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Abstract. The method of pairwise comparison inherently contains information of ambiguity, fuzziness
and conflict in design goals for a multiobjective structural design, This paper applies the principle of
paired comparison so that the vaguely formulated problem can be modified and a set of numerically
acceptable weight would reflect the relatively important degree of multiple objectives. This paper also
presents a fuzzy global criterion method (FGCM,) included fuzzy constraints that coupled with the
objective weighting rank obtained from the modified pairwise comparisons for fuzzy multiobjective opti-
mization problems. Descriptions in sequence of this combined method and problem solving experiences
are given in the current article. Multiobjective design examples of truss and mechanical spring structures
illustrate this optimization process containing the revising judgement techniques.
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1. Introduction

The e-constraint method (Carmichael 1980), the weighting method (Cohon 1978), and the min-
max approach with weighting strategy (Osyczka 1985) are primary techniques conventionally
to generate a noninferior set for a multiobjective engineering optimization. A designer usually
decides a set of absolute and precise weighting values represented the degrees of importance
to multiple design objectives. Actually such weighting values in nature contain amibiguity, conflict,
and fuzzy information. Shih and Yu (1995) had presented both crisp and fuzzy weighting strategies
in pure continuous or mixed design space with crisp and fuzzy constraints. However, the relative
weights among objectives are difficult to get a total idea by the human comparison or judgement.
That is true of increasing the problem complication particularly when many objectives exist.
Saaty (1980) suggested that it is simpler and better to compare the design objectives in pairs,
than trying to compare all objectives at once, based upon the experience, experiment, and/or
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the design requirement. Subsequently one can adopt a systematic “scale” for the pairwise compari-
sons which focuses on two objectives and their relation at a time. Thus, a reciprocal matrix
can be built up at this stage.

However, this matrix captured from the paired comparisons cannot directly apply to the weigh-
ting method or min-max approach in the optimization process. This can be done by revising
the matrix untill a set of satisfactory weights of the design objectives are obtained. This paper
examines the above procedure based on the program developed by authors that modifies the
inconsistent matrix to be consistent to result in a final weighting rank for individual objective.
Beyond obtaining an acceptable weighting rank, this algorithm enables one to maintain the
original information of paired comparisons as much as possible. We also show the principle
and process of the revising judgement for obtaining a reasonable final weight. The computing
process, some data and experiences are presented to share with readers who are interested in
this subject.

The theory of pairwise comparisons in used popularly in the decision making concerning
economic, social and management sciences. It is conceptually able to apply on structural enginee-
ring synthesis, however, very few literatures systematically reported on this kind of design process
neither a really structural design problem. Such that Koski (1984) positively mentioned about
this method in little without any example for structural design. The possible reasons are that
the applied engineers lack the knowledge about the method of paired comparisons or lack the
fuzzy perception embodying in the problems. The other reason may be the existing conventional
design method that lacks a way to deal with the fuzzy information.

One can realize that a set of weighting coefficients containing fuzzy nature is best to fit into
a design methodology also containing fuzzy nature. Because of this motivation, we present a
fuzzy global ciriterion method (FGCM,) based on fuzzy logic (Zadeh 1965) that is a convenient
way to deal with a problem consisting of fuzzy weights and other fuzzy information. This max-
min approach of the fuzzy global criterion is a variant of A-formulation method (Rao 1987a
and 1987b) by adding additional constraints. The model has an optimum result that is closest
to the ideal solution. The FGCM; can deal with both objectives and constraints contained fuzzy
information. That can generates a Pareto optimum set as well as the preferred solution. We
also compare this method with another fuzzy global criterion method of f-formulation of min-
max variant (FGCMp) originated from the crisp global criterion approach (GCM) (Hwang and
Masud 1979, Hajela and Shih 1990). The consistent weightings of design objectives which are
obtained from pairwise comparisons method is then applied to this fuzzy global criterion of
A-formulation for solving a fuzzy multiobjective optimization problem.

The subsequent sections will introduce the analysis of pairwise comparisons, revising algorithm
and judgement for yielding to the consistent matrix. The description in this paper is concise
and helpful to a practitioner to understand and further apply the mentioned techniques. The
methodologies of pairwise comparisons combined with fuzzy global criterion approach are illust-
rated by multiobjective mechanical and multiobjective structural design examples. The paper
also contains some solution notes and experiences of this work. At the end we give a closing
remark with discussion about the presented design strategy.

2. Analysis of reciprocal pairwise comparison matrices

It is known that the pairwise comparisons enables one to improve the cardinal consistency
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Table 1 The scale and its definition

Intensity of Definition
importance
| Equal importance
3 Weak importance of one over another
5 Essential or strong importance of one over another
7 Demonstrated importance of one over another
9 Absolute importance of one over another
2468 Intermediate values between the two adjacent judgements

in the measurement of weights using as much information as possible. A commonly used scale
system (Saaty 1980) shown in Table 1 suggests the intensity scale of comparative importance
and its definitions for design objectives. In this scale system, the range of scale values is 1
to 9. One can use any value between the two intensities to describe the importance. Of course
one can adopt another scale system for expressing the degree of importance. Saaty (1980) showed
that this scale system is quite good compared to any other scale. It has the advantage of simplicity,
and is appropriately quite natural.

In an optimization problem with m objectives, let @ (i=1, ---, m) represent the degree of
importance of the ith design objective. We let a; has the following relation:

a=—or. Pj=L o m (1)

A matrix A can be constructed by the ratio of @; and 1/a; which is denoted as following:

1 a; ap o Qg
l/a,, 1 an o oy
A= . . . . )
l/a;m l/azm 1/a3m 1

The above expression can be simplified as 4=[a;]. If the element satisfies the condition of
a;=1/ay, we call such matrix 4 is a reciprocal matrix. If the judgement of the weighting coefficient
o; for the ith objective is perfect in all comparisons, then a;=a;-a; for i j, and k. Thus one
defines the matrix 4 to be consistent.

We utilize Eq. (1) and obtain:

aii—(‘l;zl’ L j=1, - m 3)

The summation of the above equation is written as:

L 1
i . —=m, ':L ..., 4
’; a"@a),- m i m ()]

or it can be expressed as:
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> ayo=m o, i=1, =, m (5)

J=1

Eq. (5) can be equivalent to and represented by a matrix form in the following:

Ao=m @ ©6)

In Eq. (6), w indicates the eigenvector of matrix 4 with eigenvalue m. This matrix equation
has a nonzero solution if and only if m is an eigenvalue of the matrix 4. For a unit rank
matrix 4, all of the eigenvalues o; (i=1, ---. m) are zero, except one, which is denoted by @,
and is equivalent to m.

In a practical design case, the ratio of a; is obtained by fuzzy, conflicting, subjective, and/or
objective measurements. Thus, a; will deviate from the consistent element @/, and Eq. (6)
cannot hold any more. Our problem is to find the priority vector @ that satisfies the following
matrix representation:

A=, w (N
where

> w=1 (8)

i=1

The helpful matter is that one can change the eigenvalue @, with a small amount, and by
changing the input g; of the reciprocal matrix 4 with a small amount. The consistency index
(ChH and the consistency ratio (CR) acts as indicators of closeness to the consistency. CI and
CR can be expressed as:

_ Q™M
Cr= ol 9)
e
CR=—- (10)

Where RI (random index) is called the consistency index of a randomly generated reciprocal
matrix from the scale 1 to 9. The Table 2 gives the order of the matrix (first row) and the
averaged value of RI (second row). Saaty (1980) suggested, in general, which CI value or CR
value of 0.1 or less is considered acceptable for the consistency.

3. Revising judgements on the matrix

The processes of revising the matrix 4 in Eq. (2) which consists of the pairwise comparisons
of design objectives is illustrated in Fig. 1. In the first step, we compute the principal eigenvalue
Qme and the corresponding eigenvector ; (i=1, ---, m). In the second step, assuming the consiste-
ncy index of the matrix 4 is large, one constructs another matrix 4, in terms of the relation
of Eq. (1) and Eq. (2) as following:
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Table 2 The averaged value of RI (Saaty 1980)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
000 000 058 09 1.12 124 132 141 145 149 151 148 156 157 159

/oy /o, - o/
/oy /o, - oo,
A= - - : (11)

O/ O Wl @+ Oyl Oy

It is simpler to write the form as A,=[w/w]. We revise the judgement on the ith row of matrix
A in Eq. (2) by replacing a; (j=1, -=-, m) with w/ay (j=1, :-, m) in Eq. (11). based on the
sum of the largest difference such as:

row,:max[ > |(a,j)—(co,-/@)l], i=1, -, m (12)
i J=1

If the relative importance of the ith design objective to the jth design objective is already

and clearly had, then on can fix this associated element of [@;]. In other word, it is not necessary

to modify or replace it at all. The reason for modifying the raw with the largest difference

is that because of the following:
o Z} i
o= Ta &z (13)
o tot o to, Z Z o
i=1

=

which shows that the sum of the ith row elements has the maximum influence on the weight
of the ith objective. Therefore the modification of certain row associated to the largest row differe-
nce between [a;] in Eq. (2) and [@/w] in Eq. (11) is reasonable. Experience shows that the
iteration will converge satisfactorily at a small ¢ (Fig. 1) of about one or less while satisfying
both of the CI and RI are below 0.1.

4. Approach of fuzzy global criterion

In multiobjective optimization, a min-max variant of the global criterion method (GCM) with
crisp constraints (Hajela and shih 1990) is expressed as

minimize f (149
subject to g, (X)<b, J=12, = p (15)
h (X)=0, k=1, 2, - ¢q (16)
X/ <X, LX¥ i=1,2 . n (17)

X:[Xh X2, xn]T
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corresponding @

Fig. 1 Flow-diagram of revising judement for a reciprocal matrix.

and the following additional constraints:

Mf%@ ‘ —B<0, =1, . m (18)

@;

o=1 (19)

Vi

"

1

where S is a scalar treated as an additional design variable in the optimization process; g;(X)
and &, (X) represents the jth inequality and kth equality constrained functions, respectively;
; represents the design degree of importance corresponding to the ith objective; f“(X) indicates
the ith ideal objective value defined by the designer or obtained by optimizing individual objective.

Very often the fuzziness or vague information exists in the design problems. The fuzzy objective
function and contraints are characterized by objective membership functions g and constraint
membershiip functions g, respectively. If the formulation is based on Eq. (14) to Eq. (18) included
fuzzy constraints, then we call this method as fuzzy global criterion method of B-formulation
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(FGCMy). If the linear type membership function is adopted, an approach modified from Rao
(1987b) of fuzzy A-formulation with the additions of Eq. (24) to Eq. (25) are presented in the
following mathematical form:

maximize A (20)
subject to AL 1 (X) @2n
AL Uy (X), J=L o p (22)
AS#M(X) k=1, g (23)
_ f:+1(X)*f+1'd(X)
o |[LEEEE | o, A0 9
S o=1 (25)
i=1
where
0, if g(X)>b+d,
1, if g (X)<d
U (X)= (N— b
1-{%—1’4}, if b, < g(X) <b+d, 6)
and
0, if £(X)>fre
1, if fxX) <
HX)=|
’ AL it e <peo s @

Here d; is an allowable fuzzy transition interval for the jth inequality constraint. The values
of f and f™" are the largest and the smallest values obtained by the optimization in crisp
and fuzzy feasible domains respectively. Since this fuzzy A-mathematical formulation yields the
same results as the global criterion method of minimizing £ with fuzzy constraints (FGCMy)
(Shih and Lai 1994, Shih and Yu 1995), we call it fuzzy global criterion method (FGCM,).
One can see a verification from the results of the three-bar structural design in the next paragraph.
Because the global criterion method can generate a Pareto solution set, therefore we can predict
that if the constraints contain fuzzy information, a set of Pareto optimal solution also can be
obtained by the fuzzy global criterion approach.

4.1. Three-bar truss design of two-objective criteria

The algorithm of the fuzzy global criterion method of A-formulation is implemented in a
popular three-bar truss design shown in Fig, 2. The problem is to find design variables of x, .
and x, to minimize the structural weight of W(X) and the loading deflection of §(X). We assume
a 20% tolerable fuzzy transition zone in the allowable stress and side constraints. We also adopt
the linear membership function in this study. Other information is available to find in Rao’s
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Fig. 2 Static three-bar truss (P=20, H=1, p=1).

Table 3 Optimum results of a 3-bar truss desgn by FGCM, and FGCMg

Weights FGCM, Calculated weights
(@, @5) (W*(X). 85*(X)) (@, @s)

04, 06 59053, 3.0303 04002, 0.5998
05, 05 53984, 3.3965 0.5000, 0.5000
0.6, 04 49217, 38194 0.6003, 03997
0.7, 03 44567, 43372 0.7003, 0.2997
Weights FGCMy Calculated weights
(ww, ws) (W*X), 5*X)) (o, ws)

04, 06 5.8384, 3.0001 0.3998, 0.6002
0.5, 0.5 5.3860, 3.3851 04995, 0.5005
0.6, 04 48732, 3.7704 0.6000, 0.4000
0.7, 0.3 44327, 43229 0.7020, 0.2980

(1987b) paper.

The final designs of fuzzy optimization are listed in Table 3 that shows the results of FGCM,
as well as FGCM; from the same starting point by the numerical optimization. From the table,
the optimal results for both methods are almost the same. Especially, one can confirm this
point by computing the actual weighting values depicted in calculated weights in the last column.
The experiences told us that the numerical iterations in the fuzzy global criterion approach
(FGCM,) are fewer than with the global criterion strategy (GCM) when the constraints are
crisp. When the design constraints are fuzzy, the procedure of the global criterion approach
of pformulation (FGCMy) requires more work than the fuzzy global criterion approach of A-
formulation. Thus we recommend that the fuzzy global criterion method replace the global
criterion method for solving multiobjective optimization problems with or without fuzzy informa-
tion. In the next section of illustrative design examples, we only show the work and resuit of
FGCM,.

5. llustrative examples

A structural design of mechanical spring is presented that shows the techniques of paired
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comparisons with or without the restoration to the resulting matrix 4. A dynamic truss design
of maximizing the natural frequency that shows the techniques of paired comparisons having
a role to reexamine the possible error or mistake in the initial paired judgement of corresponding
weighting rank. Then we plug those final relative weights of design goals obtained from paired
comparison technique into the FGCM; and solve the optimum design problem.

5.1. Design of a mechaincal compression spring

We know that mechanical springs are used in machines to exert force, to provide flexibility,
and to store or absorb energy. A helical spring of round wire modified from Arora (1989) shown
in Fig. 3 is assumed to be used for resisting a dynamic compressive load. Design goals are
to minimize structural weight f;, to minimize free length f,, and to maximize the applied load
/i The design variables are x,, x», x5, and x, that represent the number of active coils, the mean
coil diameter, the wire diameter, and the applied load, respectively. The complete mathematical
formulations are:

minimize f,(X)=7m(c;+N,)x>x5° pg/4 1b. (28)
minimize £ (X)=x/(Gx;*/8&>x))+x3(x,+N,+ 1) in. (29)
maximize f;(X)=x4 Ib, (30)
subject to the following constraints:
&1 x,’x/GX:*2> 0.5 in (deflection) 31
(&¢ax2 /7x: 3/ [(dc, —x3)/ (4, — de3) +(0.615x3/x,)] < 136400 psi (shear stress) (32)
V G/2p x3/2mx5*x, 2 100 Hz (natural frequency) (33)
(%,) D
(%) P ey
o)
B A
A ./A/r : !

/..
—

—>

P
Fig. 3 A mechanical coil spring (A=0.5 inch).
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(yY/C*+C,D¥a?) C\/2y 2 fo(X) in (buckling) (34)
x;+x;<15 in (limit on the outer diameter) (35)
2<x,L15 (36)
025<x,<130 37N
0.05<x;<020 (38)
where the paramters of y, C, and C, are given as:
y=x4(Gx:*/8x5°x,) (39)
C,=05E/(E-G) (40)
C,=2m*(E—G)/2G+E) (41)

where the number of inactive coils N, is 2. The other useful information are p=7.383E04 1b-
sec’/in*, g=386 in/sec’, G=1.15E07 1b/in?, and E=30.E06 1b/in’. Optimum results of crisp optimi-
zation of indiviual objective functions are given in Table 4. It is no difficult to find the f"*
and f™" corresponding to the ith design objective. The next paragraph introduces two design
applications depending upon the using environment.

5.1.1. Application on a spacecraft

This spring is assumed to be a component on a space craft that requires the minimum weight
that is the most critical than other design objectives. Thus, a paired comparison of three design
objectives can be: f; is more important than £, the intensity is 2. f; is over f; intensity 7 and
f, is over f; intensity 4. Using the above information, we construct a 3X3 reciprocal matrix:

1 27
(Al=] 12 1 4 (42)
177 1/4 1

Solving for the associated maximum eigenvalue and eigenvector @ is [0.6026, 03150, 0.0823]".
The resulting values of CI and CR are 0.0009 and 0.0015, respectively. Both of the ratios are
far less than 0.1 that means a good consistency. This eigenvector is then the degree of importance
associated with each objective in the design.

We formulate the linear membership functions of y; (i=1, 2, 3) by Eq. (27). The completed
mathematical formulation of the fuzzy global criterion method is described in Eqgs. (20), (21),
(24), (25), (31)-(38). The optimum results are X*=[6.567, 0.394 in, 0.057 in, 20.604 1b,]" and f(X*)=
£0.0077 1b, 1.092 in, 20.604 1b/]".

Table 4 Results of optimizing individual design objective

X+ HX*) XY A

min fi(X) 9924 0299 0.052 20. 00067 11734 20.
min f>(X) 2824 0595 0.064 2044 00118  0.8735 2044
max f3X) 15. 0.545 0.2 47337 0371 4.101 47337
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5.1.2. Application on a measuring device

This compression spring is assumed and used on a measuring device as a mechanical compo-
nent. The loading capacity and the limit of mounting space are the most significant objectives.
The pairwise comparisons between two objectives initially selected by designer are: fi: f,=1:2;
fi:£5=1:9 and fo: f;=1:1. The associated eigenvector of the reciprocal matrix is obtained as [0.1025,
0.3385, 0.5589 ]”. Both the CI and CR values are more than 0.1, and are 0.1283 and 0.2212, respecti-
vely. Based on the revising algorithm of Fig. 1, a modified matrix 4, is constructed as

1 05 01834
A,=| 08254 1 06057 43)
54564 16510 1

Solving for the associated maximum eigenvector, we get w=1[0.1254, 0.2964, 0.5783]". Values of
CI and CR are 0.014 and 0.024, respectively. This acceptable important rank is then substituted
into the fuzzy global criterion approach; the final optimum results obtained are X*=[14.994.
0414 in, 0083 in, 56664 1b/]" and f(X*)=[00344 1b, 2.373 in, 56.664 1b,]".

5.2. Design of a dynamic three-bar truss

A statically indeterminate three-bar structure also modified from Arora (1989) is shown in
Fig. 4. This is to be designed for minimum volum f;(X), minimum deflection f;(X) of the 4th
node, maximum of the lowest natural frequency f(X), and mixmum applied loading f;(X') simulta-
neously. The design variables are:

x,=Cross-sectional area of material for member 1 and 3 (m?).
x,;=Cross-sectional area of material for member 2 (m?).
x;=Loading angle (degree).

x4s=Applied load (Newton).

The mathematical formulation is stated as:

minimize f,(X)=1Qv/2x,+x,) (1) (44)
minimize f,(X)=[\/2bscosxs/(x, E)Y + (/2 sinxs/E(x, +/2x2)F 1 (m) (45)
maximize f;(X)=(Ex/(plP(&x,+\/2x))? 27 (Hz) (46)
maximize f;(X)=x; (Newton) én
subject to the following constraints:
(g cosxy/x) x4 sinx;/(x,+\/§xz)/\/f <140 (10° (N/m? (stress constraint) 48)
(v/2x4sinx3/(x;+1/2x2) <140 (10 (N/m?) (stress constraint) (49)
V/2x,cosxy/(x; E)<0.0045 (m) (limit of deflection) (50)
folx4sinx3/(E(x1+\/§x2)) <0.0045 (m) (limit of deflection) 1))

— [xgcosxy/x +xgsinxs/0c, +1/2x2)1A/2 < M Ex /27 (buckling constraint) (52)
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Fig. 4 Dynamic three-bar truss for the method of paired comparison.

Table 5 Results of optimizing individual objective for a dynamic three-bar

structure

X,* SX) LY AXT) i)

0.000498, 0.00999, 88.059, 1450000 001407 000283 242.093 1450000

Xo* LX) LR AKX filde)

0.01, 0.01, 90., 1450000 00383 000123 59236 1450000

X5* SR AX) LX) (G

0.01, 0.0002, 32.0, 1450000 00285 0.00294 68674 1450000

Xg* SXF) AXS) LX) (X

0.01, 001, 67.505, 2586859 00383 0.00282 59236 2586859
—/2bcasinxy/(e,+/2x2) < M Exy/IP (buckling constraint) (53)
— [xasing/(x, +v/2x2) —xqcosxyx, J/A/2 < 12 Ex /2 (buckling constraint) (54)
000002 <x, <001 (55)
00002 <x, <001 (56)
0° <x,<90° (57)
1450000 <x, (58)

where E=70E09 N/m? p=2800 kg/m’, and /=1 m

Optimum results of the crisp optimization for individual objective function are solved and
written in Table 5.

The patred comparisons of objective importance in this study are assumed as: fi: =13 f;: f=1:
4 fi: 1=19; fr =15; foifa=1:7; and fi: f;= 1:6. The associated maximum eigenvector of the recip-
rocal matrix is obtained as [0.0456, 0.0814, 0.2085, 0.6644]". CI and CR values are 0.1194 and
0.1327, respectively. Both are greater than 0.1 and unacceptable. Based on the revising algorithm
in this paper, the modified matrix 4, is constructed as:
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I 13 14 00686
|3 15 0125
A=y s 1 0313 (59

14575 8161 3.187 1

The associated maximum eigenvector w is [0.0413, 0.0792, 0.2411, 0.6384]". Although the values
of CI and CR are 0.0531 and 0.059, respectively, the element ay (14.575) is still larger than 9.
It is necessary to reexamine the original relation of the fourth objective to other objective. Conse-
quently, the designer revised and concluded that f; is more important than f; with intensity
3, and f; is equal to f;. The associated maximum eigenvector of the modified reciprocal matrix
is obtained as [0.0593, 0.1250, 0.4022, 0.4135]". CI and CR values are 0.057 and 0.063, respectively.
Both are less than than 0.1 and acceptable. This eigenvector is then the weighting rank associated
with each design objective.

The linear membership functions of (=1, -, 4) by Eq. (27) and p(j=1, -+, 11) from
Egs. (48~54) by Eq. (26) with assumed an allowable 20% fuzzy transition zone is then built
up. The completed mathematical formulation of the fuzzy global criterion aproach can be descri-
bed by the form of Egs. (20-27). The final optimum results obtained is X*=[64.71 cm? 10.30
cm?, 88.98°, 2082130 N]” and the associated optimum objective values are f(X*)=[28604 cm’,
0.2 cm, 5513 Hz, 2082130 N]”

6. Closing remarks

In structural engineering design, it is simpler to recognize the relative importance of two objecti-
ves at a time than that of all fuzzy objectives simultaneously. Thus, a fuzzy structural engineering
optimization with unequal important objectives was derived from the method of paired compari-
sons, and was examined. Based on the principle of pairwise comparisons, we develop a program
and process to construct and repeatedly revise the matrix structure that consequently yields to
a reasonable weighting rank for design goals. To fulfill the role of unequal important rank
in fuzzy optimization process, we present the fuzzy global criterion approach of A-formulation
(FGCM,) to accommodate this necessity. This weighting strategy allows the original fuzzy optimi-
zation can involve the weighting coefficients easily.

The first static three-bar truss design example shows that the FGCM, is equivalent to the
FGCM; FGCM, is recommended when solving a multiobjective optimization problem with
or without fuzzy constraints. The design example of a mechanical spring illustrates the paired
comparison technique and optmization process with or without revising judgement. The last
three-bar structural design with maximizing the structural natural frequency demonstrate the
presented strategy that can help a designer to find the mistake on the initial paired comparison
among objectives and make a further modification. That means that the presented strategy can
suggest any inappropriate ranking of importance associated with design objectives selected by
the designer. It also serves as a very useful instrument to designers for rechecking the design
conditions and formulations. The applications of method of pairwise comparison seems to have
the unexploited potential attraction and require further study in the field of fuzzy optimization.
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