
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 59, No. 5 (2016) 901-920 

DOI: http://dx.doi.org/10.12989/sem.2016.59.5.901                                                                                       901 

Copyright ©  2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Strategy for refinement of nodal densities and integration cells 
in EFG technique 

 

Bhavana S.S. Patel
1,2, Babu K.S. Narayan3a 

and Katta Venkataramana3a 
 

1
National Institute of Technology Karnataka, India 

2
RV College of Engineering, India 

3
National Institute of Technology Karnataka, India 

 
(Received August 15, 2015, Revised June 24, 2016, Accepted June 28, 2016) 

 
Abstract.  MeshFree methods have become popular owing to the ease with which high stress gradients can 

be identified and node density distribution can be reformulated to accomplish faster convergence. This paper 

presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin 

MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed 

strategies. Issue of integration errors introduced during nodal density refinement have been addressed by 

suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches 

under in-plane axial load have been addressed in the first problem. The second considers crack propagation 

under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack.  

The computational efficacy of the adaptive refinement strategies proposed has been highlighted. 
 

Keywords:  adaptive refinement; element-free Galerkin; crack propagation; stress intensity; stress 

concentration 

 
 
1. Introduction 
 

Modelling components with difficult geometries, boundary conditions, discontinuities within 

the element, high stress gradients and automated re-meshing are still a challenge in numerical 

methods. Of all these difficulties, modelling crack propagation is one such issue which has 

attracted researchers all over the world. A crack cannot be initiated numerically, and therefore is 

pre-initiated and then its propagation path is simulated. 

Finite Element Method (FEM) has the difficulty in automating the meshes at each step, as it 

needs to satisfy pre-defined mesh quality, which in turn requires human intervention. In FEM, the 

modelling of singular crack tip by introducing additional degrees-of-freedom (Mergheim et al. 

2005) and modeling its propagation based on Stress Intensity Factor (SIF), computed using Virtual 

Crack Closure Technique (Chow and Atluri 1995, VCCT), strain energy release rate (Bouchard et 

al. 2003) have been attempted. Notwithstanding, FEM tends to follows the element edge for 

propagation of crack making the trace a zigzag path. Extended FEM (XFEM) has been introduced 
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where the finite elements have been enriched with discontinuous functions to model cracks within 

the element and thereby reducing re-meshing. Here the enrichment and smoothing functions are 

used to model the crack tip and its path (Belytschko and Black 1999, Dolbow et al. 2000, Sukumar 

et al. 2000).  Further, in ABAQUS
®
 software, implementation of Heaviside function (Giner et al. 

2009), and problems dealing with jumps, kink cracks, singularities are solved using XFEM 

(Sukumar and Belytschko 2000, Menouillard and Belytschko 2010). But, even with this added 

feature of element discontinuity, XFEM has limitations in modelling high stress gradients that 

occur during crack propagation. A number of MeshFree methods have been developed to address 

this issue; Element Free Galerkin (EFG) is one such method where with enrichment of the 

displacement field, crack can be modeled for 2D (Belytschko et al. 1995, Fleming 1997) and 3D 

(Krysl and Belytschko 1999) problems. The jump in the displacement field has been used to 

represent the crack, which is defined by discontinuous function and the closing of the crack tip by 

crack front function (Rabczuk et al. 2007, Zi et al. 2007, Rabczuk and Zi 2007). The use of Extended 

MeshFree method based on partition of unity for cohesive crack has been presented by Bordas et al. 

(2008), Pant et al. (2013). 

Coupling MeshFree Method with XFEM (Eigel et al. 2010), MeshFree method with FEM (Wu 

et al. 2012), and bucket algorithms (Liu and Tu 2002) have been attempted to enhance 

computationally efficiency. Refinement regions definition based on stress gradients (Haussler and 

Korn 1998) or recovery based methods (Ullah and Augarde 2013) have been suggested. Scheme 

for node placement using background triangular cells (Liu 2009) or any other described shape such 

as Voronoi cells (Chen et al. 2011, Amani et al. 2014) have been presented. Selective placement 

of nodes helps in reducing interpolation error whereas refinement of integration cells (Joldes et al. 

2015) eliminates integration errors. Hence this needs serious consideration in formulation and 

solution. 

This paper presents the refinement of nodal densities based on strain energy in an environment 

of EFG based MeshFree method. EFG Method is formulated for a 2D modelling of plate 

structures. Two popular flat plate problems with high stress gradients are considered to 

demonstrate the refinement scheme. One is by introducing symmetrical semi-circular notches at 

the top and bottom of the plate and the other by introducing a line crack under mode I and mode II 

fracture loading. Both the problems highlight the computational efficacy of the developed strain 

based adaptive refinement technique in the reduction of number of nodes and cells. 

 
 
2. Mathematical formulation 
 

Mathematical formulations of exponential weighting function, EFG method, Stress intensity 

computation by energy release rate, crack propagation angle and the methodology of crack 

propagation are discussed in the sections followed. 

 

2.1 Shape function by Moving Least Square (MLS) technique 
 

The exponential weighting function has been adopted for the construction of MLS shape 

function. The weighting function defined for a 2D space in  coordinates is written as 

2 2

1 2( ( ) ( )

d d

I I I IW W W e e

 

       
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where dξ and
 
dη 

can be written as
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
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and I

wdd


 




 
respectively. (ξ,η) is any point in the 

domain, (ξI,ηI) is the point/node whose weight is computed, dwξ and dwη are the smoothing lengths 

of the domain in the directions and (,) are the natural coordinates that are defined for integration 

cells and the stiffness matrix is formulated in this coordinate system. 

The shortest distances between the point-of-interest and the node has been computed using 

diffraction method as discussed by Liu (2009). Shape function or interpolation of field variables 

decides the accuracy of the results obtained in any numerical method. u(,) are the functions of 

field variable defined in the 2D domain and its approximation at any point is given as 

1

1 1

( , )
n n

T
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where, 
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2 2 2 2 2 2( , ) {1, , , , , , , , ,........ }Tp m            , uI is the field variable and n is the number of 

nodes chosen for the construction of shape function at the point-of-interest.
 

 

2.2 Plate formulation 
 

The kinematic relation for the 2D plate based on the coordinate systems shown in Fig. 1 can 

written as 

0
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(3) 

where, u0, v0 and w0 are mid-plane displacements of the plate along x, y and z axis, respectively 

and x, y are the mid-plane rotations along x, y axis, respectively (Refer Fig. 1). 

On the basis of Eqs. (2) and (3), the strain-displacement relation may be written in the form 
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Fig. 1 Displacements and rotations about the mid-surface in plate formulation 

 

 

where, 00 u
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  are the in-plane normal strains; 0 00 u v

xy y x


 

 
   is the in-plane 

shear strain; y

x x







 , x

y y







  and 

y x
xy y x

 


 

 
   are the curvature strains of the mid-surface 

of the plate,  n is the number of nodes participating the construction of shape function and B is the 

strain-displacement matrix. 

The stress-strain relation in terms of forces, moments, strains and curvatures about the mid-

surface as shown in Fig. 1, is represented in the form 
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where, Nx, Ny and Nxy are the forces, Mx, My and Mxy are the moments, Qx and Qy are the shear 

forces, h is the thickness of the plate, 
211

1
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 , 

 44 55 66 2 1
EC C C


   , E is the 

Youngs modulus of the material,  is the Poisson ratio. 

Gauss quadrature for numerical integration is carried out using background cells, which are 

square in shape covering entire problem space without overlaps. Using Eqs. (4) and (5), the 

stiffness matrix representation in natural co-ordinates can be written as in Eq. (6) 
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and xI and yI are the coordinates of the nodes in the domain for 
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construction of shape function, where, mg and ng are the number of Gauss points along x and y 

coordinates. 

 

2.3 Application of displacement constraints and loads 
 

MLS based MeshFree method employs Lagrange multipliers for imposition of boundary 

condition, as the method does not satisfy Kronecker delta property. Displacement constraints are 

defined where the boundary condition is to be imposed. If  is the  1D (one dimensional) domain 

along which the boundary displacement is to be made zero, then the Lagrange multiplier matrix G 

may be written as 

   
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where, N is the shape function that interpolates  along the domain , L is the length of the 

domain and n is the number of Gauss points along the domain  required for numerical 

integration and   is the natural coordinate in 1D that defines the boundary domain. 

And the Lagrange multiplier matrix G imposes the required boundary constraints as follows 

00
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                                                         (8) 

where  is the Lagrange multiplier, and F is applied force. 

If p is the 1D domain along which the uniform pressure load is to be applied and it can be 

represented as shown 
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where p is the applied pressure along the domain p, Lp is the length domain p and np is the 

number of Gauss points along the domain p. 

 

2.4 Stress computation schemes 
 

The displacements u is obtained by solving the Eq. (8) and is substituted in Eq. (10) which 

yields stresses 

CZBu                                                                            (10) 
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Fig. 2 Crack tip 

 

 

thickness direction of the plate and varies from –h/2 to h/2 

From these stresses the principal and von Mises stresses are calculated in Eqs. (11) and (12) 

respectively. 
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3. Methodology for crack propagation and adaptive refinement 
 

3.1 Tracing crack propagation with SIF as basis 
 
The stress intensity factor can be computed from the energy release rate, which at the crack tip 

as shown in Fig. 2 can be written as 
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where a is the assumed incremental length of the crack behind the crack tip, r is the length that 

varies from 0 to a and nc is the number of Gauss points used along the length a, 1 and 2 is the 

amount by which the crack opens on application of load and is measured behind the crack tip at r 

along the local axis 1 and 2, respectively, 22 and 12 are the normal and shear stresses measured 

ahead of the crack tip at r in the local axis (123). 

For any inclined crack the global stresses and displacements are transformed to the local axis, 

where the local axis is defined by the crack as shown in Fig. 2. 

From Eqs. (13) and (14), the stress intensity factors are written as 

I I II IIK G E and K G E                                                   (15) 
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For the crack subjected to mode I and II loading, the possibility of propagation is determined 

by critical SIF as in Eq. (16). 
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where KIc is the critical stress intensity factor of the material. If KIc is greater than or equal to 4427 

N/mm
2
 for the material considered in this investigation (mild steel) then the crack grows. 

The direction of crack propagation is given by c in Eq. (17)   
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                                            (17) 

 

3.2 Strain energy based adaptive refinement 
 

Adaptive refinement requires the refinement of both integration cells and nodes in the problem 

domain. The refinement of integration cell reduces the integration error and the refinement of 

nodes reduces the polynomial error. Determination of strain energy densities and identification of 

areas contributing to it and adoption of cell and node refinement to facilitate reduction of errors 

and faster convergence is formulated as explained below. 

 

3.2.1 Strain energy density in integration cell and triangular cell 
The strain energy density in integration cell is computed for the i

th
 cell as 
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where Vc is the volume of the i
th
 cell;   and   are the stresses and strains; n is the number of 

Gauss points in the integration cell, wj is the Gauss weight 

Then the strain energy density in the triangular cell is computed from the contributions of strain 

energy from the integration cells based on the area contributed from each of these cells. This is 

mathematically represented for the i
th
 triangular cell as 

 

( ) ( )

1( )

n
j j

IC TC

j

i

TC

S A

i
TC

A
S 


                                                               (19) 

where n is the number of integration cells that overlaps a given i
th
 triangular cell; 

TCA is the area 

common to the j
th
 integration cell and the i

th
 triangular cell,  i

TCA  
is the area of the i

th
 triangular cell. 

 
3.2.2 Cell refinement 

In cell refinement, the cell with high strain energy density above the set threshold value (
ICS ) is 

chosen and refined by dividing one cell into four cells (Fig. 3). The process is continued till the 

energy density in all the cells is below the set threshold value (
ICS ). 
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Fig. 3 Refinement of integration cells by sub-dividing each cell into four cells 

 

 

Fig. 4 Refinement of nodes by sub-dividing each triangular cell into four cells 

 

 
3.2.3 Node refinement 
The nodal refinement is achieved in the following three steps: 

1. The triangular cells with high strain energy densities above the set threshold value (
TCS ) are 

identified for refinement 

2. Each of these identified triangular cells are subdivided into four triangular cells thus adding 

additional nodes on the vertices of the triangle in the region of refinement. 

3. Further, the triangular cells are redefined such that no free edges exist in the refined region. 

The detailed steps of nodal refinement are shown in Fig. 4. 

The threshold is taken in this work as the convergence of the of the stress value, i.e., if the 

stresses from the previous iteration do not have more than 10% difference then the further 

refinement is stopped. The percentage difference can vary depending on the level of accuracy 

required. The procedure discussed in represented in the form of flow chart in Fig. 5. 

 
 
4. Results and discussion 
 

The developed formulation of EFG based MeshFree method (Sec. 2) and the methodology for 

crack propagation and adaptive refinement (Sec. 3) are coded in MATLAB
®
. The numerical 

studies are carried using standard benchmark problems and are discussed in this section.  

Verification of MeshFree method using a 2D rectangular beam subjected to axial load and  
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Fig. 5 Methodology for adaptive refinement of integration cells and nodal density 

 

 

computation of SIF using a rectangular plate with vertical crack at the centre is presented. Further 

two benchmark cases that highlight the efficacy of the adaptive refinement scheme have been 

detailed. The same nodal locations have been employed in both FEM and MeshFree solutions to 

make comparison more meaningful and highlight the efficacy of MeshFree method. For all the 

cases material properties have been taken as, modulus of elasticity E=210 GPa, Poisson ratio 

=0.33 and plate thickness h=2 mm. The results of the studies have been presented, compared, 

verified, validated, discriminated and efficacy of EFG method has been highlighted. 

 

4.1 Validation of developed procedures 
 
4.1.1 2D rectangular beam subjected to axial load 
To verify the MeshFree procedure, a simple 2D rectangular beam is considered (Fig. 6) for the 

study. One end of the beam is constrained and the other end is axially loaded with uniformly 

distributed load as shown in Fig. 6. 
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Fig. 6 A simple 2D rectangular beam structure 

 

 

Fig. 7 Displacement convergence in 2D rectangular beam structure 

 

 

Fig. 8 Geometrical configuration of plate with centre crack 

 

 

Convergence study has been carried out by incrementally increasing the number of nodes from 

63 to 700. Fig. 7 shows convergence rates of EFG method having better accuracy level faster than 

FEM. Usually axially loaded cases are known to converge faster with less nodes than transversely 

loaded cases.   

 
4.1.2 Rectangular plate with vertical crack 
Crack path is directed by the SIF, when the SIF in the component crosses the threshold SIF  
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Table 1 Computed results for plate with centre crack  

Displacement 

(mm) 

Stress 

(N/mm
2
) 

SIF (N/mm
3/2

) 

Closed-form MFree 

0.119 516.31 680 673 

 

 

Fig. 9 Von Mises stress distribution in a rectangular plate with central vertical crack 

 

 

Fig. 10 The geometry of high stress gradient plate 

 

 

(Eq. (16)) the crack starts to propagate. In this section SIF computed by MeshFree is verified with 

the closed-form solution using a standard problem in Fig. 8. The SIF is computed under uniformly 

distributed axial load using the energy release approach (Eqs. (13)-(15)). One end of the 

rectangular plate is constrained and the other end is axially loaded with uniformly distributed load 

as shown in Fig. 8. A vertical crack is introduced at the centre of the plate and at one of the crack 

tips, the energy release rate and thereby the SIF is computed. 

The closed-form solution for the case stated in Fig. 8 is readily available in literature and the 

present solution using MeshFree compares well with the same as tabulated (Table 1). Fig. 9 shows 

the distribution of von Mises stress. This exercise thus validates the procedure of computing the 

SIF of a given crack geometry. 

 

4.2 Benchmark problem 1-rectangular plate with two semi-circular notches 
 
4.2.1 Problem description 
Plate with two semi-circular notches (Fig. 10) is a classic example of a plate with high stress 

concentration. Fig. 10 shows the configuration of the plate considered, with left end of the plate  
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Table 2 Displacement, stress and SCF for plate with semi-circular notch 

Nodal density 

Max. Displacement 

(mm) 

Maximum Stress 

xx (N/mm
2
) 

Stress Concentration Factor 

(SCF) 

FEM MFree FEM MFree Exact FEM MFree 

Coarse 0.100 0.102 89.18 124.65 2.26 1.33 1.87 

Fine 0.101 0.102 134.3 148.01 2.26 2.01 2.22 

 

 

Fig. 11 Von-Mises stress plot in rectangular plate with two semi-circular notches 

 

 

constrained and in the right end has the uniformly distributed load in axial direction. Table 2 

shows the comparison of displacement, stress and their validation with SCF, where the plate was 

analysed with coarse and fine nodal densities, i.e., by having 250 nodes and 3500 nodes, 

respectively.  MeshFree shows better approximation both in terms of displacement and stress 

compared to that of FEM. For the given plate MeshFree method has 2% error compared to 11% in 

FEM in the case of fine nodal density. Smoother stress distribution can be observed in MeshFree 

method (Fig. 11) for both coarse and fine nodal densities. 

 

4.2.2 Adaptive refinement 
The strategy for adaptive refinement is detailed in this section. In the first iteration, the 

displacements and stresses are computed with very coarse density of nodes and integration cells 

(Table 3). In each iteration, the cells that lie in the top 20% of the strain energy levels are subjected 

to refinement. Table 3 shows the refinement iterations followed and the number of nodes and cells 

obtained in each step. 

In Figs. 12 and 13, the strain energy distribution of integration and triangular cells are shown, 

respectively. It can be observed that the refinement of the integration and triangular cells occurring 

at each step of the iteration is concentrated around the high stress regions. As the iterations 

increase, the computed stress values saturate and the refinement is stopped when the computed 

stress difference is less than 10%. A drastic reduction of about 86% of nodes with acceptable  
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Fig. 12 Strain energy distribution in integration cells of plate with semi-circular notches 

 

 

Fig. 13 Strain energy distribution in triangular cells of plate with semi-circular notches 
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Fig. 14 Displacement plot of adaptively refined plate with semi-circular notches 

 

 

Fig. 15 Von Mises stress plot of adaptively refined plate with semi-circular notches 
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Table 3 Adaptive refinement iterations in plate with semi-circular notches 

Refinement of No. of Cells No. of Nodes Displacement (mm) Stress (N/mm
2
) 

None 50 261 0.101 116.86 

Cell 74 261 0.101 120.14 

Node 74 367 0.102 151.1 

Cell 146 367 0.102 157.51 

Node 146 485 0.102 164.8 

Fine nodal density 200 3580 0.102 148.01 

 

 

Fig. 16 Problem description for plate with inclined crack 

 

 

accuracy has been observed. Displacement distribution along with the refined nodes and von 

Mises stress distributions are shown in Figs. 14 and 15 respectively. 

 
4.3 Benchmark problem 2-rectangular plate with angled edge crack 
 
4.3.1 Problem description 
The angled edge crack in a rectangular plate is a crack propagation problem discussed by 

Patricio and Mattheij (2007), where the crack propagation has been simulated using XFEM and 

validated experimentally. The geometrical configuration of the plate is shown in Fig. 16, where the 

crack is angled at 67.5 deg. to the longer edge of the plate, one of the shorter edges is fixed and on 

the other uniformly distributed load is applied. 

The accurate crack path can be traced with fine distribution of nodes at least around the region 

of the crack (addressed in adaptive refinement). Step length i.e., the assumed length of crack that 

propagates after each stage should be smaller for better approximation. The nodes have been 

distributed uniformly (fine) in the entire plate and a step length of 7.5mm has been taken. 

The critical SIF value of steel is 4427 N/mm
2
 and under the applied load shown in Fig. 16, the 

SIF value is greater than critical SIF value and is seen to increase as the crack grows (Table 4). 

Even after 5
th
 iteration the crack continues to grow further and SIF continues to be above critical 

value and the angle at 0 deg. until the crack reaches the longer edge of the plate. The von Mises 

stress distribution of the crack at different iteration steps can be seen in Fig. 17 and the SIF values 

are shown in Table 4. The crack path traced matches well with the one presented by Patricio and 

Mattheij (2007). 
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Table 4 Displacement, stress and SCF for plate with inclined edge crack 

Iteration No. Displacement (mm) Stress (N/mm
2
) SIF (N/mm

2
) Remarks 

1 0.938 2972.6 5373 propagates at 21.56
o 

2 1.241 3820.5 7379 propagates at 0
o
 

3 1.795 5817.1 10727 propagates at 0
o 

4 2.795 7753.7 14527 propagates at 0
o 

5 4.341 10094 19714 continues at 0
o
 till breakage 

 

 

Fig. 17 Von Mises stress plot for plate with inclined edged crack 

 

 

Fig. 18 Strain energy distribution in integration cells for plate with inclined edge crack 
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Fig. 19 Strain energy distribution in triangular cells for plate with inclined edge crack 

 

 

Fig. 20 Displacement plot of adaptively refined plate with inclined edge crack 
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Fig. 21 Von Mises stress plot of adaptively refined plate with inclined edge crack 

 
Table 5 Adaptive refinement iterations in plate with inclined edge crack 

Refinement of No. of Cells No. of Nodes Displacement (mm) Stress (N/mm
2
) 

None 40 96 0.852 1036.8 

Cell 67 96 0.853 1036.5 

Node 67 183 0.994 2874.5 

Cell 91 183 0.995 2886.8 

Node 91 291 1.03 2978.8 

fine nodal density 208 1211 0.938 2972.6 

 
 
4.3.2 Adaptive refinement 
The displacements and stresses computed for very coarse density of nodes and integration cells 

(Table 5) in the initial iteration. Followed by the refinement of top 20% of the strain energy levels 

has been carried out. Refinement iterations and the number of nodes and cells obtained in each 

step is tabulated in Table 5. 

The refinement of integration and triangular cells around the crack tip occurs after each 

iteration and the strain energy distribution for the same can be observed in Figs. 18 and 19. About 

75% reduction of nodes can be observed with acceptable accuracy. Further Displacement 

distributions along with the refined nodes (Fig. 20) and von Mises stress distributions (Fig. 21) are 

presented. 
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5. Conclusions 
 

The efficacies of EFG method based adaptive refinement in addressing stress concentration 

effects have been demonstrated. The adaptive refinement strategies proposed and formulated have 

yielded encouraging results by way of reduction in number of nodes required to accomplish 

acceptable convergence rates and limits. About 86% and 76% reduction in nodes requirement have 

been accomplished for stress concentration and crack propagation problems respectively. The 

formulation finds potential as a decision making tool in real-time health monitoring of structures. 
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