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Abstract.  Nanobeams are widely used as a structural element for nanodevices and nanomachines. The 

development of nano-sized machines depends on proper understanding of mechanical behavior of these 

nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, 

grain size etc. are need to be considered when applying any classical continuum model. In this study, 

Eringen’s nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial 

extension and the shear deformation to capture unique static behavior of the nanobeams under continuum 

mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by 

using the initial value method. Circular uniform beam with concentrated loads are considered. The 

displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is 

conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary 

conditions, and slenderness ratio on the static behavior of the nanobeam. 
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1. Introduction 
 

Nano-sized beam structures have great potential applications in many different fields such as 

nanoscale actuation, sensing, and detection due to their remarkable mechanical, electronic and 

chemical properties. High stiffness and strength, low density and good conductivity have made 

nanobeams the foundation building element for nano electro-mechanical devices, ultrasensitive 

sensors, semiconductor nanowires, atomic force microscopy etc. (Kong et al. 2000, Li and Chou 

2003, Craighead 2000, Roukes 2001, Ekinci 2005). As a particular example, with small size and 

large surface, carbon nanotubes stand out with their persistency in harsh chemical environment 

(Zhao et al. 2002) and can respond to the external mechanical deformation rapidly with high 

sensitivity. Scale of these materials makes experimental studies very challenging. Though, a 

common result from the experimental studies in some metals and polymers is the size dependence 

of mechanical properties and material deformation behavior in micro and nano-scale. The Young’s 
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modulus was found to be extremely high in several experimental studies (Treacy et al. 1996, 

McFarland and Colton 2005).  Since the properties of nano materials are distinctly different from 

those of the bulk material, they offer great potential applications and superior performance. In 

view of this, it is of great significance to gain a full understanding of the static properties of 

nanobeams. 

In pursuit of understanding the mechanical behavior of nano-sized materials, molecular 

dynamics (MD) simulations enable comparable investigations of dynamics of nano-materials to 

experiments, and further bring out detailed information on interatomic interactions of nano-

materials and molecular complexes, which is essential for developing advanced experiments 

(Arash et al. 2011). Besides the experiments and MD simulations, continuum mechanics approach 

has also been considered for modeling nanobeams. Continuum models presented in literature are 

generally based on classical (or local), and nonlocal continuum theories. In the classical continuum 

models, stress state at a given point is determined by the strain state at the same point. They are 

less computationally expensive, however, inherent restriction of classical continuum models, i.e., 

elimination of structural discontinuity at the atomic scale, reliability of the results of classical 

models for the mechanical behavior of micro and nano structures is questioned. In order to resolve 

the limitation, several useful theories and applications of the nonlocal continuum mechanics, 

which allows the small scale effects to be included in analysis of nano materials have been 

implemented in the studies. Couple stress theory, is a size-dependent continuum mechanics model 

for the analysis of nanostructures which uses virtual work and kinematical assumptions to explain 

the skew-symmetric nature of the couple-stress tensor and shows that mean curvature is in fact the 

correct energy conjugate measure of deformation (Hadjesfandiari and Dargush 2011). This theory 

is applied for the static bending and free vibration problems of a simply supported curved beam 

(Liu and Reddy 2011) and it is concluded that the predicted trends confirm the size effect at the 

micron scale observed in the experiments. Berrabah et al. (2013) proposed a unified nonlocal shear 

deformation theory to study the bending, buckling and free vibration of nanobeams. Both small 

scale effect and transverse shear deformation effects of nanobeams were considered in the model 

and Hamilton’s principle was used for obtaining equations of motion and analytical solutions were 

presented for the deflection, buckling load, and natural frequency of a simply supported 

nanobeam. Recently, another size-dependent continuum approach, strain gradient theory became 

very popular and different microbeam and microplate models are developed based on this theory. 

Akgoz and Civalek (2013) investigated the buckling problem of linearly tapered micro-columns by 

using a modified strain gradient elasticity theory. Bernoulli-Euler beam theory was used to model 

the micro column and Rayleigh-Ritz method was utilized to obtain the solution. Li (2013) studied 

the transverse vibrations of axially traveling nanobeams including strain gradient and thermal 

effects and used the variational principle to obtain the differential equation of motion. Effects of 

nanoscale parameter, temperature change, shape parameter and axial traction on the natural 

frequencies were discussed through the examples. 

Among the size-dependent continuum mechanics models for the analysis of nanostructures, the 

most popular approach is Eringen’s integral theory or nonlocal elasticity theory (Eringen, 1983). 

This theory states that the stress at a given reference point of a body is a function of the strain field 

at every point in the body; hence, the theory takes the long range forces between atoms and the 

scale effect into account in the formulation. Application of nonlocal elasticity for the formulation 

of nonlocal version of the Euler-Bernoulli beam model is initially proposed by Peddieson et al. 

(2003). Since then, the nonlocal theory, including nano-beam, plate and shell models were 

successfully developed using nonlocal continuum mechanics and many researchers reported on 
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bending, vibration, buckling and wave propagation of nonlocal nanostructures (Wang 2005, Wang 

and Shindo 2006, Polizzotto et al. 2006). Reddy (2007) improved existing classical Euler-

Bernoulli, Timoshenko, Levinson and Reddy beam theories by implementing nonlocal differential 

constitutive equations. Pradhan and Sarkar (2009) studied the bending, buckling and vibration of 

tapered functionally graded beams by using Eringen’s non-local elasticity theory. Both Euler-

Bernoulli and Timoshenko beam theories were considered and Rayleigh-Ritz method was used for 

the solution. Paola (2013) investigated the dynamics of a nonlocal Timoshenko beam by modeling 

nonlocal effects as long-range volume forces and moments mutually exerted by nonadjacent beam 

segments. In this manner, various sources of nonlocal effects were addressed and pertinent 

applications were discussed. Behera and Chakraverty (2014) studied the free vibration of 

nonhomogeneous nanobeams based on nonlocal theory using boundary characteristic orthogonal 

polynomial functions in the Rayleigh–Ritz method. A finite element method was presented for a 

nonlocal Timoshenko beam model by Alotta et al. (2014). For most common attenuation functions 

of nonlocal effects, exact closed-form solutions found for every element of the nonlocal stiffness 

matrix. Numerical applications were presented for a variety of nonlocal parameters, including a 

comparison with experimental data. Zemri et al. (2015) presented a nonlocal shear deformation 

beam theory for bending, buckling, and vibration of functionally graded (FG) nanobeams by using 

Eringen’s nonlocal constitutive relations. Higher-order variation of transverse shear strain through 

the depth of the nanobeam was considered, therefore, shear correction factor was not required. 

Zhang et al. (2015) proposed a microstructured beam-grid model for the vibration of initially 

stressed rectangular plates with simply supported edges. Based on the model, exact small length-

scale coefficients were determined for the vibration problem of the initially stressed plate. 

Taghizadeh et al. (2015) presented a 2-D finite element formulation by using the nonlocal integral 

elasticity. The bending problem of a nanobeam was solved based on classical beam theory and 

also 3-D elasticity theory using nonlocal finite elements. Comparison of the results with the 

relevant literature demonstrate that the scale effect on mechanical responses of nanostructures can 

be predicted successfully by the nonlocal elasticity theory. In another important study, a new 

analytical approach considering the effective nonlocal shear stress field is proposed by Li (2014). 

In the model, nano-structural stiffness of cylindrical nanostructures is enhanced with stronger 

nonlocal effects. On the contrary, some studies show that increasing nonlocal effect increases the 

deformation. Therefore, two kinds of nonlocal models are present: The nonlocal strengthening 

model and the nonlocal softening model. The difference is caused by different surface effects such 

as the long range attractive and repulsive interactions between atoms on the surface. Both models 

are proved to be valid by the work of Li et al. (2015a, b). 

Most of these studies focused on straight beam formulation, however, it is known that these 

structures might not be perfectly straight (Joshi et al. 2010). As an example, carbon nanotubes are 

long and bent, the bending being observed in isolated carbon nanotubes between electrodes or 

composite systems made from carbon nanotubes (Guo et al. 2000). The curvature may be 

originated from buckling of axially loaded straight nanotubes or it is a result of fabrication and 

waviness affects the material stiffness. Although carbon nanotubes are usually not straight and 

have some waviness along its length, few investigations are known to be concerned with the 

vibration of these nanostructures. Fisher et al. (2003) and Bradshaw et al. (2003) used 

micromechanical methods for modelling and combined with finite element results. The study 

revealed the importance of the curvature of a nanotube, because compared to the straight 

nanotubes, the effective reinforcement is significantly reduced. As another example, classical 

Euler-Bernoulli theory is applied by Mayoof and his co-worker Hawwa (2009) for the 

477



 

 

 

 

 

 

Ekrem Tufekci, Serhan A. Aya and Olcay Oldac 

investigation of nonlinear vibration of a single-walled carbon nanotube with waviness along its 

axis. The carbon nanotube was modeled as a harmonically excited beam under a transverse force. 

Dynamic response was investigated in the context of the bifurcation and chaos theory.  

In the study, in-plane static behavior of a planar curved nanobeam is investigated. Exact 

analytical solution of in-plane static problems of a circular nanobeam with uniform cross-section is 

presented. It is known that the size elimination of the nano scale effect may cause a significant 

deviation in the results. This study aims to overcome the problem by using Eringen’s nonlocal 

theory. Initially, the governing differential equations of static behavior of a curved nanobeam are 

given by using the nonlocal constitutive equations of Eringen. The expressions for components of 

Laplacian of the symmetrical second order tensor in cylindrical coordinates given by Povstenko 

(1995) are implemented in Eringen’s nonlocal equations in order to obtain the governing equations 

of a curved beam in Frenet frame. Based on the initial value method, the exact solution of the 

differential equations is obtained. The displacements, rotation angle about the binormal axis and 

the stress resultants are obtained analytically. The axial extension and shear deformation effects 

are considered in the analysis. A parametric study is also performed to point out the effects of the 

geometric parameters such as slenderness ratio, opening angle, loading and boundary conditions. 

To the authors’ best knowledge, almost all of the studies on the nonlocal beam theory has been 

discussed in the context of straight nanobeams. There is very limited number of papers on the 

curved nanobeams and most of them neglect the effects of axial extension and shear deformation. 

They use numerical and approximate solution methods and consider only the nonlocal effect of 

bending moment. However, the results confirm a particular conclusion that bending deformation 

of the nano-cantilever beam subjected to a concentrated force reveals no nonlocal effect (Li et al. 

2015b). The present work will be helpful in the analysis and design of circular nanobeams with 

various combinations of loadings, boundary conditions and material properties. 

 

 

2. Analysis 
 

Integral and gradient type nonlocal theories which include the characteristic length are used to 

solve the problems of micro and nano beams. The characteristic length depends on lattice 

parameter, granular size or molecular diameters. When the size of the beam is much larger than the 

characteristic length, the results of the nonlocal theories converge to those of the local theory. 

Nonlocal elasticity theories were proposed by several authors (Eringen 1983, Peddieson et al. 

2003). According to Eringen’s nonlocal model, the stress values at a generic point are related to a 

weighted integral of strains over a certain domain. In isotropic media, it is assumed that a unique 

kernel weights all entries of stiffness tensor equally (Eringen 1983), and the equation is given as 

          
  ( )  ∫  (    )    

 (  )   
 

 (1) 

where    
   and     

  are nonlocal and local stress tensors, respectively,   and    are position vectors 

for two material points in domain   and   is a scalar kernel function. The integral constitutive 

equations of nonlocal elasticity can be simplified to an equivalent partial differential equation by 

making certain assumptions (Eringen 1983) 

     (      )       (2) 

where    is the Laplacian operator,     and    are the nonlocal and local stress tensors, 
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respectively, and       is the nonlocal parameter that describes the effect of small scale on the 

mechanical behavior. The parameter    is a constant which has to be determined for each material 

independently and   is an internal characteristics length. Eringen (1983) estimated the parameter 

   as 0.39. Several authors reported that the value of     varies between 0 to 2 nm for analyzing 

carbon nanotubes (Sudak 2003, Wang and Hu 2005). 

In cylindrical coordinates (     ), Eq. (2) can be rewritten as follows 
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The expressions for components of Laplacian of the symmetrical second order tensor are given 

by Povstenko (1995). Using these equations, the Laplacian of the nonlocal stress tensor     in 

cylindrical coordinates are obtained as follows 

      (     )
  

      
   

 

  

    
  

  
 

 

  
(   

      
  ) (9) 

      (     )
  

      
   

 

  

    
  

  
 

 

  
(   

      
  ) (10) 

     (     )
  

      
   

 

  
   

   
 

  

 

  
(   

      
  ) (11) 

      (     )
  

      
   

 

  
   

   
 

  

    
  

  
 (12) 

     (     )
  

      
   

 

  
   

   
 

  

    
  

  
 (13) 

     (     )
  

      
   (14) 

where 

         
   

   
 

 

 

  

  
 

 

  

   

   
 

   

   
 (15) 

The Frenet coordinate system is used in the formulation of problems of curved beams. The 

cylindrical and Frenet coordinate systems are given in Fig. 1. The stresses on a point A in the 

cross-section of the curved beam in Fig. 1 are given in the cylindrical coordinate system as    ,  
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Fig. 1 The Frenet and cylindrical coordinates of a curved beam 

 

 

    and    . The normal stresses in radial direction     and in z direction     and also shear stress 

    are assumed as zero. For in-plane problems of planar curved beams, the normal stress in   

direction     and the shear stress     and their resultants   
  ,   

   and   
   are considered in the 

formulation. The relations between the stresses in Frenet and cylindrical coordinates are as follows 

                ;                ;             (16) 

                ;              ;               (17) 

 ( ) is the curvature of the centroid of the cross-section (point C), and  ̅ is the coordinate of an 

arbitrary point A shown in Fig. 1. Since a uniform circular beam is considered in this study, the 

radius of the beam is constant, i.e.,  ( )   , and the coordinate   is described as 

          ̅                            ̅ (18) 

It is assumed that  ̅     (beam assumption). 

  
  ( ),   

  ( ) and   
  ( ) are the stress resultants of the cross-section at the coordinate   and 

depend on only the coordinate  . Thus, their derivatives with respect to the coordinate   are non-

zero and derivatives with respect to the coordinates  ̅ and   are zero. 

The equilibrium equations (without body forces) in cylindrical coordinates are known as 
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The equilibrium equations can be rewritten in the following form by using the Eqs. (16)-(17) 
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Eq. (3) is arranged by substituting Eq. (9) and Eq. (15) for    
   in the following form 
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by using the beam assumptions, i.e. Eqs. (16-17) 
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is obtained. 

Substituting Eq. (10) and Eq. (15) for    
   into Eq. (4) yields 
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By using Eqs. (16)-(17), previous relation simplifies to 
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Substituting Eq. (26) into Eq. (28), the following is obtained 
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Eq. (5) can be arranged by substituting Eq. (11) and Eq. (15) for    
   as follows 
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By using Eqs. (16)-(17) 
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is obtained. 
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The relation between the local and nonlocal stress resultants   
  and   

   can be obtained by 

integrating Eq. (29) over the cross-section. 
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Substituting Eq. (18) into this equation yields 
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The following is obtained by assuming   ̅     (beam assumption). 
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By using Leibniz integral rule (Abramowitz and Stegun 1972), Eq. (34) can be expressed as 
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where 
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By substituting Eq. (36) into the Eq. (35) 
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is obtained. Eq. (37) can be arranged by remembering the only non-zero derivatives are with 

respect to   and other derivatives are zero 
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Similarly; integrating Eq. (31) over the beam cross-section gives the relation between the local 

and nonlocal stress resultants   
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Eq. (23) can be rewritten in the following form 
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Substituting Eq. (40) into Eq. (39) yields 
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Substituting Eq. (18) into this equation and assuming  ̅     (beam assumption) gives the 

following equation 
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By using Leibniz integral rule and the definitions 
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One can obtain the following expression by remembering the only non-zero derivatives are 

with respect to   and others are zero 
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Multiplying both sides of Eq. (29) with coordinate  ̅ and integrating the resulting expression 

over the beam cross-section yields the relation between the local and nonlocal stress resultants   
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Using integration by parts as given in the following equation 
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and also using Leibniz integral rule, Eq. (45) can be arranged in the following form 
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Fig. 2 Circular beam with nonsymmetrical boundary and loading conditions 

 

 

where 
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By substituting Eq. (48) into the Eq. (47) and remembering the only non-zero derivatives are 

with respect to   and others are zero, the following expression is obtained 
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In local elasticity theory, the governing equations of in-plane static behavior of a circular 

uniform beam under concentrated loads (Fig. 2), considering the effects of axial extension and 

shear deformation, are very well-known as (Tufekci and Arpaci 2006) 
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 ( )

  
    

 ( ) (55) 

where   and   are the normal and tangential displacements,    is the rotation angle about the 

binormal axis,   is the angular coordinate;   is the radius of curvature of the beam; A is the cross-

sectional area;    is the area moment of inertia of the cross-section with respect to the binormal 

axis;    is the factor of shear distribution along the normal axis;   
  and   

  are normal and 

tangential components of internal force, respectively;   
  is the internal moment about the 

binormal axis; E and G are respectively Young’s and shear moduli. In this study, a circular beam 

with uniform doubly symmetric cross-section is considered. 

The equilibrium Eqs. (53)-(55) are also valid in nonlocal elasticity and differentiated with 

respect to the angular coordinate  , and they are substituted into Eqs. (38), (44) and (49). Then, the 

obtained equations are substituted into the Eqs. (50)-(52) and the governing differential equations 

of nonlocal beams can be rewritten in the following form 
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Equations can also be stated in the matrix form as 
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where  ( ) is the vector of variables, namely,  ,  ,   ,   
  ,   

  ,   
  ,  ( ) is the 66 coefficient 

matrix. The solution of the Eq. (62) can be expressed as 

       ( )   (    )   (63) 

where  (    )  is the fundamental matrix;     (  )  is the vector of initial values at the 

coordinate    (in this study     ). 

The solution of this equation can be written in the following form 
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The fundamental matrix satisfies the following requirements 
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where I is the unit matrix. 

The exact analytical solution of the differential equations and the fundamental matrix of a 

circular uniform nanobeam can be obtained easily in the following form 
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All other terms of the fundamental matrix are zero. The inverse of the fundamental matrix can 

also be obtained analytically and it is not given here for the brevity. 

If the initial values   ,   ,    ,    
  ,    

  ,    
  , are known, the solution are obtained 

analytically. The initial values are solved from a system of linear equations obtained from 

boundary conditions. 

The classical boundary conditions are known as: 

1- Hinged End:           ,         ,        
    . 

2- Clamped End:        ,         ,          . 

3- Free End:              
    ,      

    ,      
    . 

In this study, as a general case, a beam with point loads at the coordinate (     ) is 

considered (Fig. 2). The beam has two regions and the solutions for both regions are 

  (  )   (     )              for                  (89) 

  (  )   (     )             for                    (90) 

where y2K is the vector of initial values for the second region at coordinate   . The continuity 

condition at that point is 
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        (  )        (91) 

where   [                ]  is loading vector. Thus, Eq. (90) is rewritten as 

   (  )   (     )  (  )   (     )  (92) 

Substituting Eq. (89) into Eq. (92) 

        (  )   (     ) (     )     (     )  (93) 

Using Eq. (65), Eq. (93) can be arranged as follows 

        (  )   (     )     (     )  
  (     )  (94) 

Thus, the unknown initial values are solved by using three simultaneous linear equations for 

each end. Now, it is possible to specify analytically the displacements, rotation, and internal forces 

and bending moment of the beam. 

 
 
3. Numerical evaluation 
 

In this section, several geometries, boundary and loading conditions are considered for 

numerical examples. These include hinged-hinged, clamped-clamped, hinged-clamped and 

clamped-free ends as boundary conditions; point loads in normal direction (normal force,   ), 

tangential direction (tangential force,   ) and binormal direction (bending moment,   ) as loading 

types. The loads are applied at any coordinate   . The slenderness ratio of the beam   

    √  ⁄⁄  is changed from 20 to 150 and the cross-section of the beam is considered as circular. 

Opening angle of the beam (  ) is taken as between     and     . Various problems are solved 

and the exact analytical equations of the displacements, rotation and the stress resultants are 

obtained. The effects of nanoscale parameter and variation of geometric parameters on the static 

behavior of a circular nanobeam analyzed and discussed through the proposed method. Small scale 

parameter (  ⁄ ) is considered to change from 1 to 10 and   is taken as 1.56 nm. Poisson’s ratio 

and Young’s modulus is taken as       and        , respectively. These values are taken 

from Hu et al. (2009), however, in this study the results do not depend on these values, since they 

are given as ratio of the results of local and nonlocal theories. The effects of axial extension, shear 

deformation and their nonlocal effects, along with the nonlocal effects of bending (binormal) 

moment are included in the equations. The results are presented for four different cases, in which 

(i) all effects are considered, (ii) only axial extension effect is considered, (iii) only shear 

deformation effect is considered, and (iv) none of the effects are considered. 

 

3.1 A quarter circular beam with a tip force 
 
In this example, a quarter circular cantilever nanobeam loaded with a normal force    at the 

free end is considered (Fig. 3). The normal and tangential displacements and the rotation angle at 

the free end B are obtained analytically as follows 

         (
     

   
 

   

   
)(  

  

  
)  

   
 

    
 (95) 
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Fig. 3 A quarter circular cantilever beam with a tip force 
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As seen from these equations, the nonlocal parameter     is important for a very small radius 

of curvature. The results of the classical (local) theory can be obtained by cancelling out the term 

   . 

Functions of tangential displacement    ( ), normal displacement    ( ) and rotation 

angle      ( ) can be obtained as follows 
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3.2 Pinched nanoring 
 
In this example, static behavior of a pinched circular ring (Fig. 4) is studied. These structures 

are observed in experimental studies (Kong et al. 2004, Huang et al. 2012). 

The normal displacements at points A and B are obtained as 

𝐹  

𝑅 

A 

B 
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Fig. 4 Circular nanoring with concentrated forces 

 

 
(a) (b) 

Fig. 5 The displacement diagram for the nanoring obtained (a) by local and nonlocal theories (b) 

nonlocal theory considering the effects (     and      ) 

 

 

         
   

 

   
(
 

 
 

 

 
)  (

    

   
 

      

   
) (  

  

  
) (101) 

         (
   

 

    
 

    
 

    
)  (

   

   
 

     

   
)(  

  

  
) (102) 

and the moments are 

           
    

 
 (103) 
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 𝐹  

 𝐹  
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B 
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             (  
 

 
) (104) 

Fig. 5(a) shows the displacement diagram for local and nonlocal theories. The slenderness ratio 

is      and nonlocal parameter is      . The results of both theories are slightly different 

and the difference decreases when nonlocal parameter     decreases. In order to investigate the 

effects of axial extension and shear deformation, the displacement diagram is given in Fig. 5(b). 

The results show that the displacements rather close to each other even if the slenderness ratio is 

  . As in the local theory, it is found that the axial extension has the dominant effect. 

 
3.3 Clamped-clamped nanobeam loaded at the midspan 
 
The effects of several parameters on the static behavior of a circular nanobeam with clamped 

ends are studied in this example. The beam is loaded by a normal force    at its midspan (Fig. 6). 

The ratio of nonlocal and local displacements        and moments          at the midspan 

are obtained for several parameters. The effects of small scale parameter    , slenderness ratio   

and opening angle    on the displacement ratio        and moment ratio          at the 

midspan are studied. 

Fig. 7(a) shows the displacement ratio against the small scale parameter     for the beam with 

the opening angle of         and different slenderness ratios                 . The effect 

of small scale parameter     on the displacement ratio        is more significant for smaller 

slenderness values. This effect attenuates if the opening angle of the beam is decreased (i.e., the 

curves representing the displacement ratio becomes closer for different slenderness ratio). It is 

observed that, the small scale effect becomes more important for a slender beam with considerably 

small opening angle. 

The effects of axial extension and shear deformation on the displacement are studied for several 

values of opening angle and slenderness ratio. For the brevity, only the results for a beam with 

opening angle of         and slenderness ratio of      is given in Fig. 7(b). The difference 

between the results of the cases (i.e. considering axial extension or considering shear deformation) 

increases with the increasing slenderness. From the figure, one can see that the axial extension has 

the dominant effect for all opening angles and slenderness ratio. The beam theory neglecting the  

 

 

 

Fig. 6 Clamped-clamped circular nanobeam loaded at the midspan (       ) 
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(a) (b) 

Fig. 8. The effect of     on the ratio of local and nonlocal moments          for a clamped-clamped 

beam with        (a) For different   values (b) For different effects 

 

 

effects of axial extension and shear deformation gives acceptable results for only a slender and 

deep curved beam where the bending deformation is the main effect. Moreover, when the beam is 

stubby, the shear deformation effect becomes also significant. The displacements for the case 

neglecting all effects (i.e., only the nonlocal effects of bending moment is considered) are same for 

both local and nonlocal theories. Similar result is obtained by Li (2015) for straight beams with 

concentrated loads. 

Fig. 8(a) gives the diagram of the moment ratio          against the small scale parameter 

    for the beam with the opening angle of         and slenderness ratio of 

                . The difference between the results of the cases (i.e., considering axial 

extension or considering shear deformation) increases with the increasing slenderness. This result 

shows that the axial extension is the main effect on the displacement ratio. Moment ratio increases 

with the increasing slenderness ratio for larger opening angle and the curves obtained for different 

slenderness ratio become closer with the decreasing opening angle. 

The results of the cases considering or neglecting the axial extension and shear deformation 

effects for a beam with opening angle of          and slenderness ratio of       is given in  
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Fig. 7 The effect of     on the ratio of local and nonlocal displacements        for a clamped-clamped 

beam with        (a) For different values of    (b) For different effects 
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(a) (b) 

 

 
(c) 

Fig. 9 Displacements obtained by local and nonlocal theories (     ) (a)        ,      ;   (b) 

      ,      ;   (c)       ,       

 

 

Fig. 8(b). Axial extension is the main contributing effect for all opening angle, as expected. 

Moment ratio increases with decreasing opening angle for all slenderness ratio. 

As it is well known from the local theory, the Euler beam theory gives acceptable results for a 

slender and deep curved beam, but the results are not reasonable when the curved beam is shallow. 

Deep and shallow curved beams exhibit different static and dynamic behavior (Tufekci and Arpaci 

2006, Tufekci 2001). A shallow curved beam deforms along a different path representing another 

characteristic deformed shape. 

In order to exhibit the effect of the shallowness   ℓ (Fig. 2), a clamped-clamped beam in Fig. 6 

is considered here. The displacements obtained by local and nonlocal theories are given in Fig. 

9(a) for        ,        and in Fig. 9(b) for       ,      . The dashed lines show the 

results of local theory; the solid lines show the results of nonlocal theory. The deformation of 

nonlocal theory is significantly different than that of the local theory. The ratio of the 

displacements at the midspan increases with the decreasing opening angle, and it decreases with 

the increasing small scale parameter. 

In Fig. 9(c), the displacement curves obtained by nonlocal theory with the cases considering 

(red line) and neglecting (blue line) the effects of axial extension and shear deformation. For 

       and      , not only the displacements at the crown but also the characteristics of 

deformed shapes are different. The effect of axial extension is significant for a shallow curved 

beam even if it is slender. Thus, the realistic deformed shape of a shallow beam cannot be obtained 

by neglecting the effects of axial extension and shear deformation. It should be noted that the 

shallow beam with opening angle of 30o and slenderness ratio of 100 is still slender in this 

example. 

Fig. 10 gives the effects of small scale parameter, slenderness ratio and opening angle on the 

displacement ratio of a clamped-clamped beam. The effect of small scale parameter on the 

displacement ratio of a beam with         increases with decreasing slenderness ratio (Fig.  
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(a)                                                             (b)       

 

(c)       

Fig. 10 The effects of small scale parameter, opening angle and slenderness ratio on the displacement 

ratio of a clamped-clamped beam 

 

 

10(a)). The displacement ratio of a beam with       has maximum value at the opening angle 

around     for all     values (Fig. 10(b)). The effect of opening angle on the displacement ratio 

increases, then decreases gradually for smaller slenderness ratio (Fig. 10(c)). The change is more 

significant for larger values of slenderness ratio. 

Fig. 11 shows the change of moment ratio          with the small scale parameter, opening 

angle and slenderness ratio. The small scale parameter slightly affects the moment ratio for slender 

beams while considerable changes are observed for beams with smaller slenderness ratio (Fig. 

11(a)). The moment ratio increases for small scale parameter and/or for small opening angle. The 

moment ratio of a beam with       has a maximum value at the opening angle around    
    for all     values, and a sharp decrease is observed for smaller angle (Fig. 11(b)). When the 

opening angle increases, the moment ratio increases for smaller angle, and then decreases 

gradually afterwards. However; for larger slenderness ratio, this change is more significant. (Fig. 

11(c)). 

The diagrams of rotation angle (  ), binormal moment (  ), tangential force (  ) and normal 

force (  ) diagrams of the beam with      ,         and      are shown in Fig. 12. Solid 

red line represents the results of nonlocal theory and dashed red line represents those of the local 

theory. 
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(a)                                                              (b)       

 
(b)       

Fig. 11 The effects of small scale parameter, slenderness ratio and opening angle on the moment 

ratio of a clamped-clamped circular beam 

 

 
 

(a) (b) 

 
 

(c) (d) 

 

Fig. 12 (a) Slope (b) Binormal moment, (c) Tangential force, (d) Normal force diagrams of the beam with 

     ,         and      
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3.4 Effect of boundary conditions 
 
In the previous example, a clamped-clamped beam is investigated in details. In this section, the 

effects of boundary conditions (i.e., hinged-clamped and hinged-hinged) on the static behavior of 

nanobeam are investigated in details. 

The effects of small scale parameter, slenderness ratio and opening angle on the displacement 

and moment ratio of a hinged-clamped and hinged-hinged beams are studied. The results are not 

given here for brevity, since they are similar to the ones obtained for a clamped-clamped beam 

(see Figs. 10, 11). The diagrams of displacement, rotation angle (  ), binormal moment (  ), 

tangential force (  ) and normal force (  ) diagrams of the hinged-clamped beam with      , 

        and      are shown in Fig. 13. The differences between the results of displacement 

and rotation angle obtained from local and nonlocal theories are larger than those of clamped-

clamped beams. 

Fig. 14 shows the change of displacement ratio        against the small scale parameter     

for different boundary conditions. Here, the opening angle is         and slenderness ratio is  

     . The clamped-clamped beam is affected most by the small scale parameter and hinged- 

clamped and hinged-hinged are the following boundary conditions, respectively. If the slenderness 

ratio decreases for the same opening angle, the curves become closer, and the scale effect increases 

considerably. 

 

 

 

Fig. 13 The nonlocal and local (a) displacements, (b) rotation angles, (c) binormal moments, (d) 

tangential forces, (e) normal forces of a hinged-clamped beam (       ,      ,      ) 
 

 
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 
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Fig. 14 The effects of small scale parameter     on the displacement ratio for several boundary 

conditions (       ,       ) 

 
Table 1 The displacement and rotation angle ratio of beams with various boundary and loading conditions 

(       ,     ,      ) 

  
All effects Axial Ext. Shear Def. No Effect 

 

  

   
 1.36406 1.29453 1.13543 1 

 

  

   
 1.17921 1.14423 1.04743 1 

   

    
 0.96825 0.97567 0.99293 1 

 

  

   
 0.96825 0.97567 0.99293 1 

   

    
 1.01987 1.00237 1.01758 1 

 

  

   
 1.48699 1.42853 1.21499 1 

 

  

   
 1.37311 1.30450 1.13453 1 

   

    
 0.96583 0.93209 1.02748 1 

 

  

   
 2.03697 1.01461 1.02824 1 

   

    
 1.04750 1.00606 1.04238 1 
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Table 1 Continued 
 

  

   
 1.40005 1.33234 1.15290 1 

   

    
 0.66189 0.70091 0.93618 1 

 

  

   
 1.28485 1.22737 1.09486 1 

   

    
 0.979295 0.96171 1.01690 1 

 

  

   
 0.66189 0.70091 0.93618 1 

   

    
 1.04033 1.00692 1.03503 1 

 

 

In Table 1, the displacement ratio        or        and rotation angle ratio         are 

given for several loading and boundary conditions. The effects of axial extension and shear 

deformation is investigated. The beam has        ,     ,        The axial extension has 

the dominant effect for all loading and boundary conditions. The shear deformation effect must be 

considered for such a stubby beam in order to obtain a satisfactory result, as it is expected. 

 
3.5 Beam with nonsymmetrical boundary and loading conditions 
 
A circular nanobeam with non-symmetrical boundary and loading conditions, which is not 

available in the literature, is studied in this section. A hinged-clamped circular beam with opening 

angle of        , slenderness ratio of      and small scale parameter of       is loaded at 

the coordinate of        with a normal force     (Fig. 15). The displacement, rotation angle, 

binormal moment, normal and tangential forces are given in Fig. 16. The results are obtained by 

both nonlocal and local theories for the case considering all effects. As seen from the figure, the 

displacement and rotation angle are slightly different than those of local theory. The difference 

disappears for higher values of    . Minor differences are observed for the force and moment 

diagrams. 

 

 

 

Fig. 15 A hinged-clamped circular beam with nonsymmetrical loading conditions. 
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Fig. 16 (a) Displacement, (b) Rotation angle (c) Binormal moment, (d) Tangential force, (e) Normal 

force diagrams of hinged-clamped beam loaded with     at        (        ,     , 

     ) 

 
 

4. Conclusions 
 
A new size-dependent general beam theory is presented within the framework of Eringen’s 

nonlocal elasticity theory for static behavior of curved nanobeams. Nonlocal constitutive equations 

are implemented in the classical beam equations. Axial extension and shear deformation effects 

and their size-dependent effects along with the size-dependent effects of bending moment are 

incorporated in the analytical model. Initial value method is used for the exact solution and the 

results are obtained analytically. 

Other modeling techniques are suffering from some shortcomings. Atomistic approach is 

incapable of modeling complex atomic structures and computationally expensive. On the other 

hand, classical continuum approach gives relatively simple formulations but it is inadequate for 

modeling because of the size-free deficiency. In most of the studies, nanobeams are assumed to be 

perfectly straight beams, but they may also be fabricated curved to be used as sensors, resonators 

for nanotechnology applications. Motivated by this fact, the nonlocal beam equations are obtained 

and an exact solution is developed for the static problems of planar curved nanobeams. The 

equations provide sufficient generality in the choice of loading and boundary conditions. Main 

contribution of this study is to give the exact analytical solutions for the circular curved beams 

with uniform cross-section.  

Illustrative examples of circular curved nanobeams bearing concentrated loads are discussed to 

highlight the effects of nonlocal parameter, axial extension, shear deformation, slenderness ratio, 

 

(a) 

 

(b) 

 

(c) 
(d) 

(e) 
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opening angle, loading and boundary conditions as well as the connections between this nonlocal 

beam model and classical (local) beam theory. 

For a slender clamped-clamped beam with opening angle         loaded with a normal 

force at the midspan; if the small scale parameter   ⁄  and slenderness ratio   decrease, the 

displacement ratio        increases and similarly moment ratio          is also increases. 

When the small scale parameter   ⁄  and opening angle    decreases, the displacement ratio 

       and moment ratio          increases. For smaller opening angle, the ratio of 

displacements and moments decreases slightly. For smaller values of slenderness ratio, if opening 

angle    increases the ratio of displacements and moments increase and then decreases gradually. 

For larger values of slenderness ratio, the change is more significant.  

Other types of boundary and loading conditions are also investigated and similar results to are 

obtained. Besides, the effects of axial extension and shear deformation and also shallowness are 

studied and it is found that the results are similar to those of the local theory. 

The results of displacement and rotation angle ratio are tabulated for all classical boundary 

conditions and loading types, considering the axial extension and shear deformation effects. 

An illustrative example for unsymmetrical loading and boundary conditions is also studied and 

the results are given in details. 

While only uniform circular nanobeams bearing concentrated loads are investigated in this 

paper, the equations can easily be expanded to provide sufficient generality in the choice of 

loading and geometry. Based on the analysis presented here, it is also possible to investigate the 

dynamics of curved nanobeams. Also, for engineering applications, it may be possible to develop 

an exact nonlocal beam finite element. 

Advances in nanoscience and nanotechnology shaped the modern world in the last decade. 

Theory, modeling and simulation have played a critical role in these advances. With the solution 

method proposed herein, it would be very helpful in design and fabrication of curved beam 

components in MEMS and NEMS applications, particularly those whose main duties are to 

transfer securely the applied forces. 

It is expected that the results obtained from the present study are got to instruct the engineering 

design of nano devices. 
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