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Abstract.  This paper addresses temperature-dependent nonlinear vibration and instability of embedded
functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic
medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear
deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of
Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to
pipe. Based on energy method and Hamilton’s principal, the governing equations are derived. Generalized
differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of
system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume
percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature
gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and
decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The
presented results indicate that the material in-homogeneity has a significant influence on the vibration and
instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition,
fluid velocity leads to divergence and flutter instabilities.

Keywords: nonlinear vibration; temperature-dependent; orthotropic pasternak medium; FG pipe; fluid-
nanoparticle mixture

1. Introduction

Functionally graded materials are used in modern technologies for structural components such
as those used in, nuclear, aircraft, space engineering and pressure vessels (Ng et al. 2001, Nguyen
and Thang 2015, Kim 2015). Therefore analysis of the static and dynamic behavior of FG beam,
plate and shell structures has been considered by many researchers in recent years.

The problem of dynamic behavior of plates and shells has attracted considerable attention in
recent years. Reddy et al. (1984) studied the effect of transverse shear deformation on deflection
and stresses of laminated composite plates subjected to uniformly distributed load using finite
element analyses. The non-linear dynamics and stability of simply supported, circular cylindrical
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shells containing inviscid, incompressible fluid flow was analyzed by Amabili et al. (2002). In
another work by Amabili (2003), large-amplitude vibrations of circular cylindrical shells subjected
to radial harmonic excitation in the spectral neighbourhood of the lowest resonances were
investigated. Karagiozis et al. (2005) investigated nonlinear vibrations of circular cylindrical
shells, empty or fluid-filled, clamped at both ends and subjected to a radial harmonic force
excitation. The dynamics of a circular cylindrical shell carrying a rigid disk on the top and
clamped at the base was investigated by Pellicano and Avramov (2007). Jansen (2008) used a
perturbation method to analyze the nonlinear vibration behaviour of imperfect general structures
under static preloading. Effect of geometric imperfections on non-linear stability of circular
cylindrical shells conveying fluid was studied by Amabili et al. (2009). Dynamic stiffness matrix
of an axisymmetric shell and response to harmonic distributed loads was presented by
Khadimallah et al. (2011). Khalili et al. (2012) studied closed-form formulation of three-
dimensional (3-D) refined higher-order shear deformation theory (RHOST) for the free vibration
analysis of simply supported-simply supported and clamped-clamped homogenous isotropic
circular cylindrical shells. Based on a meshless approach, postbuckling analysis of CNTR-FG
cylindrical panels under axial compression was investigated by Leiw et al. (2014).

Functionally graded materials (FGMs) are a new generation of composite materials in which
the microstructural details are spatially varied through nonuniform distribution of the
reinforcement phase. The concept of FGM can be utilized for the management of a material’s
microstructure so that the bending behavior of a plate structure made of such material can be
improved. These materials have found a wide range of applications in many industries (Shahba
and Rajasekaran 2012, Wattanasakulpong et al. 2012). An analytical method on active vibration
control of smart FG laminated cylindrical shells with thin piezoelectric layers was presented by
Sheng and Wang (2009a) based on Hamilton’s principle. Sheng and Wang (2009b) presented the
coupling equations to govern the electric potential and the displacements of the functionally
graded cylindrical shell with surface-bonded PZT piezoelectric layer, and subjected to moving
loads. Considering rotary, in-plane inertias, and fluid velocity potential, the dynamic
characteristics of fluid-conveying functionally graded materials (FGMs) cylindrical shells
subjected to dynamic mechanical and thermal loads were investigated by Sheng and Wang (2010).
A model for sigmoid FGM microplates based on the modified couple stress theory with first order
shear deformation was developed by Jung et al. (2014). Analysis of FG carbon nanotubes
reinforced plates and panels is investigated by many authors. A large deflection geometrically
nonlinear behaviour of carbon nanotube-reinforced functionally graded (CNTR-FG) cylindrical
panels under uniform point transverse mechanical loading was studied by Zhang et al. (2014a)
using the kp-Ritz method. Lei et al. (2014) presented a first-known dynamic stability analysis of
CNTR-FG cylindrical panels under static and periodic axial force by using the mesh-free kp-Ritz
method. They showed the effects of different boundary conditions and types of distributions of
carbon nanotubes. The effective material properties of resulting CNTR-FG panels are estimated by
employing an equivalent continuum model based on the Eshelby-Mori-Tanaka approach. The
analysis of flexural strength and free vibration of carbon nanotube reinforced composite
cylindrical panels was carried out by Zhang et al. (2014b) considering four types of distributions
of uniaxially aligned reinforcements. Based on a meshless approach, postbuckling analysis of
CNTR-FG cylindrical panels under axial compression was investigated by Leiw et al. (2014). The
effective material properties of CNTR-FG cylindrical panels are estimated through a
micromechanical model based on the extended rule of mixture.

In the present study, nonlinear vibration and instability of temperature-dependent FG pipes
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Fig. 1 Configurations of the FGM pipe resting on orthotropic elastic medium

resting on temperature-dependent orthotropic Pasternak medium are investigated. The FG pipe is
conveying viscous fluid. The nonlinear governing equations are obtained based on Hamilton's
principal along with Reddy shell theory. GDQM is applied for obtaining the frequency and critical
fluid velocity of the FG pipe. The effects of the mode numbers, nonlinearity, fluid velocity, volume
percent of nanoparticle in fluid, gradient index, Pasternak medium, temperature and boundary
conditions on the frequency and critical fluid velocity of the FG pipe are disused in detail.

2. Formulation
2.1 Functionally graded materials

A schematic configuration of a FG pipe surrounded by an orthotropic elastomeric temperature-
dependent medium is shown in Fig. 1. The FG pipe is often made from a mixture of two material
and the composition varies continuously and smoothly in the thickness direction. Herein, the outer
(z=h/2) and the inner (z=—h/2) surfaces of the FG pipe are zirconium oxide and titanium alloy,
respectively.

Mechanical properties of the FG pipe including Young’s modulus and mass density per unit
volume are assumed to vary continuously through the pipe thickness according to either a power
law distribution as (Reddy and Praveen 1998, Mirzavand and Eslami 2011)

E(2)=(E,-E)V. +E, 1)

p(2)=(p, = PV, + 1, )

in which the subscripts z and t represent the zirconium oxide and titanium alloy, respectively, and
the volume fraction V., may be given by

z 1)°
V.=|—+=1|, 020, 3
Ay o

where g is the gradient indices and takes only positive values. For g=0 and g=c0, the pipe is fully
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zirconium oxide and titanium alloy, respectively; whereas the composition of zirconium oxide and
titanium alloy is linear for g=1.

2.2 Basic equations

Based on Reddy shell theory, the displacement field can be expressed as (Reddy 1984)

3

u.(x,8,z,t)=u (x,0,t)+ zy (X, 6,t) —%(wx(x,e,t) +§W (x,@,t)),

3

47 0
u,(x,80,z,t)=v(x,6,t)+z X,0,1)—— X,0,1)+——w (Xx,0,1) |,
J(%,60,2,) = V(% 0.1) + 2y, )3h2[m( D )j

u, (x,6,z,t) =w(x,0,t), 4)

where (U, U, U;) denote the displacement components at an arbitrary point (x,6,z) in the pipe, and
(u,v,w) are the displacement of a material point at (x,d) on the mid-plane (i.e., z=0) of the pipe
along the x-, 6-, and z-directions, respectively; yy and y, are the rotations of the normal to the mid-
plane about #- and x- directions, respectively.

The von Karman strains associated with the above displacement field can be expressed in the
following form

Exx Exx Ex Exx Exx
Epp 539 ‘9;9 ‘9929 53@
Exo (= ‘939 + 2965 +2° 83‘9 +7° ‘939 , )
Ex (C,‘SZ giz gfz g)?z
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9)

where (ex, €g9) are the normal strain components and (y¢,, 7x, yx) are the shear strain components.
The constitutive equation for stresses ¢ and strains & matrix in thermal environment may be

written as follows

o] [CuT) CLT) © 0 0 (e, —a, AT
Ogo CZl(T ) C,, (T ) 0 0 0 Egp — AppAT
o, =l 0 0 c,T) o 0 K7a
o, 0 0 0 CuT) 0 |70
cw) | 0 0 0 0 Celm)| e

Noted that Cj; (i,j=1,2,...,6) and ayy, ag may be obtained using Egs. (1)-(3).

2.3 Energy method

(10)

The total potential energy, V, of the FG pipe is the sum of strain energy, U, kinetic energy, K,
and the work done by the elasomeric medium, W.
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The strain energy can be written as

h/2
= _-[on hi2 Owéxx T Opo€90 T Oxolxo T OxiVe T O'&}/&)dv

Combining of Egs. (5)-(10) and (11) yields
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where the stress resultant-displacement relations can be written as
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Substituting Egs. (5)-(10) into Egs. (13)-(16), the stress resultant-displacement relations can be

obtained as follow
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Furthermore, (NT,NJ,), (M7,M],) and (PI,Pj,) are thermal force and thermal moment

XX 1 XX 1

resultants, respectively, and are given by
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The kinetic energy of system may be written as
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The external work due to Pasternak medium and fluid can be written as
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2.4 Fluid flow work

Consider the flow of fluid in a FG pipe in which the flow is assumed to be axially symmetric,
Newtonian, laminar and fully developed. The basic momentum governing equation of the flow
simplifies to (Wang and Ni 2009)

o, Ve o P 10Ty _Tw | 0T

ot o r o0 r OX
where p, and P are fluid mass density and flow fluid pressure, respectively. The fluid force acted
on the FG pipe can be calculated from Eq. (33). Since the velocity and acceleration of the pipe and
fluid at the point of contact between them are equal (Wang and Ni 2009), we have

(33)

dw
vV, =—, 34
* = (34)
where
g=é+vxﬁ, (35)
dt ot OX

where v, is the mean flow velocity. In Eq. (33), shear stress (z) is dependent to viscosity s,
which can be expressed as follows

16v,
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Ve
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Finally, using Eqgs. (34)-(38) and combination with Eqg. (33), the fluid flow work may be written as
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Noted that in this section, the effective viscosity (,,) and density (p,, ) of the fluid-
nanoparticle may be calculated from mixture law as follows (Ghorbanpour Arani et al. 2016)

Pur=00, + (L=9) oy, (38)

@37)

Mt = Pty + L= P) s, (39)
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where pn, ps, un, s @nd ¢ are nanoparticle density, fluid density, nanoparticle viscosity, fluid
viscosity and volume fraction of nanoparticle in the fluid respectively.

2.5 Orthotropic Pasternak foundation

The external force of orthotropic Pasternak medium can be expressed as (Kutlu and Omurtag
012)

2 2 2
P =K, w-K,,| cos’ 02 ¥ +2cossin 0 N 0%
OX Roxo0 R°00
o*w o*w o*w “0)
—K,,| sin? @——2sin Ocosd +c0s’0—— |,
g OX Roxod R°00

where Ky, Kg: and Ky, are spring constant of Winkler type, shear constant in & and # directions,
respectively; angle 6 describes the local & direction of orthotropic foundation with respect to the
global x-axis of the pipe. Since the surrounding medium is relatively soft, the foundation stiffness
Kw may be expressed by (Shen and Zhang 2011, Kolahchi et al. 2015a)

— EO _ 2 -~
K = 4AL(1-v2)(2-c,)® [5 (27/1 +67, +5)9Xp( 271)]’ (41)
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H
S )
ES
Eo = 1Sy ”
=) (45)

where Eg, Vs, Hg are Young’s modulus, Poisson’s ratio and depth of the foundation, respectively. In
this paper, E; is assumed to be temperature-dependent while v; is assumed to be a constant.

2.6 Governing equations
The governing equations can be derived by Hamilton’s principal as follows

I;(&U + S — 3K)dt =0. (46)
Substituting Egs. (15) and (27) into Eq. (28) yields the following governing equations
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(48)
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Substituting Eqgs. (18) to (40) into Egs. (47) to (51), the governing equations can be written as

follows
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+H,,| — 24
22(3#(%0 RZ(’BGZD
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(59)

=1J

3. GDQM

There is a lot of numerical method to solve the initial-and/or boundary value problems which
occur in engineering domain. Some of the common numerical methods are finite element method
(FEM), Galerkin method, finite difference method (FDM), DQM and etc. FEM and FDM for
higher-order modes require to a great number of grid points. Therefore these solution methods for
all these points need to more CPU time, while the DQM has several benefits that are listed as
below (Kolahchi et al. 2015b, Kolahchi and Moniribidgoli 2016):

1. DQM is a powerful method which can be used to solve numerical problems in the analysis of

structural and dynamical systems.

2. The accuracy and convergence of the DQM is higher than FEM.

3. DQM is an accurate method for solution of nonlinear differential equations in approximation

of the derivatives.

4. This method can easily and exactly satisfy a variety of boundary conditions and require

much less formulation and programming effort.

5. Recently, DQM has been extended to handle irregular shaped.

Due to the above striking merits of the DQM, in recent years the method has become
increasingly popular in the numerical solution of problems in engineering and physical science. In
this method, the differential equations are changed into a first order algebraic equation by
employing appropriate weighting coefficients. Because weighting coefficients do not relate to any
special problem and only depend on the grid spacing. In other words, the partial derivatives of a
function (say w here) are approximated with respect to specific variables (say x and ), at a
discontinuous point in a defined domain as a set of linear weighting coefficients and the amount
represented by the function itself at that point and other points throughout the domain. The
approximation of the n and m™ derivatives function with respect to x and y, respectively may be
expressed in general form as (Abdollahian et al. 2013)
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NX
£70,0,)=> At (x,,6,),
k=1
Ny
fe(m)(xivgj) = Z B(m)i' f (Xi 1 6'|), (60)
I=1

N, Ny
fxg(n+m) (XHHJ) = Z Z A(n)ikB(m)jl f (Xk’0|)’

k=1 1=1

where Ny and Ny, denotes the number of points in x and @ directions, f(x, 6) is the function and Aj;,
B;i are the weighting coefficients defined as

AY; = &
(Xi _Xj)M(Xi) (61)

o, —__ @)
(6 —6,)M(6)

where M and P are Lagrangian operators defined as
NX
M (x;) =H(Xi —X;) =],

= (62)

P(9i)=f_g[(l9i —0;) i#].

The weighting coefficients for the second, third and fourth derivatives are determined via
matrix multiplication

N, Ny, N,y
A®); =ZA(l)ikA(l)kj, A =ZA(2)ikA(1)kj, AW = ZA(3)ikA(l)kj, 1, ]=12,..,N,,
k=1 k=1 =)
NG NG NG (63)
B®; = z BWiB®Yy, B®; = z B@BWy, BW; = z B®uB®Yy, i, 1=12,...,N,.
k=1 k=1 =)

There are many typical grids such as equally space, Chebyshev, Legendre and Chebyshev-
Gauss-Lobatto (Lobatto in short) grid points which are commonly used in the literature. For most
cases, the original Lobatto grid is the best choice among the four traditional non-uniform grids.
The stretched Lobatto grid with proper choice of stretching parameter can improve the accuracy of
numerical solution (Shu et al. 2001). However, the distribution of grid points in domain is
calculated by Chebyshev-Gauss-Lobatto polynomials as follows

X, = L{l—cos( 7(i-1) ﬂ
2 (N, -1)

(64)
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The solution of the motion equations can be assumed as follows:

u(x,d,t) =u,(x,6)e”, (65)
v(x,0,1) = v, (x,0)e”", (66)
w(x,0,t) = w,(x,0)e”", (67)
vy (X,0,1) =y, (X,0)e”, (68)
o (X%, 0,1) =y g0 (X,0)e™, (69)

where o= 4h /Lf and 121 /E are the dimensionless natural frequency and dimensionless
E P

time. Substituting Egs. (60) and (65)-(69) into the governing equations turns it into a set of
algebraic equations expressed as

A A, (ZN >.ku(xk,e)+ZA<1>.kw(xk,9 )ZA<2>mkw(xk,9)J A”(RZ ZA<1>kB<1>,.v(xk,9)

k=1 I=1

+ RZ Aiw(x,, 6;) + 2 B®iw(x,,6, )2 2 AD B iw(x,, 6, )J+ BMZ APy, (X, 0,)+

k=1 k=1 1=
N

X N(/
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pR—— 3h 3R’h

N, Ny N, Ny Ae
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k=1 I=1 k=1 1=l

Nx NH (70)
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N, N, N, N,
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Finally, the governing equations (i.e., Egs. (70)- (74)) in matrix form can be expressed as

[K. + Ky ]+[Clo+[M]e?][d]=[0],

171

(74)

(75)

where [d]=[u v w v, y,]"; [KL] and [KNL] are respectively, linear and nonlinear stiffness matrixes;
[C] is damp matrix and [M] is the mass matrix. For solving the Eq. (75) and reducing it to the
standard form of eigenvalue problem, it is convenient to rewrite Eq. (75) as the following first

order variable as

{z}=[l{z)

(76)
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in which the state vector Z and state matrix [A] are defined as

d, (0] [1]
Z:{dd} and [A]:L[M_l(KLJrKNL)] —[M*C] , (77)

where [0] and [I] are the zero and unitary matrices, respectively. However, the frequencies
obtained from the solution of Eq. (77) are complex due to the damping existed in the presence of
the viscous fluid flow. Hence, the results are containing two real and imaginary parts. The real part
is corresponding to the system damping, and the imaginary part representing the system natural
frequencies. This nonlinear equation can now be solved using a direct iterative process as follows:
« First, nonlinearity is ignored by taking Ky =0 to solve the eigenvalue problem expressed in
Eq. (77). This yields the linear eigenvalue and associated eigenvector. The eigenvector is then
scaled up so that the maximum transverse displacement of the pipe is equal to the maximum
eigenvector, i.e., the given vibration amplitude Wyay.
« Using linear w, [Ky_] could be evaluated. Eigenvalue problem is then solved by substituting
[Kno] into Eq. (7). This would give the nonlinear eigenvalue and the new eigenvector.
» The new nonlinear eigenvector is scaled up again and the above procedure is repeated
iteratively until the frequency values from the two subsequent iterations ‘r’ and ‘r+1’ satisfy the
prescribed convergence criteria as

‘a)wl — o

<&, (78)

a)l’

where g, is a small value number and in the present analysis it is taken to be 0.1%

4. Numerical results and discussion

A computer program is prepared for the numerical solution of vibration and stability of FG pipe
resting on orthotropic Pasternak foundation. Here, a mixture of zirconium oxide and titanium
alloy, referred to as ZrO2/Ti-6Al-4V for the FGM pipe is selected. The FGM properties, P, can be
expressed as nonlinear functions of environment temperature T as (Mirzavand and Eslami 2011)

P=P,(P,T"+1+PT+P,T° +P,T°), (79)

which T=Ty+AT and T,=300K (room temperature); Po, P, P;, P, P5 are temperature dependent
coefficients that are unique to the constituent materials. Typical values for Young’s modulus E,
Poison’s ratio v, and the coefficient of thermal expansion « of zirconium oxide and titanium alloy
are listed in Tablel. The elastomeric medium is made of Poly dimethylsiloxane (PDMS) which the
temperature-dependent material properties of which are assumed to be v=0.48 and
E=(3.22-0.0034T)GPa in which T=Ty+AT and T,=300K (room temperature) (Shen and Zhang,
2011). The FG pipes are considered with three kinds of boundary conditions: simply supported at
both ends (SS) or clamped (CC), and one end simply supported and another clamped (SC) (Xing et
al. 2013). In addition, the nanoparticle-fluid mixture is made of Al,Os-water suspension with
variant volume fractions of particles (Ghorbanpour Arani et al. 2016).
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Table 1 Temperature-dependent material coefficients for zirconium oxide and titanium alloy

Material properties Material Po P Py P, Ps
E (Pa) Zirconium oxide 244.27e+9 0 -1.371e-3  1.214e-6  -3.681le-10
Titanium alloy 122.56e+9 0 -4.586e-4 0 0
v Zirconium oxide 0.28 0 0 0 0
Titanium alloy 0.28 0 0 0 0
o (LK) Zir'con'ium oxide 12.766e-6 0 -1.491e-3  1.006e-5  -6.778e-11
Titanium alloy 7.5788e-6 0 6.638e-4  -3.147e6 0

Table 2 Accuracy of the GDQM for frequency of FG pipe

N Ny SS CC
7 0.7117 0.8272
7 11 0.9945 1.1518
15 1.1788 1.4124
17 1.1788 1.4124
7 0.9551 1.2834
1 11 1.1011 1.4136
15 1.1855 1.4262
17 1.1855 1.4262
7 0.9698 1.2942
15 11 1.1855 1.4266
15 1.1864 1.4273
17 1.1864 1.4273
7 1.0704 1.3068
17 11 1.1860 1.4270
15 1.1864 1.4273
17 1.1864 1.4273

4.1 Convergence of GDQM

The convergence and accuracy of the DQM in evaluating the excitation frequency of the FG
pipe is shown in Table 2. The results are prepared for different values of the DQM grid points. Fast
rate of convergence of the method are quite evident and it is found that fifteen DQ grid points can
yield accurate results.

4.2 Validation

In the absence of similar publications in the literature covering the same scope of the problem,
one can not directly validate the results found here. However, the present work could be partially
validated based on a simplified analysis suggested by Yang and Shen (2003), Pradyumna and
Bandyopadhyay (2008), Neves et al. (2013) and Fazzolari and Erasmo Carrera (2014). Hence,
vibration of clamped supported classical cylindrical shells is investigated where the temperature
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dependency of material, elastic medium and fluid are ignored. The geometrical parameters of the
shell are assumed are L/h=10 and R/L=100. Furthermore, the shell made up of Si3 (ceramic) and
SUS304 (metal) with E.=322.2715 GPa, v.=0.24, p.=2370 Kg/m3, E=207.7877 GPa, v,,=0.31 and

pn=8166 Kg/m®. Table 3 illustrates the first four dimensionless frequency (Q = wol?/p, /D, ) with

Dn=Enh*/[12(1-v,?)] for different FG gradient index. As can be seen, the obtained results are the
same as those expressed by Yang and Shen (2003), Pradyumna and Bandyopadhyay (2008), Neves
et al. (2013) and Fazzolari and Erasmo Carrera (2014), indicating validation of our work.

Noted that the little difference between present work and other references is due to the type of
applied theory and solution method. In the works of Yang and Shen (2003), Pradyumna and

Table 3 First four dimensionless frequency parameters of clamped FGM cylindrical shell for different FG
index

Mode Theory g
0 0.2 2 10 o

HSDT, Prady”m?z"‘ozgo)' Bandyopadhyay 7, 9513 60.0260 391457 33.3666 32.-274
HSDT, Fazzolari and Carrera (2014) 752498 61.3403 41.1511 35.6545 33.2433
1 HSDT, Yang and Shen (2003) 74518 57479 40750 35852 32.761
HSDT, Neves et al. (2013) 742634 60.0061 405259 351663 32.6108
HSDT, Neves et al. (2013) 745821 603431 40.8262 354229 32.8593
RSDT, Present work 747832 609912 40.8812 355512 32.1434
HSDT, Prady”m?é"‘o%réc)' Bandyopadhyay 140 cony 1138806 74.2915 63.2869 605546
HSDT, Fazzolari and Carrera (2014)  143.5110 116.9275 78.1359 67.5201 63.0894
» HSDT, Yang and Shen (2003) 144663 111717 78817 69.075 63.314
HSDT, Neves et al. (2013) 1416779 1143788 76.9725 66.6482 61.9329
HSDT, Neves et al. (2013) 142.4281 1152134 77.6639 67.1883 62.4886
RSDT, Present work 1432016 116.0127 78.0034 67.3936 63.0088
HSDT, Prady”m?go‘z%‘])' Bandyopadhyay 139 5550 1140066 743868 63.3668 60.6302
HSDT, Fazzolari and Carrera (2014) 143.6735 117.0744 78.2242 67.5946 63.1603
3 HSDT, Yang and Shen (2003) 145740 112531 79407 69.609 63.806
HSDT, Neves et al. (2013) 141.8485 1145495 77.0818 66.7332 62.0082
HSDT, Neves et al. (2013) 142.6024 1153665 77.7541 67.2689 62.5668
RSDT, Present work 1435908 116.6010 78.0582 67.4452 63.0245
HSDT, Prady“m?;"o%%")' Bandyopadhyay 95 £a66 1606235 104.7687 89.1970 85.1788
HSDT, Fazzolari and Carrera (2014)  201.6888 164.2966 109.5277 94.4779 88.3744
A HSDT, Yang and Shen (2003) 206.992 159.855 112.457 98.386 90.370
HSDT, Neves et al. (2013) 109.1566 160.7355 107.9484 93.3350 86.8160
HSDT, Neves et al. (2013) 200.3158 162.0337 108.9677 94.0923 86.6341

RSDT, Present work 201.2230 163.9014 109.1110 94.2046 87.9103
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Fig. 3 Effects of mode numbers on the dimension frequency (Re(€2)) versus dimension flow velocity

Bandyopadhyay (2008), Neves et al. (2013), Fazzolari and Erasmo Carrera (2014), the higher
order shear deformation theory (HSDT) and semi-analytical approach, HSDT and finite element
method, HSDT and radial basis functions, refined hierarchical kinematics (RHK) and Ritz method
are used, respectively while in the present study, the RSDT in conjunction with GDQM is applied.

4.3 Effect of different parameters

Figs. 2 and 3 show the dimensionless frequency (Im(Q2)) and damping (Re(Q2)) of FG pipe
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versus the dimensionless flow velocity (V" =/p, /C,, v,) for the first four modes of vibration,

respectively. Generally, the system is stable when the real part of the frequency remains zero and it
is unstable when the real and imaginary parts of the frequency become positive and zero,
respectively. It can be seen that the Im(Q) generally decreases with increasing V". For zero
frequency, FG pipe becomes unstable and the corresponding fluid velocity is called the critical
flow velocity. As can be seen, the critical fluid velocity correspond to the first mode is reached at
V'=1.508. This physically impalas that the pipe losses its stability due to the divergence via a
pitchfork bifurcation while the second, third and fourth modes are still stable. Thereafter, for the
fluid velocity within the range 1.508<V <2.352, the Re(Q) of the first mode is positive, which the
system becomes unstable. Afterwards, the Im(Q) of the first and second modes combines to each
other in the region of 2.432<V’<2.995. This physically implies a single coupled-mode between the
first and the second modes occurs which is unstable with flutter instability. Also, this phenomenon
may be observed in different modes for higher velocities. For example, a coupled-mode between
the second and the third modes takes place in the range of 3.015<V <3.558. Meanwhile, it should
be noted that the pipe becomes unstable at second, third and fourth modes when V™ =2.432,
V" =2.995 and V" =3.638 respectively.

Figs. 4 and 5 show the effect of gradient index on the dimensionless frequency (and damping of
FG pipe versus dimensionless flow velocity, respectively. With increasing flow velocity, system
stability decreases and became susceptible to buckling. It can be observed that, the Im(Q) o and
critical fluid velocity of system decrease with increasing gradient index. This decrease in
frequency and critical fluid velocity with power law index is attributed to the fact that zirconium
oxide has larger stiffness than that of titanium alloy. When the value of power-law index is zero,
FGM pipe consists of only zirconium oxide. Thus, frequency and critical fluid velocity values are
maximum when g is zero. With increase of g value, the more metal materials are included in the
FGM pipe. It is worth mentioning that the results this figure, exhibiting increase of frequency and
critical fluid velocity with lower value of g, i.e., for zirconium oxide, which is lighter than the
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Fig. 4 Effects of gradient index on the dimension frequency (Im(Q)) versus dimension flow velocity
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Fig. 6 Effects of elastic medium on the dimension frequency (Im(€2)) versus dimension flow velocity

metal, show that both mass and stiffness are contributing factors in increasing the value of
frequency. Noted that FGMs are ultrahigh temperature-resistant materials suitable for aerospace
applications such as aircraft, space vehicles, barrier coating and propulsion systems (Fazzolari and
Carrera 2014). Hence, presented results indicate that the FG gradient index has a significant
influence on the vibration and instability behaviors of the FGM pipe and should therefore be
considered in its optimum design.

The dimensionless frequency and damping of the FG pipe are demonstrated in Figs. 6 and 7 for
different temperature-dependent mediums. In this figure, four cases are considered as follows:
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Fig. 8 Effects of boundary conditions on the dimension frequency (Im(2)) versus dimension flow velocity

Case 1. K, =0N/m’ K, .=0N/mK, =0 N/m— indicating without elastic medium.
Case2: K, =414 N/m’,K . =0 N/m,K,, =0N/m— indicating Winkler medium.
Case3: K, =414 N/m’, Ky: =414 N/m,K,, =414 N/m —indicating Pasternak medium.
Ky =414 N/m* K , =414 N/m,

Case4: "
Kg” =4.14 N/m, 0 = 45°

—indicating orthotropic Pasternak medium.
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As can be seen, considering elastic medium increases frequency and critical fluid velocity of
the FG pipe. It is due to the fact that considering elastic medium leads to stiffer structure.
Furthermore, the effect of the Pasternak-type is higher than the Winkler-type on the frequency and
critical fluid velocity of the FG pipe. It is perhaps due to the fact that the Winkler-type is capable
to describe just normal load of the elastic medium while the Pasternak-type describes both
transverse shear and normal loads of the elastic medium. However, we can conclude that the
elastic foundation is an important parameter for increasing the stiffness and frequency and
delaying in the instability and buckling of pipe.
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The effect of the different boundary conditions on the dimensionless frequency and damping of
the FG pipe is depicted in Figs. 8 and 9. As can be seen, the frequency and critical fluid velocity of
the FG pipe are maximum and minimum for CC and SS boundary conditions, respectively. It is
because that considering CC boundary condition leads harder structure.

Figs. 10 and 11 show the dimensionless frequency and damping of the FG pipe for different
temperature gradients. It can be also found that the frequency and critical fluid velocity of the FG
pipe decrease with increasing temperature which is due to the higher stiffness of FG pipe with
lower temperature. Noted that the effect of temperature on the frequency and critical fluid velocity
with respect to other parameters presented in this section is lower.
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Fig. 12 Effects of fluid viscosity on the dimension frequency (Im(Q)) versus dimension flow velocity
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Fig. 14 Effects of nanoparticle volume percent on the dimension frequency (Im(Q2)) versus
dimension flow velocity

Figs. 12 and 13 illustrate the effect of fluid viscosity on the Im(Q) and Re(Q) of FG pipe versus
dimensionless fluid velocity, respectively. The results indicate that viscous fluid increases
frequency very little. However, during the flow of a fluid through a FG pipe, the effect of fluid
viscosity on the vibration and instability of structure may be ignored. It should be noted that, this
is the same as observations made by Wang and Ni (2009).

For presenting the effect of nanoparticle volume fraction in fluid, Figs. 14 and 15 are plotted.
As can be seen, with increasing volume fraction of nanoparticles in fluid, the frequency and
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Fig. 16 Nonlinear to linear frequency versus maximum amplitude for different FG gradient
index and boundary conditions

critical fluid velocity increase. It is due to the fact that with increasing volume fraction of
nanoparticles in fluid, the velocity of fluid decreases and consequently the stability of system
increases.

Nonlinear to linear frequency (Qn/Q.) versus maximum amplitude (Wn.x) for different FG
gradient index and boundary conditions is demonstrated in Fig. 16. As can be seen, increasing
amplitude, the effect of nonlinear terms in motion equations increases. Furthermore, with
increasing FG gradient index, the frequency ratio increases. Meanwhile, considering CC boundary
condition decreases frequency ratio. In conclusion, considering pipe with FG gradient index zero
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and CC boundary condition, the frequency ratio decreases and consequently, the nonlinear
frequency reaches to linear one. However, in the mentioned case, the effect of nonlinear terms in
motion equations may be ignored.

Fig. 17 illustrates the Qy /€ versus Wy for the first three modes of vibration. It can be seen
that with increasing mode numbers, the frequency ratio decreases. Hence, the effect of nonlinear
terms in motion equations in higher modes can be eliminated.

5. Conclusions

Temperature-dependent nonlinear vibration and instability of FG pipe conveying fluid-
nanoparticel mixture were presented in this study. The FG pipe was located in a temperature-
dependent elastic medium which was simulated by Pasternak foundation. Based on Reddy shell
theory, the motion equations were derived using energy method and Hamilton's principle. GDQM
is applied for obtaining the frequency and critical fluid velocity of system so that the effects of the
mode numbers, internal fluid velocity, volume percent of nanoparticle in fluid, gradient index,
Pasternak medium, temperature, nonlinear terms in motion equations and boundary conditions
were considered. Results indicate that fluid velocity plays an important role on the instability of
pipe since it can lead to divergence and flutter instabilities. Considering Pasternak medium
increases frequency and critical fluid velocity of the FG pipe. Furthermore, with increasing
gradient index and decreasing volume percent of nanoparticle in fluid, the frequency and critical
fluid velocity of the FG pipe decrease. In addition, the frequency and critical fluid velocity of the
FG pipe decrease with increasing temperature gradient. Meanwhile, considering CC boundary
condition, higher vibration modes and decreasing FG gradient index, the effect of nonlinear terms
in motion equations may be ignored. The results of this study were validated as far as possible by
Shen (2003), Pradyumna and Bandyopadhyay (2008), Neves et al. (2013), Fazzolari and Erasmo
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Carrera (2014). Finally, it is hoped that the results presented in this paper would be helpful for
study and design of pipes conveying fluid with applications in oil pipelines, heat exchangers,
nuclear reactor components and pump discharge lines.
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