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Abstract.  The purpose of this study is to illustrate the propagation of the shear waves (SH-waves) in a pre-

stressed hetrogeneous orthotropic media overlying a pre-stressed anisotropic porous half-space with self 

weight. It is considered that the compressive initial stress, mass density and moduli of rigidity of the upper 

layer are space dependent. The proposed model is solved to obtain the different dispersion relations for the 

SH-wave in the elastic-porous medium of different properties. The effects of compressive and tensile 

stresses along with the heterogeneity, porosity, Biot‟s gravity parameter on the dispersion of SH-wave are 

shown numerically. The wave analysis further indicates that the technical parameters of upper and lower 

half-space affect the wave velocity significantly. The results may be useful to understand the nature of 

seismic wave propagation in geophysical applications and in the field of earthquake and material science 

engineering. 
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1. Introduction 
 

A disturbance, confined to a bounded part of a medium, which propagates with a finite speed to 

other parts of the medium forms the basis for the study of wave propagation. Wave propagation 

manifests in forms that are familiar in everyday life such as acoustic waves from musical 

instruments, water waves breaking on a coastline or elastic displacements in the Earth. At least, 

there are two types of waves that can propagate in an elastic material, shear waves and pressure 

waves. Both these waves are governed by the same wave equation, Whitham (1974), The elastic 

wave equation explains the vibrations in plates and beams. Also, disturbances due to by seismic 

events in the Earth can be described by these wave equations. The description of the wave fields 

resulting from an initial configuration or time dependent forces is a valuable tool when gaining 

insight into the effects of the layering of the Earth, the propagation of earthquakes or the behavior 

of underwater sound. The shear wave (SH-wave) is called a Love wave after its finder Love (1911) 
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and accounts for the significantly damage causing effects of aftershocks of earthquakes. In general, 

the disturbance that generates propagating waves can either manifest in an initial state or as a time 

dependent forcing, the geometry of the underlying domain can have a complex structure with 

curved boundaries, and the media may have discontinuous parameters with the discontinuity 

taking place along a non-planar interface. The complexity of boundary conditions, transient time 

behavior, geometries and material properties make the description of the resulting wave field hard, 

if not impossible, to express using mathematical analysis. For this reason, the authors abandon the 

ambition to seek exact solutions for the propagation of shear wave in an elastic-porous medium of 

different properties. SH-type shear waves transmit in the layer and weekend along the thickness of 

the half-space such that wave particles vibrate parallel to the direction of propagation. Further, the 

Earth is under the high initial stresses, therefore initial stresses play a significant role in the 

propagation of these seismic waves. The complex structure of the Earth has various types of 

layers. The porous layer of the Earth has the amazing properties like anisotropy and heterogeneity 

and these pores contain water or gas or oil, the one of these three is responsible for the rock to be 

saturated with. 

The earth is orthotropic i.e. its mechanical properties are, in general, different along each axis. 

The development of initial stresses in the elastic solid half-space (the Earth)  arise due to many 

reasons, such as gravity variations, the distinction of temperature, process of extinguish shot 

pinning and frosty working, moderate process of creep and different internal forces. These initial 

stresses of earth induce great impact on SH-waves during propagation and have great impact on 

the mechanical riposte of the materials. The concept of initial stresses has important significance in 

engineering structures, geomechanics and in the research of soft living tissues. It is therefore of 

great attraction to investigate the influence of initial stresses on the elastic wave propagation. Due 

to large applications, pre-stressed SH-waves in different media tempt researcher‟s interests even 

nowadays.  Watanabe and Payton (2002) discussed SH- waves in a cylindrically monoclinic 

material with Green‟s function. Chattopadhyay et al. (2010, 2012) used Green‟s function 

technique to study propagation of SH-waves and heterogeneity on the SH-waves in viscoelastic 

half-spaces. Also, Chattopadhyay et al. (2014) discussed the influence of heterogeneity and 

reinforcement on propagation of a crack due to SH-waves. Gupta and Gupta (2013) studied the 

effect of initial stress on wave motion in an anisotropic fiber reinforced thermoelastic medium. 

Sahu et al. (2014) showed the effect of gravity on shear waves in a heterogeneous fiber-reinforced 

layer placed over a half-space. Kundu et al. (2014) analyzed SH-wave in initially stressed 

orthotropic homogeneous and a heterogeneous half space. 

The layered structure of the Earth is very complex containing different types of layers including 

elastic, viscoelastic or porous layer. The porous layer of earth has amazing properties such as 

heterogeneity, anisotropy, and initial stress. Generally the pores of the porous rock may contain 

gas or oil or water and layer will be saturated either with gas or any one of these. The fluid 

saturated porous medium affects the propagation of torsional surface waves and it is a considerable 

root of attenuation.  A large number of problems in seismology can be explained by representing 

earth as a fluid saturated porous layered structure with mechanical properties and finite thickness. 

In fact the study of torsional waves in heterogeneous fluid saturated porous layered media has been 

of central interest to geophysicists until recently. In order to understand the underground response 

of seismic wave propagation toward material properties and initial stresses of the Earth, 

researchers and seismologists generally prefer porous rock models with various heterogeneities in 

semi-infinite domains. These initial stresses influence elastic wave propagation more prominently. 

The propagation of SH-wave in a fluid saturated anisotropic porous media has received prime 
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attention in the field of earthquake engineering and applied informatics. Many researchers have 

discussed the elastic properties of porous media. The propagation of Love type waves with 

irregular boundary in a porous layer has been discussed by Chattopadhyay and De (1983), Dey and 

Gupta (1987) investigated wave propagation in void medium. Chattaraj et al. (2013) studied Love 

wave propagation pre-stressed porous layer lying between two isotropic half-spaces and studied 

the effect of anisotropy and porosity on Love wave phase velocity. Gupta et al. (2013) presented a 

technical note on the propagation of Love wave in porous layer. The Earth‟s gravitational force 

affects the seismic wave propagation. The hydrostatic stresses in the gravitational half-space play 

an important role to analyze the static and dynamic problems of the Earth. Ghorai et al. (2010) 

discussed Love wave propagation in a porous layer overlying a gravitational half-space. Abd-Alla 

et al. (2013) investigated the effect of various parameters such as fibre-reinforcement, anisotropy 

and gravity of the elastic media on surface waves.  

In this paper, the dispersion of shear waves in a pre-stressed hetrogeneous orthotropic layer 

over pre-stressed anisotropic porous half-space under gravity has been investigated. The influence 

of, porosity, initial stress and gravity parameter on the shear wave propagation has been discussed 

graphically. The obtained dispersion equation is in perfect agreement with the standard results 

investigated by other relevant researchers in the absence of heterogeneity, porosity, stress and 

gravity parameters. 

 

 

2. Formulation of the problem 
 

In this model, a heterogeneous orthotropic media under initial stress P of thickness H overlying 

an anisotropic gravitational porous half-space under stress P′ is considered as shown in Fig. 1. 

The direction of propagation of SH-wave is considered to be along x-axis and z-axis is 

positively in downwards. Let u,v,w be the displacements along x, y and z-axis, respectively. Let the 

compressive initial stress, mass density and moduli of rigidity of the upper layer are 

P=P0(1−cosaz), ρ1=ρ0(1−cosaz) and Ei=Q0(1−cosaz) respectively, where P0,ρ0  and Q0 are the  
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values of initial stress, mass density and moduli of rigidity at z=0. Here ′a′ is heterogeneous 

parameter of the upper layer and having dimension that is inverse of length. 

 

 

3. Solution of the problem 
 

3.1 Solution for the upper layer 
 

It is considered that the upper layer is hetrogeneous orthotropic in nature and under the 

compressive initial stress P. Let u1,v1 and w1 be the displacements along x, y and z-axis, 

respectively. The SH-wave propagation is considered to be along x-axis, so the equation of motion 

for the orthotropic elastic medium under the compressive initial stress P in the absence of body 

forces are (Biot 1965) 
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τxx, τxy, τxz, τxy, τyy, τxz, τzx, τzy, and τzz are the incremental stress components, u1,v1 and w1are the 

components of the displacement vector in the upper layer, ρ1is the density of the layer. Here, Ωx, 

Ωy and Ωz are the rotational components in the upper half-space. 

The incremental stress-strain relations are 
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                                                        (3) 

where Nxx, Nxy, Nxz, Nyx, Nyy, Nyz, Nzx, Nzy, and Nzz are the incremental normal elastic coefficients, Ex, 

Ey and Ez shear modulus along x, y and z axis respectively. The strain components exy, exx, eyy, eyz, 

ezx, and ezz are defined by 
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Using SH-wave conditions  
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Using Eqs. (2)-(5), the equation of motion for the upper orthotropic half-space given by Eq. (1) 

becomes 
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and the non-zero stress components are 
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To solve Eq. (6) take the following substitution 
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where ω=kc, c is phase velocity  and k  is wave number. 

Using Eq. (8) in Eq. (6), the following equation is obtained 
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The assumed inhomogeneities of the upper orthotropic layer are 
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Using Eq. (10) in Eq. (9), the following equation is obtained 
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is the shear velocity of the upper layer. 
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 in Eq. (11), the following equation is obtained 

955



 

 

 

 

 

 

Rajneesh Kakar and Shikha Kakar 
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Therefore, the solution for Eq. (12) is given by 

   ( ) A cos Bsinq z z z                                                       (13) 

where  and C  are  arbitrary constants. 

Therefore, the displacement component for the upper hetrogeneous orthotropic layer can be 

written as 
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3.2 Solution for the porous half-space 
 

Consider an anisotropic initially stressed porous half space. Neglecting the viscosity of water, 

the dynamic equations of motion in the porous half-space under the compressive initial stress P′, in 

the absence of body forces are (Biot 1965) 

 

 

 

 

2

11 1 122

2

11 1 122

2

11 1 122

2

11 1 122

2

xy yxx xz z
x

yx yy yz z
y

zy yzx zz
z

x

P u U
x y z y z t

P v V
x y z x t

P w W
x y z x t

u U
x t

y

   
 

   
 

  
 


 



     
        

      

     
       

     

    
       

     

 
  

 

 


 
 

 

11 1 122

2

11 1 122

y

z

v V
t

w W
z t

 


 
















 

 

  
 

                       (15a) 

where, σij(i,j=x,y,z) are the incremental stress components, 
1 1 1( , , )u v w   are the components of the 

displacement vector of the solid, ( , , )x y zU V W  
 
are the components of the displacement vector of  

the liquid and σ is the stress vector due to the liquid. This stress vector σ is related to the fluid 

pressure p by the relation σ=−fp, where f is porosity of the layer. The angular components  
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The mass coefficients ρ11, ρ12 and ρ22 are related to the densities ρ, ρs and ρw of the layer, solid 

and water, respectively, given by                                                                                                                                                                                                                       

11 12 12 22(1 ) ,   s wf f                                                 (15c) 
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These mass coefficients also obey the following inequalities  
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where  , ,

1

2
ij i j j ie u u  ,  div u   is the dilation, I, J, D, N and L are elastic constants                                                                                                                                          

for the medium; N and L are, in particular, shear moduli of the anisotropic layer in the x and z 

direction respectively. Further, K being the measure of coupling between the volume change of the 

solid and the liquid is a positive quantity. 

The hydrostatic stresses in the gravitational half-space are given by 

xx zz dgz                                                             (15g) 

where d is the density of the lower half-space. 

The components of body force are due to gravity g and are 
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For the Love-waves propagating along the x-direction, having the displacement of particles 

along the y-direction, we have 
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These displacements will produce only the exy and eyz
 
strain components and the other strain 

components will be zero. Hence, the stress-strain relations useful in the problem are  
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Therefore Eq. (15a) with the help of Eqs. (15g)-(15j) can be written as 

2

11 2 122

2

12 2 222

( )

( ) 0

xy yz yz xyz
yz y

y

P dg dgz dgz u V
x z x z x t

u V
y t

   
  


 

      
          

      

 
   

 

              (16) 

where ij  are the angular components, which are defined as 
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Eliminating 
xU   (displacement of liquid part) from Eq. (16), the following equation is obtained 
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In order to solve Eq. (19), we take 
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From Eq. (19) and Eq. (20), the following equation is obtained 

2

22
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2( ) ( )
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2 1 1
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N G kz c

L cz G k z
k z

G kz G kzz z


 

  


 

  
    

      
     

     
    

                    (21) 

where  
1

2
2 /c L   is the shear velocity in the lower half-space, G=dg/Lk known as Biot‟s gravity 

parameter, 
2

P

L



  is stress parameter, 2

11 12 22 11 11/ ,  / ,          
12 12 22 22/ ,  / ,        

are the non-dimensional parameters for the material of the porous half-space, k is wave number. 

Now substituting 

1
 
2

( ) ( ) 1
2

G kz
z z


 



 
  

 
 in Eq. (21) to eliminating term 

( )z

z




 , we obtain 

2 12 2 2
2

2

2

( ) 1 1 ( ) 0
16 2 2 2

G G kz N G kz c G k
z k z

L c

   
   

        
              

        

         (22) 
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Introducing the dimensionless quantities 
4

and ( ) ( )
2

N G kz
z g

G L


   



 
    

 
 in Eq. (22), 

the following equation is obtained 

 
 

2

2 2

1 1
0

4 4

d g R
g

dz




 

 
      
 

                                         (23) 

where, 
2

2

2

1 1
1

N c
R

G L c




  
     

  

 

Eq. (23) is the well known Whittaker‟s equation (Whittaker and Watson 1990). 

The solution of Whittaker‟s Eq. (23) is given by 

     R,0 R,0CW DWg                                                     (24) 

where C and D are arbitrary constants and  WR,0(η), W-R,0(−η) are the Whittaker function. 

Now Eq. (24) satisfying the condition 
2lim 0z u
   i.e.,  lim 0 as 0 z g      may be 

taken as 

   R,0CWg                                                           (25) 

On solving Whittaker‟s function up to second degree term, displacement for the SH-wave in 

the lower layer is 

2

1
2

12
(x ct)2

2

1

4 2
( , , ) C 1 e 1

2 4
1

2

R R G kz

ikG

R
G kz G

u x z t e
G kzG



 



    
   

  
  

              
     

  

              (26)   

 

 

4. Boundary conditions 
 

The displacement components and stress components are continuous at z=−H, and at z=0, 

therefore the geometry of the problem leads to the following conditions 

At z=−H, the stress component τyz=0. 

At z=0, the stress component of the layer and half space is continuous, i.e., τyz=σyz. 

At z=0, the velocity component of both the layer is continuous, i.e., u2=u′
2. 

 

 

5. Dispersion relation 
 

The dispersion relation for SH-wave can be obtained by using boundary conditions given in 

section 4. Therefore, the displacement for the SH-wave in the half-space using boundary 

conditions (1), (2) and (3) in Eq. (7), Eq. (14), Eq. (15j) and Eq. (26) 

a sin( H)sin( H) a sin( H)cos( H)
A cos( H) B sin( H) 0

2(1 cos( H)) 2(1 cos( H))

a a

a a

 
   
   

      
    

               (27) 
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22
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                                              (28) 
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                      
                     

(29) 

Now eliminating A, B and C from the Eq. (27), Eq.  (28) and Eq. (29), we obtain 
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(30) 

 On solving Eq. (30), the following equation is obtained 
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          (31)  

where   
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Eq. (31) is the dispersion equation of SH-wave propagation in a hetrogeneous layer overlying a 

gravitational porous half-space under initial stresses. 

 

Particular Cases 

If the layer is non-porous then f→0 and ρs→ρ which leads to γ11+γ12→1 and γ12+γ22→0, which 

leads to 
2

12
11

22

1





   or δ→1. If the layer is porous then f→1, then ρw→ρ, the liquid becomes 
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fluid 
2

12
11

22

0





   or δ→0, which means shear waves do not exit. Hence, for porous layer 0<f<1  

corresponds to 0< δ <1. 

 

Case-1  

If upper layer is stress free then P0→0, Eq. (31) reduces to 

2 2
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2 22 2
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1 1

2 2

1 1

Qa sin( H) a

2 (1 cos( H)) Q 2 4 QQ
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          
   

                     (32) 

Eq. (32) is the dispersion equation of SH-wave propagation in a hetrogeneous layer overlying a 

pre-stressed gravitational porous half-space. 

 

Case-2  

For SH-wave propagation in a hetrogeneous layer over a porous half-space free under gravity 

free from initial stresses, then P0→0 and ζ→0 , therefore, Eq. (31) reduces to 

2 2

1

2 22 2
1 1

2 2 2 2
1 1

2 2

1 1

Qsin( H)

2 (1 cos( H)) Q 2 4 QQ
tan

4 Q Q sin( H) a

4 Q 2 (1 cos( H)) Q 2

z

x xz

x z

x x

Fa a L a a c

k a F k k k ca c
kH

k c Fa c a a L

k c k a F k k

  
             

              

                   (33) 

where   
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Case-3  

If upper layer is isotropic and stress free then Qx=Qz=μ1, P0→0, Eq. (31) reduces to 
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                  (34) 

Eq. (32) is the dispersion equation of SH-wave propagation in a hetrogeneous isotropic layer 

overlying a pre-stressed gravitational porous half-space. 
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Case-4  

For SH-wave propagation in a hetrogeneous isotropic layer over a porous half-space free under 

gravity free from initial stresses, then Qx=Qz=μ1, P0→0 and ζ→0, therefore, Eq. (31) reduces to 

2 2
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                  (35) 
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Case-5  

For SH-wave propagation in homogeneous layer overlying a gravitational porous half-space 

under initial stresses, a→0 
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                                (36) 

 

Case-6 

For SH-wave propagation in a hetrogeneous pre-stressed layer overlying a pre-stressed porous 

half-space free from gravity then G→0, Eq. (31) reduces to 
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              (37) 
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Case-7 

For SH-wave propagation in a hetrogeneous pre-stressed layer overlying a pre-stressed non-

porous half-space free from gravity then δ→0, G→0, Eq. (31) reduces to 
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Case-8 

For SH-wave propagation in a hetrogeneous pre-stressed layer overlying a pre-stressed 

isotropic non-porous half-space free from gravity then N=L=μ2, δ→1, G→0, Eq. (31) reduces to 
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          (39) 

where 
2

4 2

2 2

1
1

2 2

P c
F

c

 
    

 
 

 

Case-9 

For SH-wave propagation in a hetrogeneous layer overlying a pre-stressed isotropic non-porous 

half-space free from gravity then N=L=μ2, δ→1, P0→0, G→0, Eq. (31) reduces to 
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                  (40) 
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Case-10 

For homogeneous layer over a homogeneous non-porous half space free from gravity and 

stresses then G→0, ζ→0, N=L=μ2, δ→1, Qx=Qz=μ1, P0→0, a→0 therefore, Eq. (31) reduces to 
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                                                 (41) 

On approximation Eq. (40) gives 
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Eq. (42) is the classical dispersion equation for SH-waves propagating in a homogenous 

isotropic elastic medium over isotropic homogeneous elastic medium given by Love (1911) and 

Ewing et al. (1957),  

 

 

5. Numerical analysis 
 

To examine the effect of thickness of the layer (kH), heterogeneity parameter 
a

2k

 

 
 

 of 

upper layer, stress parameters 
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P L
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 of the considered geometry, porosity 

(δ), Biot‟s gravity parameter (G) and  other dimensionless parameters 1

2

, ,
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cN L

L c
  
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   
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on phase velocity (c/c1), the following numerical values are considered (given in Table 1), The 

material parameters for this model are taken in Table 2 used by Chattaraj and Samal (2013),  Fig. 2 

describes the effect of dimensionless thickness (kH) of the inhomogeneous layer on phase velocity 

(c/c1) under porosity (δ).  It is clear that the phase velocity gradually decreases with the increment 

in thickness of the layer. However when the porosity (δ) is increased the following observations 

are made:  

1. As the porosity (δ) increases, the dimensionless phase velocity (c/c1) decreases at a particular 

value of dimensionless thickness (kH).  

2. The curves are plotted for the values of porosity δ=0.0, 0.3, 0.5, 0.7 and 0.9, it is clear that 

the curves are going away from each other as porosity increases, it implies that porosity 

dominates  at large values of dimensionless thickness (kH). 

Fig. 3 depicts the effect of dimensionless thickness (kH) of the heterogeneous layer on phase 

velocity (c/c1) under heterogeneity parameter 
a

2k

 

 
 

.  Again, it is clear that the phase velocity 

gradually decreases with the increment in thickness of the heterogeneous layer.  

 

 
Table 1 Values of parameters for figures 

 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 

δ   0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

            

G 0.5 0.5 0.5 0.5   0.5 0.5 0.5 0.5 

kH 6 6   6 6 6 6 6 6 

  0.3 0.3 0.3   0.3 0.3 0.3 0.3 0.3 

  1.5 1.5 1.5 1.5 1.5   1.5 1.5 1.5 

  0.3 0.3 0.3 0.3 0.3 0.3   0.3 0.3 

  0.7 0.7 0.7 0.7 0.7 0.7 0.7   0.7 

  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3   
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Fig. 2 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of 

δ=0.0, 0.3, 0.5, 0.7 and 0.9 

 
Table 2 Data for anisotropic porous medium  

Symbol Numerical Value Units 

ρ 7800 kg/m3 

L 0.1167×1010 N/m2 

ρ11 1.7567×103 Kg/m3 

ρ12 −0.001567×103 kg/m3 

ρ22 
0.19867×103 kg/m3 

f 0.34 ---- 

 

 

However when the heterogeneity parameter  
 
is increased the following observations are 

made: 

1. As the heterogeneity increases, the dimensionless phase velocity (c/c1) increases at a 

particular value of dimensionless thickness (kH). 

2. The curves are plotted for the values of heterogeneity parameter  =0.0, 0.3, 0.5, 0.7 and 

0.9, it is clear that the curves are going close from each other as heterogeneity parameter 

decreases, it implies that even if the  heterogeneity parameter   dominates,  phase velocity of 

SH-waves remain constant for the same frequency as the curves are collimating at a single 

point. 

Fig. 4 shows the effect of dimensionless phase velocity (c/c1) against Biot‟s gravity parameter 

(G) for different values kH. Various curves are plotted for the values of thickness kH=1, 3, 5, 7 and 

9. However when the dimensionless thickness (kH) is increased the following effects are observed: 

1. The dimensionless phase velocity decreases for the increasing value of kH at a particular 

wave number. 
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Fig. 3 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of  

 =0.0, 0.3, 0.5, 0.7 and 0.9 

 

 

Fig. 4 Dimensionless phase velocity c/c1 against G for values of kH=1,3,5,7 and 9 

 

 

2. The curves are separated apart to each; from that we can conclude that the effect of 

dimensionless thickness (kH) has great impact on SH-wave for higher frequency. 

Fig. 5 describes the effect of dimensionless ratio 
N

L

 

 
 

 on phase velocity (c/c1).  Various  
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Fig. 5 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of  

 =0.1, 0.3, 0.5, 0.7 and 0.9 

 

 

Fig. 6 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of 

G=0.35, 0.50, 0.65, 0.80 and 0.95 

 

 

curves are plotted for the values of  =0.0, 0.3, 0.5, 0.7 and 0.9. However when the dimensionless 

ratio    is increased the following effects are observed: 

1. The dimensionless phase velocity increases for the increasing value of „ ‟ at a particular  
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Fig. 7 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of 

 =1.1, 1.3, 1.5, 1.7 and 1.9 

 

 

wave number; it means that   parameter present in the medium gives the direct effect on the 

shear wave velocity. 

2. The curves are moving away to each other for higher wave number (kH); from that we can 

conclude that the effect of dimensionless ratio  
 
has great impact on shear wave for higher 

frequency. 

Fig. 6 depicts the effect of Biot‟s gravity parameter (G) on phase velocity (c/c1). Various curves 

are plotted for the values of Biot‟s gravity parameter G=0.35, 0.55, 0.65, 0.75 and 0.85. However 

when the Biot‟s gravity parameter is increased the following effects are observed: 

1. The dimensionless phase velocity decreases for the increasing value of Biot‟s gravity  

parameter „G‟ at a particular wave number; it means that the SH- wave velocity is inversely 

proportional to gravity  parameter present in the medium M2. 

2. The curves are equally apart from each other; this shows that the Biot‟s gravity parameter   

„G‟ has great impact on shear wave. 

Fig. 7 explains the effect of initial compression 
0

2Q

2Q

x

zP

 

 
 

 present in the medium M1. On 

phase velocity (c/c1). Various curves are plotted for the values of stress parameter  =1.1, 1.3, 1.5, 

1.7 and 1.9. However when the stress parameter „ ‟ is increased the following effects are 

observed: 

1. The dimensionless phase velocity decreases for the increasing value of stress parameter „

‟at a particular wave number; it means that the shear wave velocity is inversely proportional to 

stress parameter „ ‟ present in the medium M1. 

2. The curves are getting closer to each other at a particular frequency; this shows that the stress  
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Fig. 8 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of 

 =0.1, 0.3, 0.5, 0.7 and 0.9  

 

 
Fig. 9 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of 

 =0.70, 0.75, 0.75, 0.80, 0.85 and 0.90 

 

 

parameter „ ‟ has significant dominance for high values of wave number. 

Fig. 8 explains the effect of directional rigidities 
Qx

L

 

 
 

 on phase velocity (c/c1).  Various 

curves are plotted for the values of  =0.1, 0.3, 0.5, 0.7 and 0.9. However when the dimensionless  
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Fig. 10 Dimensionless phase velocity c/c1 against dimensionless wave number kH for values of 

 =0.1, 0.3, 0.5, 0.7 and 0.9 

 

 

ratio    is increased the following effects are observed: 

1. The dimensionless phase velocity increases for the increasing value of directional rigidities „

 ‟ at a particular wave number; it means that directional rigidities   present in the medium 

gives the direct effect on the shear wave velocity. 

2. The curves are moving away to each other for higher wave number(kH); from that we can 

conclude that the effect of directional rigidities  
 
has great impact on shear wave for higher 

frequency. 

Fig. 9 describes the effect of „
1

2

c

c
  ‟on phase velocity (c/c1).  Various curves are plotted for 

the values of inhomogeneity  =0.70, 0.75, 0.85, 0.80, 0.85 and 0.90. However when the velocity 

ratio  „  ‟ is increased the following effects are seen: 

1. The dimensionless phase velocity decreases for the increasing value of „  ‟ at a particular 

wave number; it means that „  ‟ gives the reverse effect on the shear wave velocity. 

2. From these curves we can conclude that the parameter„  ‟ has significant effect on shear 

wave for lower frequency. 

Fig. 10 explains the effect of initial stress parameter 
2

P

L


 
 

 
 present in the medium M2.on 

phase velocity (c/c1). Various curves are plotted for the values of stress parameter  =0.1, 0.3, 0.5, 

0.7 and 0.9. However when the stress parameter „  ‟ is increased the following effects are 
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observed: 

1. The dimensionless phase velocity decreases for the increasing value of stress parameter „

‟at a particular wave number; it means that the shear wave velocity is inversely proportional to 

stress parameter „ ‟ present in the medium M2. 

2. The curves are getting closer to each other at a particular frequency; this shows that the stress 

parameter „ ‟ has significant dominance for high values of wave number. 

 

 

6. Conclusions 
 

In this work, the dispersion of shear waves in a pre-stressed hetrogeneous orthotropic layer 

over pre-stressed anisotropic porous half-space under gravity has been investigated analytically. It 

has been observed that the phase velocity is larger for a porous initially stressed gravitational 

elastic half-space as compared to an initially stressed non-porous elastic half-space (δ→1), It has 

been observed that on the removal of heterogeneity of layer, initial stress and porosity of the half-

space, the derived dispersion equation reduces to Love wave dispersion equation thereby validates 

the solution of considered problem. Finally, on the basis of result developed, the following 

conclusions regarding the propagation of the SH-wave in a heterogeneous initially stressed elastic 

layer placed over anisotropic porous half-spaces under self weight can be drawn: 

1. The SH-wave velocity increases with the decrease of wave number in all the cases. 

2. SH-phase velocity decreases as the porosity of lower half-space increases, the wave velocity 

is inversely proportional to porosity. 

3. Presence of compressive stress in the layer affects the SH-wave; the wave velocity is directly 

proportional to compressive stresses. 

4. The presence of upper half heterogeneity has great impact on SH-wave and it gives the direct 

effect on the SH-wave velocity. 

5. The SH- wave velocity is directly proportional to rigidity parameter present in the 

heterogeneous layer; it gives the significant effect on the SH-wave velocity. 

6. The inhomogeneities in initial stress have great affect on the SH-wave velocity. 

7. Presence of Biot‟s gravity parameter in lower half-space greater the impact on SH-phase 

velocity. It decreases as Biot‟s gravity parameter increases. 

8. The compressive stress in the lower half-space affects the SH-wave; it is directly 

proportional to it. 

From above discussion it can be concluded that in the presence of heterogeneity, initial stress, 

porosity, rigidity and gravity in the medium affect the seismic wave energy. The results may be 

useful to understand the nature of seismic wave propagation generated by artificial explosion 

(especially SH-waves) in the multilayered earth structure, material science engineering and in the 

field of earthquake engineering. Since the shear phase velocity is affected by various technical 

constants, the results of this paper may be helpful to design new structural materials for 

construction work. 
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