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Abstract.  This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-

velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous 

fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by 

employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the 

linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are 

continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall 

are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented 

and discussed and the focus is on the influence of the effect caused by the interaction between oscillation 

and moving of the external load. During these discussions, the corresponding earlier results by the authors 

are used which were obtained in the cases where, on the system under consideration, only the oscillating or 

moving load acts. In particular, it is established that the magnitude of the aforementioned interaction 

depends significantly on the vibration phase of the system. 
 

Keywords:  hydro-elastic system; elastic plate; compressible viscous fluid; oscillating moving load; 

vibration phase 

 
 
1. Introduction 
 

The modern level of aerospace, nuclear, naval, chemical and biological engineering requires 

more detailed and exact investigation of plate-fluid interaction problems, the results of which have 

great significance not only in the theoretical, but also in the application sense. Related 

investigations were started by Lamb (1921) in which the so-called “non-dimensional added virtual 

mass incremental” (NAVMI) method was proposed and, by employing this method, vibrations of a 

circular elastic “baffled” plate in contact with still water were considered. According to the 
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NAVMI method, it is assumed that the contact of the plate with the fluid does not influence its 

vibration mode and the natural frequency of the plate-fluid system is determined by use of the 

Rayleigh quotient. It should be noted that according to Lamb (1921), the normal velocity profile of 

the first mode of vibration of the clamped elastic plate is given through the fourth order 

polynomial with respect to the radial coordinate. Later, the NAVMI method was also employed in 

the papers by Kwak and Kim (1991), Kwak (1997), Kwak and Han (2000), Fu and Price (1987), 

Zhao and Yu (2012) and others listed therein.  

Note that up to now, investigations have also been made on the plate-fluid interaction without 

employing the NAVMI method. An example of such an investigation is the paper by Tubaldi and 

Armabili (2013) in which the vibration and stability of a rectangular plate immersed in axial liquid 

flow were studied. Another example is the study carried out in the paper by Charman and Sorokin 

(2005) in which an asymptotic analysis of sound and vibration when a metal plate radiates sound 

into water, is given.   

An example of another aspect of investigations related to the plate-fluid interaction with regard 

to wave propagation problems, is the investigation which was made in the paper by Sorokin and 

Chubinskij (2008) and others listed therein. However, in this paper and all the papers indicated 

above, the equations of motion of the plate are written within the scope of approximate plate 

theories by use of the various types of hypotheses such as the Kirchhoff hypothesis for plates. It is 

evident that in many cases (for instance, in the cases where the wave length is less than the 

thickness of the plate) the approximate plate theories cannot adequately describe the motion of 

these plate-fluid systems. Moreover, the foregoing investigations, except the paper by Zhao and Yu 

(2012), do not take into consideration the initial strains (or stresses) in the plates, which can be one 

of their characteristics. The use of the exact equations of plate motion and the existence of the 

initial stresses in the plate are taken into consideration in papers by Bagno (2015), Bagno et al. 

(1994), Bagno and Guz (1997) in which the wave propagation in the pre-stressed plate-

compressible viscous fluid systems is studied. Detailed consideration of related results is given in 

the monograph by Guz (2009).     

Employment of the exact three-dimensional field equations on the study of the forced vibration 

of the hydro-elastic system consisting of the pre-strained highly elastic plate and compressible 

viscous fluid filling a half - plane, was first made in the paper Akbarov and Ismailov (2014). The 

forced vibration of the system consisting of the elastic plate, compressible viscous fluid with finite 

depth and rigid wall was studied in the paper by Akbarov and Ismailov (2015). Moreover, in the 

paper by Akbarov and Ismailov (2015a), a more detailed review of related investigations is given.   

Another aspect of investigations is the dynamic response analysis of plate-fluid systems 

induced by a moving load. Results of these investigations are applied for construction of floating 

bridges and for determination of their efficiency. The investigations carried out in the papers by 

Wu and Shih (1998), Fu et al. (2005), Wang et al. (2009) and others listed therein can be taken as 

examples related to the study of the moving load dynamics acting on the plate-fluid systems.  

However, in these papers the fluid reaction to the plate (i.e., to the floating bridge) is taken into 

consideration without solution of the equations of the fluid motion. In other words, in these works, 

the so-called hydrostatic force (denoted by R) caused by the plate-fluid interaction is determined 

through the linear spring model, i.e., through the reaction R=−kw, where w is the vertical 

displacement of the plate and k is the spring constant. Thus, in the foregoing investigations, the 

existence of the fluid is taken into consideration only through this spring constant and the 

approach developed is a very approximate one and cannot answer questions about how the fluid 

viscosity, fluid depth, fluid compressibility, plate thickness and moving velocity of the external  
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Fig. 1 Sketch of the hydro-elastic system and time-harmonic moving load 

 

 

force act on the “hydrostatic force” and fluid flow velocities. It is evident that to find the answers 

to these questions it is necessary to solve the corresponding coupled fluid-plate interaction 

problems within the scope of the exact linearized equations described for the plate and fluid 

motions. The first attempt in this field was made in the paper Akbarov and Ismailov (2015b) in 

which the motion of the plate is described by the exact equations of linear elastodynamics, but the 

flow of the fluid is described by the linearized Navier-Stokes equations, and the dynamics of the 

moving load acting on the system consisting of the metal elastic plate, compressible viscous fluid 

and rigid wall are studied.    

Really, any moving load has a certain vibration and therefore such cases can be considered as 

oscillating moving loads. However, up to now there has not been any investigation related to the 

study of the dynamics of the oscillating moving load acting on plate-fluid systems. Taking this 

situation into consideration, in the present paper the first attempt is made in this field and the 

problem of the dynamics of the time-harmonic oscillating and moving load acting on the system 

consisting of the elastic plate, compressible viscous fluid and rigid wall, is studied. In other words 

in the present paper, the investigations carried out in the work by Akbarov and Ismailov (2015a) 

(in the work by Akbarov and Ismailov (2015b)) are developed for the case where the external force 

is not only time harmonic (moving), but also moving (time-harmonic). 

It should also be noted that the corresponding problems of the dynamics of the oscillating 

moving load acting on bi-material elastic systems have been studied in the works by Akbarov and 

Salmanova (2009), Akbarov and Ilhan (2009), Akbarov et al. (2015) and a detailed analysis was 

given in the monograph by Akbarov (2015).     

 

 

2. Formulation of the problem 
 

Consider a system consisting of the elastic plate-layer, barotropic compressible Newtonian 

viscous fluid and rigid wall (Fig. 1). We associate the coordinate system Ox1x2x3 with the plate and 

the position of the points of the constituents we determine in this coordinate system. We consider 

the motion of the plate-layer in the case where the lineal-located time-harmonic force which 

moves with constant velocity V acts on its free face plane. Assume that the plate occupies the 

region {|x1|<∞, −h<x2<0}, but the fluid occupies the region {|x1|<∞, −hd<x2<−h}. 

The motion of the plate in the plane strain state in the Ox1x2 plane can be described through the 

following equations of elastodynamics. 

2
11 12 1

2
1 2

,
u

x x t

 


  
 

  
 

2
12 22 2

2
1 2

.
u

x x t

 


  
 

  
 

405



 

 

 

 

 

 

Surkay D. Akbarov and Meftun I. Ismailov 
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
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2 1

1

2

u u

x x
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  
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 .            (1) 

Note that in Eq. (1) conventional notation is used.  

Also, consider the equations of motion of the Newtonian compressible viscous fluid: the 

density, viscosity constants and pressure are denoted by the upper index (1). Thus, according to 

monograph by Guz (2009), the linearized Navier-Stokes and other field equations for the fluid are 

2(1)
(1) (1) (1) (1)
0
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 

 
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 
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 
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   
  
 

.
(1)

2
0 (1)

p
a







 .   (2) 

where (1)
0

  is the fluid density before perturbation. The other notation used in Eq. (2) is also  

conventional.  

As presented in the monograph by Guz (2009), the solution of the system of equations in Eq. 

(2) for 2D plane problems is reduced to finding two potentials φ and ψ which are determined from 

the following equations 

(1) (1) 2
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,  
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 
,      (3) 

where v
(1)

 is the kinematic viscosity, i.e., v
(1)

=
(1)(1) (1)
0   . 

The velocities v1 and v2, and the pressure p
(1)

 are expressed by the potentials φ and ψ through 

the expressions 

1
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Assuming that 

(1)
11 22 33( ) 3p T T T    ,                           (5) 

we obtain 

(1) (1)2

3
    .                                (6) 

We assume that the following boundary, contact and impermeability conditions are satisfied 
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2
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x h h
v
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 ,                       (7) 

where ( )  is the Dirac delta function.  

It should be noted that the present problem differs from that considered in the paper by 

Akbarov and Ismailov (2014) (in the paper by Akbarov and Ismailov (2015a)). In the paper 

Akbarov and Ismailov (2014), the boundary condition 
2

22 0 10
( )

x
P x Vt 


    (in the paper by 

Akbarov and Ismailov (2015a), the boundary condition 
2

22 00
i t

x
P e 


   ) occurs instead of the 

boundary condition 
2

22 0 10
( ) i t

x
P x Vt e  


    in (7) which is used in the present paper.  

This completes the formulation of the problem. 

 
 
3. Method of solution 
 

For the solution of this problem, we use the moving coordinate system x′1=x1−Vt, x′2=x2 (below 

we will omit the upper prime on the new moving coordinates) and first we replace the operators  

( ) t    and 2 2( ) t    with 1( )i V x     and 2 2 2 2
1 1( 2 )V x V i x       , respectively. 

Then substituting the sought functions 1 2( , , )g x x t  as 1 2( , ) i tg x x e 
 (below we will omit the  

overbar) we obtain the corresponding equations and boundary and contact conditions for the 

amplitudes of the sought values in the moving coordinate system. For the solution to these 

equations, we employ the exponential Fourier transformation with respect to the x1 coordinate 

1
2 1 2 1( , ) ( , )

isx
Ff s x f x x e dx






                         (8) 

to these equations. The originals of the sought values are found through the integrals 

 1 2 11
1

; ; ;
2

F F Fu u 






  1
12 22 1 2 11 12 22; ; ; ; ; ;

isx
F F F F F F Fv v T T T e ds  . 

         

(9) 

Before employing the Fourier transformation (8) we introduce the dimensionless coordinates 

and dimensionless transformation parameter 

1 1x x h , 2 2x x h , s sh .                          (10)  

Below we will omit the over-bar on the symbols in (10). 

First, we consider the solution of the equations related to the Fourier transformation of the 

quantities related to the plate-layer, i.e., to the solution of the equations which are obtained from 

the Eq. (1) after employing the above-noted coordinate and Fourier transformations. Thus, doing 

some mathematical manipulations we obtain the following equations for u1F and u2F. 
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2
2 1
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where  

2 2 ( / 2)A X s      , ( / 1)B s    , 

2 2D X s  , / 2G     , 2 2 2 2
1 2X h c  , 2c    .          (12) 

In (12) we use the following notation 
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A
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2
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2 4

A A
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we can write the solution of the Eq. (11) as follows 
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 
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 
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where 

2
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1 2
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D Gk
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 
  , 2 1a a  , 

2
2

3 2
2

D Gk
a

Bk

 
 ,  4 3a a  .           (16) 

Using the Eqs. (1) and (15) we also write expressions for the Fourier transformations σ21F and 

σ22F of the corresponding stresses which enter the boundary and contact conditions in (7). 

   1 2 1 2
21 1 2112 1 1 2121 2 2112 1 2 2121

k x k x
F Z k a s e Z k a s e     
       

   2 2 2 2
3 2112 2 3 2121 4 2112 2 3 2121

k x k x
Z k a s e Z k a s e    

    , 

   1 2 1 2
22 1 2211 1 1 2222 2 2211 2 1 2222

k x k x
F Z s a k e Z s a k e     
      

   2 2 2 2
3 2211 3 2 2222 2 2211 4 2 2222

k x k x
Z s a k e Z s a k e    

   .          (17)  

This completes consideration of the determination of the Fourier transformation of the values 

related to the plate-layer. Now we consider determination of the Fourier transformations of the 

quantities related to the fluid flow. First, we consider the determination of φF and ψF 
from the 

Fourier transformation of the equations in (3). Taking the relation  

2
F Fh    , 2

F Fh                   (18) 

into account, it can be written that 
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2 2
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1
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
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2
12

(1)w

h
N




 .                         (20) 

The dimensionless number Nw in (20) characterizes the influence of the fluid viscosity on the 

mechanical behavior of the system under consideration. However, the dimensionless frequency Ω1 

in (20) characterizes the influence of the compressibility of the fluid on the mechanical behavior of 

the system under consideration.  

Thus, taking the conditions (6) into consideration, the solutions to the equations in (19) are 

found as follows 

            1 2 1 2
5 7

x x
F Z e Z e

  
  , 1 2 1 2

6 8
x x

F Z e Z e
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where 
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
 


 , 2 2

1 ws iN   .             (22) 

Using (21) and (18) we obtain the following expressions for the velocities, pressure and 

stresses of the fluid from the Fourier transformations of the Eqs. (2) and (3). 

1 2 1 2 1 2 1 2
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where 

2
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


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
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Substituting expressions (15), (17) and (23) into the boundary and contact conditions in (7) we 

obtain a system of equations with respect to the unknowns Z1, Z2,…, Z8 through which the sought 
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values are determined. These equations can be expressed as follows 

 
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
     


 

5 45 6 46 7 47 8 48( ) 0h Z Z Z Z         , 

   
2 2

21 21 1 51 2 52 3 53 4 54x h x h
T Z Z Z Z      

 
       

5 55 6 56 7 57 8 58( ) 0M Z Z Z Z        , 

   
2 2

22 22 1 61 2 62 3 63 4 64x h x h
T Z Z Z Z      

 
       

5 65 6 66 7 67 8 68( ) 0M Z Z Z Z       , 

2 d
1 5 75 6 76 7 77 8 78( ) 0F x h h

v h Z Z Z Z    
 

     , 

                
2 d

2 5 85 6 86 7 87 8 88( ) 0F x h h
v h Z Z Z Z    

 
     ,              (25) 

where 

(1)
1

M
 


  .                       (26) 

The expressions of the coefficients αnm (n; m=1,2,...8) in (25) can be easily determined from the 

Eqs. (15), (17) and (23), and therefore they are not given here. Thus, the unknowns Z1, Z2,…, Z8 in 

the Eq. (25) can be determined via the formula  

det

det

k
nm

k
nm

Z



  .                              (27)  

Note that the matrix ( )k
nm  is obtained from the matrix (αnm) by replacing the k-th column of the 

latter with the column (0, −P0/ μ,0,0,0,0,0,0)
T
. 

Now we consider calculation of the integrals in Eq. (9). For this purpose, firstly we consider the 

following reasoning. If we take the Fourier transformation parameter s as the wavenumber, then 

the equation 

det 0nm  , ; 1,2,...,8n m ,               (28) 
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coincides with the dispersion equation of the waves with the velocity ω1/s propagated in the 

direction of the Ox1 axis in the system under consideration. It should be noted that, according to 

well-known physico-mechanical considerations, the Eq. (28) must have complex roots only for the 

system under consideration. This character of the roots is caused by the viscosity of the fluid. 

However, as usual, the viscosity of the Newtonian fluids is insignificant in the qualitative sense 

and therefore in some cases within the scope of the necessity of the PC calculation accuracy, the 

Eq. (28) may have “real roots”. Consequently, these roots become singular points of the integrated 

expressions in the integrals (9) and in such cases the algorithm for calculation has been discussed 

in papers Akbarov and Ilhan (2009), Akbarov et al. (2015), Ilhan and Koç (2015), and other works 

listed in these papers. Moreover, this algorithm was detailed in the monograph by Akbarov (2015), 

according to which, the wavenumber integrals (9) may be evaluated along the Sommerfeld 

contour. However, in the present investigation, under calculation of the integrals in (9), the 

aforementioned “real roots” cases did not arise and, using the representation 

1 2 1 2( , , ) ( , ) i tg x x t g x x e  , the sought values are determined through the following relation 

  1 2 11 12 22 1 2 11 12 22 1 2 11
1

; ; ; ; ; ; ; ; ; Re ; ; ;
2

i t
F F Fu u v v T T T e u u   












  

 1
12 22 1 2 11 12 22; ; ; ; ; ;

isx
F F F F F F Fv v T T T e ds  


.                  (29) 

During calculation procedures, the improper integral ( )ds


  in (29) is replaced by the 

corresponding definite integral 
*
1

*
1

( )
S

S
ds

 . The values of *
1S  are determined from the 

convergence requirement of the numerical results. Note that under calculation of the integral 
*
1

*
1

( )
S

S
ds

 , the integration intervals 
* *
1 1,S S  

   are further divided into a certain number of 

shorter intervals which are used in the Gauss integration algorithm. The values of the integrated 

expressions at the sample points are calculated through the Eq. (25). All these procedures are 

performed automatically with the PC programs constructed by the authors in MATLAB.  

This completes the discussions related to the algorithms employed for calculation of the wave-

number integrals in the form (9). Note that after some obvious changes, the foregoing solution 

method can also be applied for the case where the fluid is inviscid. 

 

 

4. Numerical results and discussions 
 

According to the foregoing discussions, the problem under consideration is characterized 

through the dimensionless parameters Ω1 and Nw which are determined by the expressions in (20); 

M, which is determined by the expression (26); and λ/μ, where λ and μ are the mechanical 

constants of the plate material which enter the expression of the elastic relations in Eq. (1). In the 

numerical investigation, we assume that the material of the plate-layer is Steel with mechanical 

constants: μ=79×10
9
 Pa, λ=94.4×10

9
 Pa and density ρ=1160 kg/m

3
 (see, Guz and Makhort 2000), 

but the material of the fluid is Glycerin with viscosity coefficient μ
(1)

=1,393 kg/(m·s), density 

ρ=1260 kg/m
3

 
and sound speed a0=1927 m/s (see Guz 2009). We also introduce the notation  
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2c    which is the shear wave propagation velocity in the plate-layer material. After  

selection of these materials, the foregoing dimensionless parameters can be determined through the 

following four quantities: h (the thickness of the plate-layer), hd (the thickness of the fluid strip), V 

(the load moving velocity) and ω (the frequency of the oscillation of the moving load). Numerical 

results, which will be discussed below, relate to the normal stress acting on the interface plane 

between the fluid and plate-layer and to the velocities of the fluid (or of the plate-layer) on the 

interface plane in the directions of the Ox1 and Ox2 axes. We introduce the dimensionless stress  

T22h/P0 and dimensionless velocities 0 2/ ( )kv h P c  (k=1,2). To simplify the discussion below, we  

also denote the following three cases. 

Case 1: 0V   and 0  ; Case 2: 0V   and 0  ; 

                            and Case 3: 0V   and 0  .                      (30)  

As follows from the physico-mechanical considerations and from the investigations carried out 

in the paper by Akbarov and Ismailov (2015a), in Case 1 the distribution of the stress T22h/P0 and 

the velocity v2μh/(P0c2) (the velocity v1μh/(P0c2)) are symmetric (are asymmetric) with respect to 

the point x1/h=0. However, in Case 2, as noted in the paper by Akbarov and Ismailov (2015b), as a 

result of the fluid viscosity, the aforementioned symmetry and asymmetry are violated. As will be 

shown below and as follows from the physico-mechanical considerations, the above-noted 

symmetry and asymmetry are also violated in Case 3. How the magnitude of this violation depends 

on the vibration phase ωt and on the dimensionless fluid depth hd/h is the main subject of the 

present numerical investigations. Throughout these investigations, we assume that h=0.01 m and 

x2/h=−1.  

We begin the discussions of the numerical results with consideration of the convergence of the 

calculation algorithm. 

 

4.1 Convergence of the numerical results 
 

As noted above, under calculation of the integrals in (29) the values of *
1S  are determined  

from the convergence criterion of these integrals. The results obtained for various problem 

parameters show that the very disadvantaged case, in the convergence sense, appears for low 

vibration frequency and low moving velocity and for the small values of the ratio hd/h. Therefore, 

for illustration of this convergence, we assume that ω=50 hz, V/h=100 hz and hd/h=2, and consider 

the case where ωt=0.   

Under calculation of these integrals, the interval * *
1 1[ , ]S S   is divided into a certain number of 

shorter intervals. Let us denote this number through 2N. Consequently, the length of these shorter 

intervals is *
1S N  and in each of these shorter intervals the integration is made by the use of the 

Gauss integration algorithm with ten sample points. Consequently, convergence of the numerical 

integration can be estimated with respect to the values of *
1S  and N.  

Thus, we consider examples of the convergence of the numerical results with respect to the 

number N in the case where *
1 5S  . Analyze the graphs given in Fig. 2 which illustrate the 

distribution of the dimensionless stress T22h/P0 (Fig. 2(a)) and dimensionless velocities v2μh/(P0c2) 

(Fig. 2(b)) and v1μh/(P0c2) (Fig. 2(c)) with respect to x1/h for various values of the number N. It 

follows from the analyses of the results given in Fig. 2 that in the cases where N≥50 the results 

obtained for various values of N coincide with each other with accuracy 10
−6

−10
−7

. Nevertheless,  
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(a) (b) 

 
(c) 

Fig. 2 Convergence of the results related to the stress T22h/P0 (a), and velocities v2μh/(P0c2) (b) and 

v1μh/(P0c2) (c) with respect to the number N 

 

 

under obtaining all the numerical results which will be discussed below, it is assumed that N=300. 

Consider also the graphs which illustrate the convergence of the numerical results with respect  

to the integrating interval, i.e., with respect to the values of *
1S . These graphs are given in Fig.  

3(a) for the dimensionless stress T22h/P0, and in Figs. 3(b) and 3(c) for the dimensionless velocities 

v2μh/(P0c2) and v1μh/(P0c2), respectively. Under construction of these graphs it is assumed that 

300N  . It follows from these graphs that the numerical results approach a certain asymptote with  
*
1S , and, with x1/h, the convergence of the numerical results with respect to *

1S  requires an 

increase in the values of *
1S . In obtaining the numerical results, which will be discussed below, all  

the foregoing particularities relating to the convergence of the numerical results are taken into 

consideration and it is established that the case where *
1 5S   is quite sufficient for obtaining 
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(a) (b) 

 

(c) 

Fig. 3 Convergence of the results related to the stress T22h/P0 (a), and velocities v2μh/(P0c2) (b) and 

v1μh/(P0c2) (c) with respect to the integration interval ],[ *
1

*
1 SS   

 

 

verified results. At the same time, it should be noted that the foregoing convergence results can 

also be taken as validation of the algorithm and programs used. Unfortunately, we have not found 

any related results of other authors in order to compare with the present ones. Therefore validation 

of the present results can be proven with the convergence of the numerical results, with the 

consistency of the results with mechanical considerations and with the fact that the results obtained 

in the present paper which are related to Case 1 and Case 2 coincide with the corresponding ones 

obtained in the papers by Akbarov and Ismailov (2015a), Akbarov and Ismailov (2015b), 

respectively.  
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4.2 The influence of the moving of the oscillating load on the stress and velocities’ 
distributions 

 

First we recall some results obtained in Case 1 and Case 2 indicated in (30), i.e., obtained in the 

papers by Akbarov and Ismailov (2015a), Akbarov and Ismailov (2015b), respectively. Thus, 

according to the paper by Akbarov and Ismailov (2015a), in Case 1 the stress T22h/P0 and velocity 

v2μh/(P0c2) have their absolute maximum values at the point x1/h=0, however, the velocity 

v1μh/(P0c2) has its maximum at the point x1/h=(x1/h)*>0 and the values of  (x1/h)* depend on the 

problem parameters. Moreover, in the paper Akbarov and Ismailov (2015a) it was established that 

the stress T22h/P0 has its absolute maximum (the velocities v2μh/(P0c2) and v1μh/(P0c2) have their 

zeroth) with respect to the vibration phase ωt in the cases where ωt=(ωt)*+nπ and the values of 

(ωt)* are near to zero, but the velocities v2μh/(P0c2) and v1μh/(P0c2) have their absolute maximum 

(the stress T22h/P0 has its zeroth) with respect to the vibration phase ωt in the cases where 

ωt=(ωt)**+nπ and the values of (ωt)** are near to π/2. Taking these statements into consideration, 

below we will examine the influence of the simultaneous vibration and moving of the external 

load on the stress and velocities’ distributions in the cases where ωt=0 and ωt=π/2.  

Thus, taking the foregoing discussions into account, we consider the distribution of the stress 

T22h/P0 and velocities v2μh/(P0c2) and v1μh/(P0c2) with respect to x1/h, the graphs of which are 

given in Figs. 4(a), 4(b) and 4(c), respectively. Note that these graphs are constructed for various 

values of the ratio hd/h in the case where ω=50 hz. Moreover, note that under construction of the 

graphs related to the stress T22h/P0 (Fig. 4(a)) it is assumed that ωt=0, and under construction of 

the graphs related to the velocities v2μh/(P0c2) (Fig. 4(b)) and v1μh/(P0c2) (Fig. 4(c)) it is assumed 

that ωt=π/2. 

 

 

 
(a) 

Fig. 4 The influence of the moving velocity V/h of the oscillation load and of the fluid depth hd/h on 

the distribution of the stress T22h/P0 (a) under ωt=0, and velocities v2μh/(P0c2) (b) and v1μh/(P0c2) 

(c) under ωt=π/2 
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(b) 

 
(c) 

Fig. 4 Continued 

 

 

Now we consider the numerical results illustrating how the interaction between the moving and 

oscillation of the external load acts on the distributions under consideration. Consider the graphs 

given in Figs. 5-10 each of which simultaneously illustrate the studied distributions obtained in 

Case 1, Case 2 and Case 3 (30) for various values of the ratio hd/h. Note that the results given in 

Figs. 5 and 6 relate to the stress T22h/P0, however, the results given in Figs. 7 and 8 (in Figs. 9 and 

10) relate to the velocity v2μh/(P0c2) (to the velocity v1μh/(P0c2)). Moreover note that the graphs  
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(a) 

b 

Fig. 5 Distribution of the stress T22h/P0 in Case 1, in Case 2 and in Case 3 (30) under ω=50 hz in the 

cases where ωt=0 (a) and ωt=π/2 (b) 

 

 

grouped by the letter a (by the letter b) are constructed in the case where ωt=0 (in the case where 

ωt=π/2). Under construction of the graphs given in Figs. 5, 7 and 9 (in Figs. 6, 8 and 10) it is 

assumed V/h=0 and ω=50 hz in Case 1; V/h=50 hz and ω=0 in Case 2; and V/h=50 hz and ω=50 hz 

in Case 3 (V/h=0 and ω=100 hz in Case 1; V/h=100 hz and ω=0 in Case 2; and V/h=100 hz and 

ω=100 hz in Case 3), respectively.   

Thus, we analyze the foregoing results and begin with the Figs. 5 and 6, according to which, it 

can be concluded that the difference between the results obtained in Case 2 and in Case 3 is more 

significant than that obtained in Case 1 and in Case 3. In the case where ωt=0 (in the case where 

ωt=π/2) the absolute maximum values of the stress obtained in Case 1 and in Case 3 (in Case 2) 

are significantly greater than those obtained in Case 2 (in Case 1 and in Case 3). It also follows 

from the Figs. 5 and 6 that in Case 2 and in Case 3, the symmetry of the distribution of the stress 

T22h/P0 with respect to x1/h=0 is violated and this violation becomes more significant with  
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(a) 

 
(b) 

Fig. 6 Distribution indicated in Fig. 5 and obtained under ω=100 hz 

 

 

decreasing of the ratio hd/h, i.e., with decreasing of the fluid depth. Observation of the graphs show 

that the magnitude of this violation in Case 2 is significantly greater than in Case 3. At the same 

time, the violation is insignificant (is considerable) in Case 3 under ωt=0 (under ωt=π/2 

Consequently, according to the foregoing results, it can be concluded that the influence of the 

moving of the oscillation load on the stress distribution caused with this load in the case where 

ωt=π/2 is more significant than in the case where ωt=0. 

The analyses of the results given in Figs. 7 and 8 show that the foregoing discussion made for 
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(a) 

 
(b) 

Fig. 7 Distribution of the stress v2μh/(P0c2) in Case 1, in Case 2 and in Case 3 (30) under ω=50 hz in 

the cases where ωt=0 (a) and ωt=π/2 (b) 

 

 

the stress T22h/P0 can be repeated in the qualitative sense for the velocity v2μh/(P0c2). However, 

under this discussion ωt=0 must be replaced with ωt=π/2 and vise-versa. The results obtained for 

the stress T22h/P0 under ωt=0 (under ωt=π/2) are also obtained in the qualitative sense for the 

velocity v2μh/(P0c2) under ωt=π/2 (under ωt=0). Consequently, according to the results given in 

Figs. 7 and 8, it can be concluded that the influence of the moving of the oscillation load on the 

distribution of the velocity v2μh/(P0c2) caused with this load, in the case where ωt=0 is more 

significant than in the case where ωt=π/2.  

Now we consider the distribution related to the velocity v1μh/(P0c2) and given in Figs. 9 and 10.  
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(a) 

 
(b) 

Fig. 8 Distribution indicated in Fig. 7 and obtained under ω=100 hz 

 

 

We recall that this distribution is asymmetric in Case 1 and as follows from the Figs. 9 and 10 this 

asymmetry is violated in Case 2 and in Case 3. The magnitude of the violation in Case 2 is 

significant, however, in Case 3 the magnitude of the violation depends on the vibration phase. For 

instance, in the case where ωt=0, the magnitude of the asymmetry violation in Case 3 becomes 

more significant and considerable than in the case where ωt=π/2. Moreover, the results illustrated 

in Figs. 9 and 10 show that under ωt=π/2 (under ωt=0) the absolute values of the velocity 

v1μh/(P0c2) obtained in Case 1 and in Case 3 (in Case 2) are significantly greater than those 

obtained in Case 2 (in Case 1 and in Case 3). Consequently, the results show that the influence of 

the moving of the oscillation load on the distribution of the velocity v1μh/(P0c2) caused with this 

load, as well as on the distribution of the velocity v2μh/(P0c2), in the case where ωt=0, is more  
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(a) 

 
(b) 

Fig. 9 Distribution of the stress v1μh/(P0c2) in Case 1, in Case 2 and in Case 3 (30) under ω=50 hz in 

the cases where ωt=0 (a) and ωt=π/2 (b) 

 

 

significant than in the case where ωt=π/2.  

Thus, we can conclude that the influence of the moving of the oscillating load on the stress 

distribution (on the velocities’ distributions) caused with this load becomes considerable in the 

case where ωt=π/2 (in the case where ωt=0). More precisely, the foregoing conclusion can be 

formulated as follows: the influence of the moving of the oscillating load on the stress distribution 

(on the velocities’ distributions) caused with this load becomes considerable in the case where 

ωt=(ωt)**+nπ (in the case where ωt=(ωt)*+nπ).  

Taking the foregoing conclusion into consideration, now we consider the results which 

illustrate how an increase in the values of the moving velocity of the oscillating load acts on the  
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(a) 

 
(b) 

Fig. 10 Distribution indicated in Fig. 9 and obtained under ω=100 hz 

 

 

stress distribution (on the velocities’ distribution) in the case where ωt=π/2 (in the case where 

ωt=0). These results, obtained for the stress T22h/P0, and velocities v2μh/(P0c2) and v1μh/(P0c2) for 

various values of the moving velocity V/h in the case where ω=50 hz, are given in Figs. 11, 12 and 

13, respectively. In these figures, the graphs grouped by the letters a, b and c correspond to the 

cases where hd/h=2, 6 and 10, respectively.   

It follows from these results that an increase in the moving velocity of the oscillation load 

changes, significantly, the distributions under consideration, not only in the quantitative sense, but 

also in the qualitative sense. For instance, the symmetric (asymmetric) distribution of the stress  
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(a) (b) 

c 

(c) 

Fig. 11 The influence of the moving velocity of the oscillation load on the distribution of the stress 

T22h/P0 under ωt=π/2 in the cases where hd/h=2 (a), 6 (b) and 10 (c) 

 

 

T22h/P0 and velocity v2μh/(P0c2) (of the velocity v1μh/(P0c2)) with respect to x1/h=0 obtained in the 

case where V/h=0 becomes quasi-asymmetric (quasi-symmetric) with moving velocity V/h. 

Comparison of the results given through the graphs grouped by the letters a, b and c with each 

other show that the absolute maximum values of the stress T22h/P0 (of the velocities v2μh/(P0c2) 

and v1μh/(P0c2) decrease (increase) with the fluid depth, i.e., with the ratio hd/h.   

For estimation of the influence of the fluid viscosity on the considered distributions here we 

also consider some of the results obtained in the case where the fluid (in this case, the Glycerin) is 

modelled as inviscid. We consider the distribution of the stress T22h/P0 and the velocity v2μh/(P0c2) 

only, because, as noted in the papers by Akbarov and Ismailov (2015a) and Akbarov and Ismailov 

(2015b), the values of the velocity v1μh/(P0c2) obtained for the inviscid fluid case are not  
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(a) (b) 

 
(c) 

Fig. 12 The influence of the moving velocity of the oscillation load on the distribution of the velocity 

v2μh/(P0c2) under ωt=0 in the cases where hd/h=2 (a), 6 (b) and 10 (c) 

 

 

comparable with those obtained in the viscous fluid case.  

Thus, consider the graphs given in Figs. 14 and 15 which illustrate the distribution of the stress 

T22h/P0 and the velocity v2μh/(P0c2), respectively in the case where hd/h=2 and ω=50 hz. In these 

figures, the graphs grouped by the letters a and b are constructed in the cases where ωt=0 and 

ωt=π/2, respectively. According to the paper by Akbarov and Ismailov (2015), we recall that under 

V/h=0 in the inviscid fluid case, the value of (ωt)* (at which the stress has its absolute maximum) 

is equal to zero, however, the value of (ωt)** (at which the velocities have their absolute maxima) 

is equal to π/2. Moreover, we also recall that in the case where ωt=π/2+nπ (in the case where 

ωt=0+nπ) the values of the stress (the values of the velocities) are equal to zero.   

It follows from the results given in Fig. 14(a) (in Fig. 15(b)) and from comparison of these 

results with the corresponding ones given in Fig. 4(a) (in Fig. 4(b)) that the effect of the fluid  
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(a) (b) 

 
(c) 

Fig. 13 The influence of the moving velocity of the oscillation load on the distribution of the velocity 

v1μh/(P0c2) under ωt=0 in the cases where hd/h=2 (a), 6 (b) and 10 (c) 

 

 

viscosity on the influence of the motion of the oscillation load on the distribution of the stress (on 

the distribution of the velocity) has a mainly quantitative character in the case where ωt=0 (in the 

case where ωt=π/2). At the same time, it follows from the results given in Fig. 14(b) (Fig. 15(a)) 

and from comparison of these results with those given in Fig. 11(b) (in Fig. 12(a)) that the effect of 

the fluid viscosity on the influence of the motion of the oscillation load is significant not only in 

the quantitative sense, but also in the qualitative sense. Note that the stress and velocity given in 

Figs. 14(b) and 15(a), respectively in the inviscid fluid case appear only as a result of the load 

moving, and their absolute values increase with this motion. Moreover, note that in the inviscid 

fluid case, the distribution of the stress under ωt=π/2 and the distribution of the velocity under 

ωt=0 are exactly asymmetric with respect to x1/h=0. 

Now, we consider the results illustrating how the moving of the oscillating load acts on the 

dependence between the studied quantities and vibration phase ωt. Graphs of this dependence are  
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(a) (b) 

Fig. 14 Distribution of the stress T22h/P0 with respect to x1/h under ωt=0 for various values of the moving 

velocity of the oscillation load in the inviscid fluid case 

 

  
(a) (b) 

Fig. 15 Distribution of the velocity v2μh/(P0c2) with respect to x1/h under ωt=0 for various values of the 

moving velocity of the oscillation load in the inviscid fluid case 

 

 

given in Figs. 16, 17 and 18 for the stress T22h/P0, and velocities v2μh/(P0c2) and v1μh/(P0c2) 

respectively. Under construction of these graphs it is assumed that ω=50 hz and hd/h=2, and 

various values of the load motion velocity are examined. In these figures, the graphs grouped by 

the letter a (by the letter b) relate to the case where the values of the studied quantities are 

calculated at point x1/h=0 (at point x1/h=−20). Thus, it follows from Fig. 16 that the influence of 

the moving velocity of the oscillating load on the dependence of the stress on the vibration phase 

at point x1/h=0 is insignificant, but it is significant at point x1/h=−20. At the same time, the 

character of this dependence at the points under consideration, is the same. Moreover, Figs. 17 and 

18 show that the influence of the motion velocity of the oscillating load on the dependence 

between the velocities and vibration phase is significant not only at the point x1/h=−20, but also at  
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(a) (b) 

Fig. 16 Graphs of the dependence between the T22h/P0 and vibration phase ωt obtained for various values 

of the moving velocity of the oscillation load in the cases where x1/h=0 (a) and x1/h=−20 (b) 

 

  

(a) (b) 

Fig. 17 Graphs indicated in Fig. 16 and constructed for the velocity v2μh/(P0c2) 

 

 
the point x1/h=0. However, the character of this dependence obtained at point x1/h=0 is different 

from that obtained at point x1/h=−20. Consequently, we can conclude that the influence of the 

motion velocity of the oscillating load on the change of the studied quantities with respect to the 

vibration phase depends on the position of the point at which these quantities are calculated. 

This completes the consideration of the numerical results. 
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(a) (b) 

Fig. 18 Graphs indicated in Fig. 17 and constructed for the velocity v1μh/(P0c2) 

 

 

5. Conclusions 
 

Thus, in the present paper the dynamics of the oscillating moving load acting on the hydro-

elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall has been 

studied.  

The plane strain state in the plate is considered and the motion of the plate is described by 

utilizing the exact equations of elastodynamics. The corresponding plane-parallel flow of the fluid 

is described through the linearized Navier-Stokes equations. It is assumed that there is continuity 

of the force and velocity vectors of the constituents on the interface plane between the fluid and 

plate as well as impermeability conditions on the rigid wall. The corresponding boundary value 

problem is solved by employing the moving coordinate system and the exponential Fourier 

transformation with respect to the coordinate along the direction in which the plate lies. Originals 

of the sought values are determined numerically with the use of the algorithm and PC programs 

composed by the authors. Numerical results on the distribution of the stress and velocities with 

respect to the point of the interface plane are presented and discussed. According to these results 

and discussions, the following concrete conclusions can be drawn: 

- The influence of the motion of the oscillating load on the distribution of the stress and 

velocities depends on the vibration phase of the system; 

- In the vibration phases in which the studied quantities have their absolute maximum (denote it 

as “maximum” phase) under the corresponding time-harmonic load without moving, the 

influence of the moving of the oscillation load on the aforementioned distributions is 

insignificant; 

- In the vibration phases in which the studied quantities have their absolute minimum (denote it 

as “minimum” phase) under the corresponding time-harmonic load without moving, the 

influence of the moving of the oscillating load on the aforementioned distribution is significant 

not only in the quantitative sense, but also in the qualitative sense;  

- Under “maximum” phases, an increase in the values of the moving velocity of the oscillation 
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load causes an increase (a decrease) of the absolute maximum values of the stress (the 

velocities); 

- Under “minimum” phases, an increase in the values of the moving velocity of the oscillating 

load causes an increase of the absolute maximum values not only of the stress, but also of the 

velocities; 

- The motion of the oscillating load violates the symmetry and asymmetry of the studied 

quantities with respect to the loaded point which occurs under the corresponding time-harmonic 

loading without motion and this violation becomes more considerable in the “minimum” 

phases; and 

- The influence of the motion velocity of the oscillating load on the change of the studied 

quantities with respect to the vibration phase depends on the position of the point at which 

these quantities are calculated. 
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