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Abstract.  In this paper, a new analytical approach has been presented for solving nonlinear conservative 
oscillators. Variational approach leads us to high accurate solution with only one iteration. Two different 
high nonlinear examples are also presented to show the application and accuracy of the presented approach. 
The results are compared with numerical solution using runge-kutta algorithm in different figures and tables. 
It has been shown that the variatioanl approach doesn’t need any small perturbation and is accurate for 
nonlinear conservative equations. 
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1. Introduction 
 

Nonlinear differential equations are not an easy task to solve analytically. Recently, a great has 
been attempted to prepare some new approximate analytical solutions to analysis high order 
nonlinear differential equations. To have better understanding the behavior of the system and the 
effects of the important parameters on the nonlinear response of the problem, it makes us to solve 
them analytically.  

Numerical solutions are also available to solve high nonlinear vibration equations; we note that 
these methods need computational effort and a careful attention to the capability and stability of 
the numerical methods. Many asymptotic techniques including; Differential transformation 
method (Kuo and Lo 2009), Generalized differential transform method (Odibat et al. 2008), energy 
balance method (Jamshdi and Ganji 2010, Mehdipour et al. 2010). 

Max-Min approach (Shen and Mo 2009); Adomian decomposition method (Wu 2011), 
Variational approach (Xu and Zhang 2009), Hamiltonian approach (He 2010), improved 
Amplitude-frequency Formulation (He 2008) and other analytical methods (Alicia et al. 2010, 
Bayat et al. 2011a, b, c, 2012a, b, c, 2013a, b, c, 2014a, b, c, e, d, Dehghan and Tatari 2008, Geng 
and Cai 2007, He 2004, 2007, Pakar 2011a, b, 2013a, b, Suna et al. 2007, Xu 2010, Zeng 2009, 
Bayat et al. 2015 a, b, c, Cveticanin 2012, 2015) were used to handle strongly nonlinear systems. 
In this work we aim to apply the He’s Variational Approach Method to solve high nonlinear 
vibration problems in different examples. It has been shown that the methodis an easy to apply 
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approach for nonlinear problems as indicated in this paper. 
 
 
 2. Basic idea of He’s variational approach  
 

He suggested a variational approach which is different from the known variational methods in 
open literature (He 2007). Hereby we give a brief introduction of the method 

     ( ) 0u f u   (1)

Its variational principle can be easily established utilizing the semi-inverse method 
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Where T is period of the nonlinear oscillator, F fu
  . Assume that its solution can be 

expressed as 

      ( ) cos( )u t A t  (3)

Where A and ω are the amplitude and frequency of the oscillator, respectively. Substituting Eq. 
(3) into Eq. (2) results in 
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Applying the Ritz method, He require 
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But with a careful inspection, for most cases He fined that 
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Thus, He modify conditions Eq. (5) and Eq. (6) into a simpler form 
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From which the relationship between the amplitude and frequency of the oscillator can be 
obtained. 
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This equation is as known as Mathieu equation or the system with dependent coefficients to 
time. In which θ and t are generalized dimensionless displacements and time variables, 
respectively.  

The approximation  sin(θ)=θ−(1/6)θ3  is used.  
Its variational formulation can be readily obtained from Eq. (19) as follow 
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Choosing the trial function θ(t)=A cos(ωt) into Eq. (20) we obtain 
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Table1 Comparison of nonlinear frequency of approximate solution (VA) with exact solution corresponding 
to various parameters of system (example 1) 

A λ ωVA ωExact Error % 

0.1 0.1 0.94888 0.94888 0.00012 

0.4 0.1 0.95152 0.95156 0.00348 

1 0.1 0.96111 0.96110 0.00081 

10 0.1 0.99372 0.99371 0.00024 

50 0.1 0.99873 0.99873 0.00000 

0.1 0.5 0.70842 0.70842 0.00003 

0.4 0.5 0.72588 0.72613 0.03375 

1 0.5 0.78652 0.78617 0.04489 

10 0.5 0.96817 0.96810 0.00683 

50 0.5 0.99361 0.99361 0.00030 

0.1 0.75 0.50279 0.50279 0.00018 

0.4 0.75 0.53848 0.53921 0.13696 

1 0.75 0.65416 0.65277 0.21335 

10 0.75 0.95185 0.95170 0.01654 

50 0.75 0.99041 0.99040 0.00065 

0.1 0.95 0.23139 0.23137 0.00901 

0.4 0.95 0.30199 0.31764 4.92676 

1 0.95 0.52476 0.52033 0.85137 

10 0.95 0.93860 0.93833 0.02820 

50 0.95 0.98783 0.98782 0.00104 

 
 
According to θ(t)=A cos(ωt) and (25), we can obtain the following approximate solution 
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4. Results and discussions 
 

In this section, some figures and tables are presnetd to show the accuracy of the presented 
approach. 

In example 1: Table 1 is the comparison of the variational approach and the exact solution 
using Runge-Kutta algorithm (Appendix A). Figs. 3 and 4 are the time -displacement comparison 
of variatioanl approach and exact solution for different parameters values. The maximum error is 
less than 5 percent. The effects of (λ) and amplitude (A) on nonlinear frequency of the example are 
also presented in Fig. 5. 

In example 2: Table 2 is shown the comparison of the frequency of the system for different 
parameters with numerical one. In this case the maximum error is less than 2 percent. 
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(a) (b) 

Fig. 3 Comparison of time history response of approximate solution (VA) with the exact solution for 
(a) λ=0.1, A=10 (b) λ=0.5, A=1 

 

(a) (b) 

Fig. 4 Comparison of time history response of approximate solution (VA) with the exact solution for (a) 
λ=0.75, A=0.1  (b) λ=0.95, A=50 
 
 
Fig. 6 represents a comparison of analytical solution of θ(t) based on time with the numerical 

solution for two different cases. The Fig. 7 shows the effect of length (l) and Y on nonlinear 
frequency of the system. The Fig. 8 effect of natural frequency (ω0) and amplitude (A) on 
nonlinear frequency of the system.  In has been indicated the variatioanl approach has an excellent 
agreement with the numerical solution. It is a simple method and easy to apply to any kind of 
nonlinear conservative vibration problems. 
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Fig. 5 Effect of parameter (λ) and amplitude (A) on nonlinear frequency 

 

(a) (b) 

Fig. 6 Comparison of time history response of approximate solution (VA) with the RKM solution (a) L=1.5 
m, ω0=1.5 rad/sec, Y=0.3 m, g=9.81 m/s2, A=π/6, (b) L=0.5 m, ω0=2.5 rad/sec, Y=0.7 m, g=9.81 m/s2, A=π/3
 
Table 2 Comparison of nonlinear frequency of approximate solution (VA) with numerical solution (RKM) 
corresponding to various parameters of system (example 2) 

A g ω0 Y l ωVA ωRKM Error % 
π/12 9.81 3 0.5 0.5 4.2372 4.2460 0.20688 
π/12 9.81 1 0.2 1 3.0916 3.1140 0.72536 
π/6 9.81 1.5 0.3 1.5 2.4535 2.4614 0.32446 
π/6 9.81 2.5 1 1 2.7542 2.7654 0.40602 
π/4 9.81 3 0.2 1.5 2.4224 2.4481 1.06296 
π/4 9.81 1 0.4 1 2.9567 2.9695 0.43509 
π/3 9.81 0.5 0.8 1.5 2.3523 2.3682 0.67797 
π/3 9.81 2.5 0.7 0.5 3.8418 3.8835 1.08406 
π/2 9.81 1.5 0.9 2 1.7167 1.7534 2.14286 
π/2 9.81 3 1 2.5 1.5917 1.6226 1.94062 
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Fig. 7 Effect of length (l) and Y on nonlinear frequency 
 

Fig. 8 Effect of natural frequency (ω0) and amplitude (A) on nonlinear frequency 
 
 
5. Conclusions 
 

It has been used a quite uncomplicated but productive new methods for non-natural oscillators. 
The first-order approximate solutions are of a high exactness .Variational Approach was applied 
successfully for two different nonlinear cases. It has been proved that this approach is an easy to 
apply method for nonlinear conservative oscillators. The results show good agreement with the 
numerical solution. 
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Appendix A: Basic idea of Runge-Kutta  
 

The Runge-Kutta method is an important iterative method for the approximation solutions of 
ordinary differential equations. These methods were developed by the German mathematician 
Runge and Kutta around 1900. For simplicity, we explain one of the important methods of Runge-
Kutta methods, called forth-order Runge-Kutta method.  

Consider an initial value problem be specified as follows 

        0 0, ,u f t u u t u   (A.1)

u is an unknown function of time t which we would like to approximate. Then RK4 method is 
given for this problem as below 
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for n = 0, 1, 2, 3, . . . , using 
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 (A.3)

Where un+1 is the RK4 approximation of u(tn+1). The fourth-order Runge-Kutta method requires 
four evaluations of the right hand side per step h. 
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