3. Optimization solution algorithm

The mathematical formulation of structural design optimization problem is as following.

To find X=(x}, X2, w, X,),
min. f(X)
st g (X)<0, j=1 2, ., m
X< X<xv (1)

where X is the vector of design variables and f(X) is the objective function. g;(X)<0 (=1, 2,
.., m) represents the constraint conditions such as the structural weight or the dynamic behaviors
constraints. X* and XV are lower and upper bound of the design variables, respectively. n denotes
the number of the design variables and m the number of the constrains.

The basic optimization algorithms of MCADS are sequential quadratic programming (SQP)
and sequential linear programming (SLP). At each design point, the constraints are approximated
by linear inequalities, and the objective function f(X) is replaced with linear or quadratic approxi-
mation for SLP or SQP algorithm respectively. By this means, the original optimization problem
is approximated by a linear programming or quadratic programming problem and solved with
the standard Lamke pivot algorithm.

In some circumstances, an infeasible design may be encountered and this is often the case
in the dynamic property design. For example, the natural frequency of the structure may be
lower than the lower bound of the frequency constraint. In order to overcome the difficulty
caused by the infeasible design, a goal programming treatment is employed to find feasible
solution. If some constraint conditions are deviated noticeably, then these constraint functions
are added into objective function with weighting factors A;(j&J) and the corresponding constraint
conditions are temperately relaxed by introducing positive quantities &. Thus the modified problem
can be formulated as:
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To find X=(0|, X2 .o X,)"
min FX)=f(X)+ Z 2,8/X)

st g0 <0, (&)
gL s, (jEJI)
X< x<xv 2

This way, by means of assigning suitable bounds to some constraints, a multi-objective optimi-
zation problem can be defined and solved. Particularly, this approach is effective when a group
of frequencies are subjected to lower bound constraints which are not satisfied in the initial
design.

The nonlinearity of dynamic properties of the structures makes it difficult to obtain a stable
convergence during the optimization iteration procedure. Therefore the development of efficient
and robust optimization algorithm suitable for dynamic optimum design problems continues
to be a topic of much research interest. To ensure the convergence of iteration, the methods
of approximate line search and adaptive move limit have been studied and implemented in
the presented paper. The approximate line search is to search a better design on the line between
old design and new design obtained by solving current quadratic or linear programming problem.
At each iteration of optimization procedure, the design is checked according to the following
Goldstein criterion.

B(l—n) VFX)d < FXo+pd)—FX) < pnV'FXo)d
d=X—X,, 0<n<0.5 (3)
where X is a new design point obtained from quadratic or linear programming, d is the direction
of line search, B is the step length of line search with initial value 1.0, and F(X) is the original
objective function or the modified multi-criterion objective function in Eq. (2). 7 is a prescribed
factor. Starting from X and with initial =10, the approximate line search is carried out within
a few steps as following.
1) If the Goldstein criterion (3) is satisfied, then X,..=X,+ fd is accepted as a new design
and stop the line search.
2) If F(Xo+ Bd)—F(Xo)>PBnV'F(Xp)d, then reduce step length B to continue line search, and
reduce the move limit for the next iteration;
3) If FXo+ Bd)—FXo)<B1—n)V'FXo)d, then take X,..=Xo+6d as a new design and stop
the line search. In this case, the move limit of the next iteration can be enlarged.

4. Dynamic property approximation

When sequential quadratic programming or sequential linear programming methods are emp-
loyed to solve the optimization problem, it is desired that objective function or the constraint
function be approximated with a high enough quality to facilitate efficient solutions. In the
dynamic optimization problem, a first order approximation for the constraints concerning structu-
ral natural frequency or frequency field response is needed.

The structural response and sensitivity analysis are implemented using the finite element method
in MCADS.

The free vibration problem of the discrete model of the structure can be represented by the
following eigenvalue problem:
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Ko—Mop=0 )

where M and K are structural mass and stiffness matrix, respectively. A is the square of the
eigen-frequency @ and ¢ is the mass normalized eigenvector associated with w.
Generally, the vibration frequency constraint can be written as

>4 ©)
where A is the lower bound of A,

By differentiating Eq. (4) with respect to design variable, we have the derivative of the j-th
eigenvalue

o K _, M
aa,_"’f(ax A ax)

By virtue of this, an approximation of the eigenvalue based upon the first-order Taylor’s series
expansion is straightforward. Thus the constraint condition (5) is approximated by a linear ine-
quality at the vicinity the current design point X.

On the other hand, since the eigenvalues are highly nonlinear in design variable space, the
approximation quality is not good enough. However, it has been shown (Canfield 1990) that
the linear approximation quality of vibration frequency can be greatly improved by the Rayleigh
Quotient approximation.

The j-th order frequency can be represented by the Rayleigh Quotient

E‘
2= ) =
o' =4 T 7
where E; and 7; are the modal strain energy and modal kinetic energy, respectively.
E=9'Ke, T=9'Mg, ®)
At an new design point X, the j-th order frequency is approximated as
52:"':—E1 ©9)
T
with
E=E,(X)+ Z dx — (6 —Xo1) (10)
=T;,(Xo)+ Z g{ (i —X0) (1)

where X, is the previous design point.
By this means, the frequency constraint (5) can be represented as the following linear inequal-

ity

Z( 5E{ _ ——-—g’ ) 52 AT )~ Y, ‘;{T{ x0)=E,(Xo)+ 2 %xm (12)

It has been shown from the numerical examples that the improvement of the quality of approxi-
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mation for the frequency constraint results in a more stable convergence.

The govening equation for structural dynamic response is represented in the following
form

Mii+ Cu+Ku=p()) (13)

where C is dumping matrix, and u is displacement vector. There exist two forms of harmonic
exciting load vector p, p=p, sinft and p=p, cos@t, where p, denotes the vector of the amplitude
of the load, which is caused by external nodal force or acceleration of base movement.

The structural displacement response is solved with the modal superposition method in the
following form

u=ssinfr+c cos 9t (14)

where s and ¢ are both linear combination of a number of vibration modes of the structure.

The derivatives of u with respect to design variables can be evaluated by several approaches,
e.g, the modal superposition method. However, the eigenvector derivative calculation is tedious
and time-consuming. Here, a direct sensitivity analysis method by means of solving a dynamic
equation in eigenvector space is employed. Taking p=p, cosft as example, the derivative of
Eq. (13) with respect to design variable X yields

Mu'+Cu' +Ku' =F, sin 0t+F, cos 0t (15)
with
F=Ms0>—K's
F.=Mc6’—K'c (16)

where the superscript ' denotes the derivative with respect to the design variable.

Here, the dumping matrix C is assumed independent of the design variables. It is worth noting
that Eq. (15) is the same as Eq. (13) except for the amplitude and the phase angle of the load
vector. Following the similar procedure as in the analysis of frequency response, we have two
solutions corresponding to excitation F; sin 8¢ and F, cosO1, respectively.

u/ =s,sin@t+c, cosOt
u/=s.sinft+c.cosOt a7

Finally, the derivative of displacement response can be obtained as u'=u,/+u,/. This direct
sensitivity analysis method are easy to implement and suitable for different types of design variab-
les and structures without lengthy calculation of eigenvector derivatives for repeated eigenvalues.

5. Numerical examples

The numerical methods mentioned above have been implemented in MCADS system and
applied to the dynamic optimization problem of structures.

Example 1. Dynamic response sensitivity analysis of cantilever plate (see Fig. 1). Material
parameters: E=23*107(Pl/in?), u=0.3, p=2.82(Pl/in’), dumping ratio ¢=0.03. The thickness of plate
r=0.1(in). The 55-th node of the plate is subjected to harmonic excitation with amplitude P=1.0
and frequencies 6 varying from 20 to 1000 Hz. Two design variables are treated, ie., the thickness
of the half part of clamped end x,=¢), and the thickness of the half part of free end x,=t.
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Fig. 1 The finite element model of cantilever plate.
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Table 1 Eigenvalues of cantilever plate (HZ)

j ] 2 3 4 5 6
Numerical: 4218 208.50 26331 662.46 74397 121848
Analytical: 4269 22020 266.30 709.72 74826 131545
0=d0Hz . 6=1000HZ
s _ 1436
ox,

Fig. 2 duss/dx, versus 6.

Tt _ 344
ox,
| 6=1000HZ
I 4
0=260HZ

Fig. 3 duss/dx, versus 0.

The computational results of the eigenfrequencies as well as the analytical solutions are listed
in Table 1. Fig. 2 and Fig 3 show the displacement derivatives of node 55 with respect to
x; and Xx,, respectively, as a function of 6 It is revealed that the numerical results obtained
using the presented method agree well with that of the finite difference method.

Example 2. The solar wing of satellite in deployed status, the finite element model and first
three vibration modes of which are shown in Fig 4, is optimized with frequency constraints.
The solar wing structure is composed of three pieces of honeycomb sandwich plate with ply
reinforced face plate. The support frame, composite thin-walled beam, and the joints linking
the three pieces of sandwich plates are modeled with beam elements. The first four vibration
frequencies are considered as constraints. Two group of design variables are tested: (a) Surface
plate thickness 7, and core heights 4; of the three pieces of sandwich plates. (b) #, A, and the
ply orientation angles 6 (i=1, 2, 3) of the face plate. The initial, optimum and constraint bounds
of sandwich plate weight, frequencies and design variables are given in Table 2. The sandwich
plate weight is reduced by 25.7% and 27.2% in the optimization results of the two models, respecti-
vely.
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Fig. 4 The FEM model and the first three vibration modes of solar wing structure.

Table 2 Dynamic optimization results of solar wing sandwich plates
Weight A A A A4 18] IR 13 h h, hs )

initial value 16.0 021 080 105 159 03 03 03 250 250 300 O 0 0
lower-bounds 022 080 110 150 02 02 02 200 200 200 —45 —45 —45
upper-bounds 04 04 04 300 300 300 45 45 —45
optimum(a) 1233 024 0872 1.10 1705 02 02 02 300 300 300 O 0 0
optimum(b) 1208 022 0824 1277 1633 02 02 02 209 268 200 43 35 45
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Fig. 5 The finite element model of satellite structure.
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Fig. 6 The first three vibration modes of satellite structure.

Example 3. The dynamic design optimization of satellite structure. The finite element model,
shown in Fig. 5, is composed of 571 nodes and 924 elements (beam, bar, shell, composite honey-
comb sandwich plate). The first three vibration modes of a satellite structure are shown in Fig.
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Fig. 7 The finite element model of rocket component structure.

6. The design variables include cross section areas of bars and beams, thickness of shell elements,
core heights and face thickness of sandwich plates. After the variable link, twenty master variables
are selected. By means of the goal programming method, a multi-objective optimization model
is built to increase the first three vibration frequencies of the satellite. The structural weight
is constrained not increase in design optimization. The result of design optimization is that
the first vibration frequency has been increased by 9.5%, and the second and third vibration
frequencies have been increased by 4.3%.

Example 4. The static and dynamic design optimization of structural component of carrier
rocket CZ-2E/TS, which is designed for the future launching program of China. In this problem,
the upper-stage structure of the rocket is modeled with 580 nodes and 1460 elements (see Fig.
7) and the objective is to minimizing the structural weight under the fundamental frequency
constraint. There are totally 20 design variables considered, including thickness of plates, size
parameters of beam cross-section, and so on.

In the optimum design obtained, the structural weight is reduced by 12% without violation
of the frequency constraint, which indicates a great improvement of the initial design.

6. Conclusions

The sensitivity analysis for dynamic response and the linear approximation of the constraints
concerning structural dynamic properties are addressed in this paper. The optimization algorithm
is improved by several numerical methods, such as approximate line search, adaptive move
limit. Furthermore, the numerical methods mentioned above are implemented in the general
purposed structural analysis and optimization program package MCADS. Numerical examples
show that the propose methods of dynamic optimization for space structures are effective and
efficient.
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