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Abstract.  The effects of nanotechnology and smartness on the buckling reduction of pipes are the main 

contributions of present work. For this ends, the pipe is simulated with classical piezoelectric polymeric 

cylindrical shell reinforced by armchair double walled boron nitride nanotubes (DWBNNTs), The structure 

is subjected to combined electro-thermo-mechanical loads. The surrounding elastic foundation is modeled 

with a novel model namely as orthotropic nonhomogeneous Pasternak medium. Using representative 

volume element (RVE) based on micromechanical modeling, mechanical, electrical and thermal 

characteristics of the equivalent composite are determined. Employing nonlinear strains-displacements and 

stress-strain relations as well as the charge equation for coupling of electrical and mechanical fields, the 

governing equations are derived based on Hamilton's principal. Based on differential quadrature method 

(DQM), the buckling load of pipe is calculated. The influences of electrical and thermal loads, geometrical 

parameters of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer are 

investigated on the buckling of pipe. Results showed that the generated Φ improved sensor and actuator 

applications in several process industries, because it increases the stability of structure. Furthermore, using 

nanotechnology in reinforcing the pipe, the buckling load of structure increases. 
 

Keywords:  nanotechnology; smartness; pipe; piezoelectric; orthotropic nonhomogeneous Pasternak 

medium 

 
 
1. Introduction 
 

Composites offer advantageous characteristics of different materials with qualities that none of 

the constituents possess. Nanocomposites developed in recent years, have received much attention 

amongst researchers due to provision of new properties and exploiting unique synergism between 

materials. Polyvinylidene fluoride (PVDF) is an ideal piezoelectric matrix due to characteristics 

including flexibility in thermoplastic conversion techniques, excellent dimensional stability, 

abrasion and corrosion resistance, high strength and capability of maintaining its mechanical 

properties at elevated temperature. It has therefore found multiple applications in nanocomposites 

in a wide range of industries including oil and gas pipelines, petrochemical, wire and cable, 

electronics, automotive and construction. Boron nitride nanotubes (BNNTs) used as the matrix 

reinforcers, apart from having high mechanical, electrical and chemical properties, present more 
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resistant to oxidation than other conventional nano-reinforcers such as carbon nanotubes (CNTs), 

Hence, they are used for high temperature applications (MerhariHybrid 2002, Schwartz 2002, Yu 

et al. 2006, Vang 2006, Kotsilkova 2007, Brockmann 2009),  

Elastic buckling of a thin cylindrical shell was studied by Karam et al. (1995), Agrawal and 

Sobel (1977) investigated the weight compressions of cylindrical shells with various stiffness 

under axial compression. Buckling of cylindrical shells with metal foam cores was presented by 

Hutchinson and He (2000), Elastic stability of cylindrical shell with an elastic core under axial 

compression was investigated by Ghorbanpour Arani et al. (2007) using energy method. Ye et al. 

(2011), however, investigated buckling of a thin-walled cylindrical shell with foam core under 

axial compression. Junger and Mass (1952) studied coupled vibrations of fluid-filled cylindrical 

shells based on shear shell theory and discussed the free vibration of orthotropic cylindrical shells 

filled partially or completely with an incompressible, non-viscous fluid. The static instability of a 

nanobeam with geometrical imperfections embedded in elastic foundation was investigated by 

Mohammadi et al. (2014), Using semi-analytical finite strip method, the buckling behavior of 

laminated composite deep as well as thick shells of revolution under follower forces which remain 

normal to the shell was investigated by Khayat et al. (2016), 

With respect to developmental works on buckling of the cylindrical shells, it should be noted 

that none of the research mentioned above, have considered smart composites and their specific 

characteristics. Micromechanical modeling which has the potential to take into account the 

electrical load was used by Tan and Tong (2001) for studying an imperfect textile composite. 

However, neither the matrix nor the reinforced material used in the composite employed in this 

work was smart.  Buckling of BNNTs reinforced piezoelectric polymeric composites subjected to 

combined electro-thermo-mechanical loadings were investigated by Salehi-Khojin and Jalili 

(2008), Ghorbanpour Arani et al. (2011a, 2011b) carried out a stress analysis in cylinder and 

spheres made from piezoelectric materials using analytical method and ANSYS software. Rahmani 

et al. (2010) investigated free vibration response of composite sandwich cylindrical shells with 

flexible core. Buckling and vibration analysis of plate/shell structures via a smoothed quadrilateral 

flat shell element with in-plane rotations were studied by Nguyen-Van (2011), Electro-thermo-

mechanical nonlinear buckling of a piezoelectric polymeric cylindrical shell reinforced by 

DWBNNTs was studied by Mosallaie Barzoki et al. (2013), Ghorbanpour Arani et al. (2015) 

investigated nonlinear vibration and instability of a fluid conveying smart composite microtube 

based on the modified couple stress theory and Timoshenko beam model. Viscous fluid induced 

nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-

reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed 

piezoelectric layers on the top and bottom surfaces of the cylindrical shell were presented by 

Rabani Bidgoli (2015), An accurate buckling analysis for piezoelectric fiber-reinforced composite 

(PFRC) cylindrical shells subjected to combined loads comprising compression, external voltage 

and thermal load was presented by Sun et al. (2016), Buckling response of piezoelectric 

cylindrical composite panels reinforced with carbon nano-tubes subjected to axial load was studied 

by Nasihatgozar et al. (2016), 

None of the above mentioned works have not considered both nanotechnology and smartness 

effects on the buckling analysis of pipes. However, in the present work, nonlinear buckling of 

piezoelectric pipes embedded in an orthotropic nonhomogeneous Pasternak medium is studied 

considering nanotechnology and smartness effects. The pipe is reinforced with DWBNNTs and 

polarized in axial direction. The influences of electrical and thermal loads, geometrical parameters 

of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer on the 
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buckling of pipe are investigated. 

 

 

2. Classical shell theory 
 

Based on classical shell model, the displacement components of an arbitrary point anywhere 

are written as: (Brush and Almroth 1975) 
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where, U,V,W are the displacements of a arbitrary point of the shell in the axial, circumferential 

and radial directions, respectively, u,v,w are the displacements of points on the middle surface of 

the shell and z is the distance of the arbitrary point of the shell from the middle surface. 

Substituting Eq. (1) into the total strain tensor (Brush and Almroth 1975), the mechanical and 

thermal strains may be written as follows 
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where (αx, αθ) and ΔT are thermal expansion and temperature gradient, respectively. The 

mechanical strain components εxx, εθθ, εxθ 
at an arbitrary point of the shell are related to the middle 

surface strains εx,0, εθ,0, εxθ,0 and changes in the curvature and torsion of the middle surface kx, kθ, 

kxθ as follows (Mosallaie Barzoki et al. 2013) 
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3. Constitutive equations of piezoelectric materials 
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In a piezoelectric material, application of an electric field to it will cause a strain proportional to 

the mechanical field strength, and vice versa. The constitutive equations for stresses σ and strains ε 

matrix on the mechanical side, as well as flux density D and field strength E matrix on the 

electrostatic side, may be arbitrarily combined as follows (Ghorbanpour Arani et al. 2015) 

,)( kikcijiji EeTC    (4) 

,)( kmkcijmjm ETeD    (5) 

where Cij, eij and ∈ii (i,j=1,...6) are elastic, piezoelectric and dielectric constants, respectively. 

Also, the electric field may be written in term of electric potential as 
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The transformed elastic constants are defined as 
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here, θ is the angle between the global and local cylindrical co-ordinates, which corresponds to the 

orientation angle between DWBNNTs and the main axis of the matrix.  

Based on classical shell theory, the constitute equations of (4) and (5) may be simplified as 

(9) 
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Based on micro-mechanical model, the mechanical, thermal and electrical properties of the 

composite as shown in Eq. (9) are (Mosallaie Barzoki et al. 2013) 
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Superscripts r and m refer to the reinforced and matrix components of the composite, 

respectively. ρ is also the volume percent of the DWBNNTs in matrix.   

 

 

4. Energy method 
 

The total potential energy of the pipe is the sum of strain energy, U and the work W done by the 

applied load. The strain energy is 
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Strain energy by combining Eq. (3) and Eq. (20) may be written as 
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where the internal forces and moments may be expressed as 
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where 
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Substituting Eq. (3) into Eqs. (22) and (23) yields 
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The work done by the nonhomogenous orthotropic elastic medium can be expressed as 

936



 

 

 

 

 

 

Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects... 

(Kolahchi et al. 2015a, Mikhasev 2014)
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where angle α describes the local ξ direction of orthotropic foundation with respect to the global x-

xis of the plate and kW is spring constant of elastic medium which may be written as  

  ,exp1 2

0 xkkW  

 

(28) 

where k0=620×10-10 N/nm3 and χ>1, 0<β<1. Applying Hamilton’s principle and rearranging the 

governing equations in mechanical displacement directions (u,v and w) as well as electric potential 

(ϕ), yield the following four coupled electro-thermo-mechanical equations 
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5. DQM 
 

Here, DQM is used for solution. It is due to the fact that DQM is a powerful method which can 

be used to solve numerical problems in the analysis of structural and dynamical systems. In 
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addition, accuracy and convergence of the DQM is higher than finite element method (FEM), Due 

to the above striking merits of the DQM, in recent years the method has become increasingly 

popular in the numerical solution of problems in engineering and physical science. Hence, DQM is 

employed which in essence approximates the partial derivative of a function, with respect to a 

spatial variable at a given discrete point, as a weighted linear sum of the function values at all 

discrete points chosen in the solution domain of the spatial variable. Let F be a function 

representing u, v, w and ϕ with respect to variables x and θ in the following domain of (0<x<L, 

0<θ<2π) having Nx×Nθ 
grid points along these variables. The nth-order partial derivative of F(x, θ) 

with respect to x, the mth-order partial derivative of F(x, θ) with respect to θ and the (n+m)th-order 

partial derivative of F(x, θ) with respect to both x and θ may be expressed discretely at the point 

(xi, θi) as (Kolahchi et al. 2015b) 
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A more superior choice for the positions of the grid points is Chebyshev polynomials as  
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where 
)(n

ikA  and 
)(m

jlB  are the weighting coefficients associated with nth-order partial derivative  

of F(x, θ) with respect to x at the discrete point xi and mth-order derivative with respect to θ at θi, 

respectively which may be calculated as 
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where 
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For higher order derivatives we have 
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However, applying below dimensionless parameters 
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and using DQM, the governing equations may be written as 
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According to DQM, mechanical and electrical boundary conditions may be written as 
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Applying these boundary conditions into the Eqs. (45)-(48) yields the following coupled 

governing equations in matrix form as 
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where KL, KNL and KG are linear stiffness matrix, nonlinear stiffness matrix and geometric matrix, 

respectively. Also, db 
and ddrepresent boundary and domain points expressed as 

     
  xiNNiiNiNiNiiiiib Niwwvuwwvud ,...,1},,,,,,,,,{ )1(12111   

 

     
  1,...,2,,...,1},,,{ )1(   xxijjiijijd NjNiwvud  

(51) 

Finally, based on an iterative method and eigenvalue problem, the buckling load of structure 

may be obtained. 

 

 

6. Numerical result 
 

Mechanical, electrical and thermal characteristics of PVDF as matrix and DWBNNTs as 
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In order to obtain the buckling load for considered pipe embedded in the elastic foundation, 

DQM was used in conjunction with a program being written in MATLAB, where the effect of 

smartness, volume percent of DWBNNTs, orientation angle of DWBNNTs and elastic medium 

were investigated.  

 

6.1 Validation 
 
To demonstrate the validity of this work, present results are compared with those reported by 

(Mosallaie Barzoki et al. 2013), For this purpose, ignoring the orthotropic nonhomogeneous 

Pasternak medium, the non-dimensional buckling load of pipe with clamped supported boundary 

condition is shown in Fig. 1. As can be seen, present results are in good agreement with those 

reported by (Mosallaie Barzoki et al. 2013), indicating validation of present work. 

 

6.2 Convergence of DQM 
 

The effect of the grid point number in DQM on the buckling of the pipe is demonstrated in Fig. 

 

 

 

Fig. 1 validation of present work with (Mosallaie Barzoki et al. 2013) 
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Fig. 2 Convergence and accuracy of DQM 

 

 

Fig. 3 Electric potential distribution for first mode 

 

 

2. As can be seen, fast rate of convergence of the method are quite evident and it is found that 15 

DQ grid points can yield accurate results. 

 
6.3 Smartness effect 

 
Figs. 3-5 illustrate the smartness effect due to pipe piezoelectricity at different modes. In this 

figures, the electric potential is plotted against the dimensionless length (x/L) and dimensionless 

angle (θ/θm) where θm=2π. It is worth to mention that the electric potential has distribution while  
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Fig. 4 Electric potential distribution for second mode 

 

 

Fig. 5 Electric potential distribution for third mode 

 

 

the electrical boundary condition is assumed zero in Eq. (49), This result shows the specific 

characteristic of piezoelectric material which can use from these materials in sensors and actuators. 

Furthermore, the electrical boundary conditions at the first and last ends of pipe are satisfied. 

Noted that according to Eq. (49), the electric potential is zero in both ends of the pipe (i.e., axial 

polarization). 

 

6.4 Nanotechnology effect 
 

Figs. 6 and 7 demonstrate the nanotechnology effect in buckling of pipes. For this end, the pipe  
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Fig. 6 Volume percent of DWBNNTs effects on the buckling load of pipe 

 

 

Fig. 7 Orientation angle of DWBNNTs effects on the buckling load of pipe 

 

 

is reinforced with DWBNNTs and the effect of volume percent and orientation angle of them in 

pipe on the buckling load are shown. From Fig. 6, it can be found that with increasing volume 

percent of DWBNNTs in pipe, the buckling load increases. It is due to the fact that with increasing 

volume percent of DWBNNTs in pipe, the stiffness of structure increases. As can be seen from 

Fig. 7, with increasing the orientation angle of DWBNNTs, the buckling load decreases. Hence,  
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Fig. 8 Elastic medium effects on the buckling load of pipe 

 

 

maximum and minimum buckling load are related to θ=0 and θ=π/2, respectively. It is due to the 

fact that in θ=0, the polarization of pipe and DWBNNTs are in a one direction and consequently, 

the stiffness of structure is maximum. Hence, the DWBNNT volume fraction and orientation angle 

in pipe are effective controlling parameters for bucking of the pipes. 

 

6.5 Orthotropic nonhomogeneous elastic medium effect 
 

Fig. 8 illustrate the influence of elastic medium, including Winkler and Pasternak modules, on 

the buckling load, along the length of the pipe. Obviously, the elastic medium type has a 

significant effect on bucking of the pipe, since the buckling load of the system in the case of 

without elastic medium are lower than other cases. It can be concluded that the buckling load for 

orthotropic nonhomogeneous Pasternak model is higher than nonhomogeneous Winkler one. The 

above results are reasonable, since the orthotropic nonhomogeneous Pasternak medium considers 

not only the normal stresses (i.e., nonhomogeneous Winkler foundation) but also the transverse 

shear deformation and continuity among the spring elements. 

 

 

7. Conclusions 
 

Pipes have vast applications in many engineering fields such as chemical, mechanical 

aerospace, civil, naval, and nuclear industries. However, in this paper, the nanotechnology and 

smartness effects were studied on the buckling behaviors of embedded pipes. The surrounding 

elastic medium is simulated with a very novel model namely as orthotropic nonhomogeneous 

Pasternak medium. Using DQM, the derived governing equations were discretized and solved to 

obtain the buckling load with clamped-clamped boundary condition. Numerical results indicate 

that the electric potential has distribution while the electrical boundary condition is assumed zero. 
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This result shows the specific characteristic of piezoelectric material which can use from these 

materials in sensors and actuators. Furthermore, it can be found that with increasing volume 

percent of DWBNNTs in pipe, the buckling load increases. Also, maximum and minimum 

buckling load are related to θ=0 and θ=π/2, respectively. Obviously, the elastic medium type has a 

significant effect on the bucking load of the pipe since in the case of neglecting elastic foundation, 

the buckling load decreases especially at the end of the pipe. It is hoped that the obtained results 

might be useful for the design and improvement of smart devices applying nanotechnology. 
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