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Abstract.  Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely 

elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. 

Temperature-dependent mechanical properties are considered for the matrix material only. In addition to 

analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the 

plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature 

by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for 

the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. 

significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be 

correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from 

large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem 

can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises 

stress in the matrix would be largely overestimated. 
 

Keywords:  plasticity; finite element analysis; temperature-dependent material properties; composite 

circular disc; elastic inclusion 

 
 
1. Introduction 
 

The in-plane behaviors of discs with temperature-dependent properties under thermal loading 

have attracted much attention in the past years due to their scientific and industrial importance 

(Argeso and Eraslan 2008, Alexandrov et al. 2014, Alexandrov et al. 2014). Although the plasticity 

problems of solid or annular discs with temperature-independent mechanical properties, based on 

the plane strain or plane stress assumption, have long been studied under various types of loading 

conditions (Lubliner 1990), recent analytical results on the discs under thermal loading have shed 

new light along this line of research (Alexandrov and Alexandrova 2001, Alexandrov and 

Chikanova 2000, Alexandrov et al. 2012). In particular, analytical solutions for the plane-stress 

problem of the composite disc with temperature-dependent mechanical properties are still lacking, 

even though effects of temperature-dependent properties have long been recognized (Noda 1991). 

In addition, effects of thickness variations on the elastoplastic behavior of annular discs have been 
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studied (Wang et al. 2013). As for material‟s capability to dissipate energy done by external load, 

Wang and Ko (2015) reported the energy dissipation properties of a composite beam-column 

connector due to viscoelastic and plastic deformation processes. 

For the plasticity problems of the composite disc, Guven (1997), Guven and Altay (1998) 

studied rotating discs for the rigid inclusion case with the analytical approach. Furthermore, The 

elastic-plastic problems of the rotating disc with rigid inclusion have also been alanyzed 

(Parmaksizoglu and Guven 1998). Eraslan and Akis (2003) studied the elastic-plastic deformation 

of a rotating disk subjected to radial temperature gradient. Aluminum composite discs under 

thermal loading have been studied (Altan et al. 2008, Topcu et al. 2008). In addition, under 

temperature effects, shrink fit problems with solid inclusion have been investigated (Bengeri and 

Mack 1994, Mack and Bengeri 1994, Mack and Plochl 2000). Ball (1995) studied the elastic-

plastic problem of fastener holes under cold expansion. None of the above studies consider 

temperature-dependent mechanical properties. In addition, the composite disc problem is related to 

functionally graded materials problem since the composite disc represents a special type of 

distributions of mechanical properties in terms of space coordinates (Krenev et al. 2015, Kwon et 

al. 1994, Lutz et al. 1996, Reddy and Chin 1998). 

Comparisons between the finite element analysis and experiment have been performed and 

reasonable agreements have been verified (Luxmoore et al. 1977, Sayman and Arman 2006). It is 

known that the plane stress elastoplastic problems may encounter numerical difficulties (Jetteur 

1986, Kleiber and Kowalczyk 1996, Triantafyllou and Koumousis 2012, Valoroso and Rosati 

2009, Simo and Taylor 1986). In this work, we adopt the mature finite element method to 

numerically study the plastic behavior of the composite disc in two and three dimensions to serve 

as reference data for future analytical solutions on such problem. 

 

 

2. Theoretical and numerical aspects 
 

The problem statement of the mechanics problem studied here is as follows. A purely elastic 

inclusion is embedded in an elastoplastic, circular matrix to form the concentric, composite disc. 

The outer rim of the composite disc is mechanically fixed (i.e., clamped), and a uniform 

temperature difference is statically applied to the whole disc, as the thermal loading. No dynamics 

or thermal diffusion is considered here. The physical properties of the purely elastic inclusion are 

assumed to be temperature independent, but those of the elastoplastic matrix are temperature 

dependent (mainly the yield stress temperature dependence). The 2D problems, including the 

plane-stress and plane-strain problems, and the 3D problems, including a cylinder and thin plate, 

are numerically solved to investigate their plastic behaviors. For the 3D cylinder case, the outer 

circumferential surface is fixed along the three orthogonal coordinates, as well as the top and 

bottom flat surface. For the 3D disc case, only the outer circumferential surface is fixed along the 

three orthogonal coordinates. For the plane stress case, the fixed boundary condition on the outer 

rim only provides constraints along the two orthogonal coordinates, while the plane strain case 

requires zero displacements on the outer rim along all three orthogonal coordinates. Both of the 3D 

cases are numerically solved with the axisymmetric assumption. The inclusion-matrix interface is 

assumed to be perfectly bonded. 

Finite element analysis was conducted here to investigate the abovementioned 2D and 3D 

problems. Changing the thickness of the 3D models may „force‟ them behave like the plane-stress 

or plane strain problem. In other words, the 3D cylinder may behave similar to the plane strain 
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disc when the cross section of the cylinder is far away from its ends. The 3D thin plate, termed as 

the 3D disc in this work, may not behave like the 2D plane stress disc, due to deformation and 

stress along the z direction being different in the inclusion and matrix, which are not explicitly 

analysed in the plane problem. Boundary conditions used in the plane-stress case and 3D disc case 

are different. The displacements along three orthogonal coordinates are set to zero at the outer rim 

of the 3D disc, while only two in-plane displacements are set to be zero for the plane stress case. 

One of the aims of the paper is to numerically demonstrate the similarities and differences among 

the four problems, i.e., the plane stress, plane strain, 3D disc and 3D cylinder problem, with the 

chosen boundary conditions. 

The three-dimensional von Mises criterion requires stresses (ij) satisfy the following equation 

with the tensile yield stress y on the yield surface (Lubliner 1990). 

     
0 ymisesF   (1)

 

where the yield function is denoted by F, and the von Mises stress is defined as follows in terms of

 deviatoric stress tensor sij, or its second invariant. 

     
ijijijmises sssJ

2

3
)(3 2   (2) 

     
ijijkkijij ss 

3

1
  (3) 

Here ij is the Kronector delta function, and the Einstein summation rule for the indices is applied. 

For the 2D plane-stress problem above yield condition can be expressed in terms of the radial and 

hoop stress, as follows.  

     

222
yrr     (4) 

Local effective plastic strain can be obtained from plastic strain by 

     

p
ij

p
ijpe  

3

2
  (5)

 

and the energy dissipation density due to plastic deformation is calculated as follows. 

     

p
ijijpD    (6)

 

Our finite element models are shown in Fig. 1. A specific geometry with the inner radius a0=0.3 

m and outer radius b0=1 m is studied, where the subscript 0 indicates the undeformed state of the 

composite disc. The thickness of the 3D disc, as shown in Fig. 1(b), is 0.1 m, and the length of the 

3D cylinder, as shown in Fig. 1(c), is 10 m. In other words, the aspect ratio between thickness (or 

length) and radius is 10 for the 3D disc (or 3D cylinder).  

In Figs. 1 (b) and (c), the color indicates the mesh size distribution. For the 3D disc, mesh size 

is distributed between 0.00675 and 0.0112 m among the colors, and for the 3D cylinder, mesh size 

between 0.0788 and 0.109 m. Smaller mesh size, compared to the dimensions of the model, 

ensures numerical accuracy. Since the 3D problems are solved based on the axisymmetric 

assumption, there are about 2600 triangular quadratic elements, and about 66000 numbers of 
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(a) 2D disc (b) 3D disc (c) 3D cylinder 

Fig. 1 Models that are analyzed in this work 

 

 

degrees of freedom (D.O.F.), with additional about 220000 internal D.O.F. for plasticity, used in 

the calculations. For 2D problems, about 22000 triangular quadratic elements, and about 90000 

numbers of degrees of freedom (with additional about 600000 internal D.O.F. for plasticity) were 

used in the calculations. We deliberately chose different number of elements in the 2D and 3D 

cases to test their numerical accuracies. In all of the models, the interface between inclusion and 

matrix is assumed to be perfectly bonded in this study.  

Our finite element calculations were performed with COMSOL (2015), which follows the 

algorithm proposed by Simo and Taylor (1986) to solve the plasticity problem. The implicit static 

solver, multifrontal massively parallel solver (MUMPS), was chosen to solve algebraic equation 

systems. 

 As for the temperature-dependent material properties of the matrix, we assume it is an elastic-

perfectly plastic isotropic, homogeneous material with temperature-dependent properties. As 

suggested by Aegeso and Eraslan (2008), the dimensionless, temperature functions, f(T), fE(T), 

f(T) and f(T), for a high-strength low-alloy steel the temperature difference is in the range 

0≤T<400°C can be expressed as follows. Here the subscripts , E,  and  denote yield stress, 

Young‟s modulus, Poisson‟s ratio and linear thermal expansion coefficient, respectively. The below 

four functions are dimensionless quantities since the numeric coefficients contain units to cancel 

units from the T or T2 terms. 

)1630/ln(600
1)(

T

T
Tf




            (7) 

)1100/ln(2000
1)(

T

T
TfE






 
 

       (8) 

274 105.2105.21)( TTTfv               (9) 

274 1014.21056.21)( TTTf  
             (10) 
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where the temperature difference T is in °C and it is the difference between processing 

temperature and the reference (i.e., room) temperature which is 20°C. Also, at the reference 

temperature, the Young‟s modulus, yield stress, Poisson‟s ratio and linear thermal expansion 

coefficient of the matrix material are assumed to be E0=200 GPa, σ0=410 MPa, v0=0.3, and 

γ0=11.7×10-6 per °C, respectively. Hence, the Young‟s modulus Em(T)=E0 fE(T), m(T)=0 

f(T), m(T)= f(T), m(T)=0 f(T) for the matrix, indicated by subscript m. For the purely 

elastic inclusion, indicated by subscript i, all of its material properties are temperature 

independent, and we assume the inclusion Young‟s modulus Ei=Ei0, the inclusion Poisson‟s ratio 

i=0.28, the inclusion linear thermal expansion coefficient i=i0. The reference Young‟s modulus 

and linear thermal expansion coefficient of the inclusion are 411×109 Pa and 50×10-6 per °C, 

evalues were chosen to represent a ceramic material for the inclusion. Note that changing  would 

affect both Young‟s modulus and thermal expansion simultaneously. As for the density of the two 

materials, m=7900 for the steel matrix and i=5000 kg/m3 for the ceramic inclusion were chosen. 

It is noted that the densities may also be function of temperature, but in the present analysis we 

assume they are constant. Since it is impossible to set the inclusion to be rigid in the finite element 

calculations, it is needed to numerically test if the chosen inclusion‟s yield strength is large enough 

to avoid any plasticity. In this study, we have verified that the inclusion is not yielded in the all the 

cases studied here.   

 
 
3. Results and discussion 
 

3.1 Temperature-dependent material properties 
 
Fig. 2 shows the dimensionless, temperature dependent functions for the yield stress, Young‟s 

modulus, Poisson‟s ratio and linear thermal expansion coefficient. It can be seen that the Poisson‟s 

 

 

 

Fig. 2 Temperature-dependent functions to describe the changes of the material properties with temperature 
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ratio and thermal expansion coefficient are monotonically increasing functions with small slopes. 

Young‟s modulus is a slightly decreasing function. Only the yield stress shows strong temperature 

dependence, Hence, in this work, we only report the effects of the yield stress temperature 

dependence. It is observed in many cases that the involvement of other temperature dependent 

functions do not significantly alter the results reported here. 

 

3.2 Two-dimensional analysis–plane strain 
 

For =10, i.e., Ei/E0=20.55 and i/0=42.7, the von Mises stress distribution along the radius in 

the plane strain circular disc under various uniform temperature loading is shown in Fig. 3(a). 

Since Ei>E0, the inclusion is an elastically harder phase than the matrix at the reference 

temperature. In addition, the inclusion has more thermal expansion because of a larger i. It can be 

seen that when T=20°C, the matrix is fully plastically yielded. Hence, the global plastic collapse 

temperature for the disc is Tp=20°C. It is noted that Tp is a function of mechanical properties of 

the disc and its geometry. Furthermore, the disc exhibits the elastic irreversible temperature Te, 

defined as initial yield occurs in the matrix, is about 1.5°C (determined by finer parametric 

analysis, not shown in the figure). The spatial distribution of the von Mises stress in the disc when 

T=20°C is shown in Fig. 3(b). The uniform stress in the matrix indicates all matrix is yielded. In 

addition, after multiplication of a scale factor of 17.5, the expanding deformation of inclusion can 

be seen (brown color region, compared to the undeformed region indicated by a ¼  circle curve of 

the radius of 0.3). We remark that in all of our calculations deformation is assumed to be 

infinitesimal. Since the outer rim is fixed, the disc cannot expand freely, hence stress arises from 

thermal expansion of each phase, as well as the expanding competition between the inclusion and 

matrix. In addition, from (a), all curves do not show numerical oscillation, indicating the plane 

strain problem has superior numerical stability, as oppose to the plane stress problem discussed in 

the next section. 

 

3.3 Two-dimensional analysis–plane stress 
 

With all parameters that are the same as the plane strain case discussed in the previous section, 

the plane stress results are shown in Figs. 4 (a) and (b) for the von Mises stress under various 

 

 

  
(a) Mises stress vs. radial position (b) Mises stress contour and deformation at T=20°C 

Fig. 3 Results from the plane strain composite disc 
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(a) Mises stress vs. radius (b) Mises stress contour and deformation at T=5°C 

Fig. 4 Results from the plane stress composite disc 

 

 

temperature loading and its spatial distribution, respectively. The expanding deformation of the 

inclusion was multiplied with a scale factor of 67.4. The elastic irreversible temperature Te of the 

disc is determined to be about 2°C, determined by finer parametric analysis (not shown in the 

figure). Due to numerical difficulties, as discussed by Jetteur (1986), Kleiber and Kowalczyk 

(1996), the global plastic collapse of the plane stress temperature Tp cannot be accurately 

determined. Our numerical results show Tp is greater than 10°C; this can be viewed as a lower 

bound. The numerical difficulties can also be observed from the small changes in the plastic zone 

in the matrix between T=9°C and T=10°C. Therefore, it is strongly needed to have analytical 

solutions for the plane stress problem for benchmark testing on numerical results. 

 

3.4 Three-dimensional analysis–long cylinder 
 

It is known that long cylinder can be modeled as the plane strain disc for the cross section of 

the cylinder not close to its ends. Indeed, when using the 3D cylinder model to calculate the =10 

case, we obtain the identical results as shown in Fig. 3(a), hence not repeatedly reported here. The 

fixed boundary condition used in the 3D cylinder case is consistent with the fixed boundary 

condition in the plane-strain case, hence their results are consistent. When =0.1, i.e., Ei/E0=0.21 

and i/0=0.43, the von Mises stress of the cylinder at its middle cross section (i.e., z=5 m cross 

section) is shown in Fig. 5. Since Ei<E0, the inclusion is an elastically softer phase than the matrix 

at the reference temperature. By calculating the temperature loading T up to 200°C and 

monitoring the stress distribution along the radius in the cross section, as shown in Fig. 3(a), the 

elastic irreversible temperature Te and global plastic collapse temperature Tp can be identified to 

be about 50 and 180°C, respectively. These values are significantly larger than the values reported 

in the previous sections for the plane problems due to different . The spatial distribution of the 

von Mises distribution in the cylinder when T=100°C is shown in Fig. 5(b) with color in units of 

Pa. We remark that when inclusion has smaller Young‟s modulus and thermal expansion 

coefficient than those of the matrix, the radius of the inclusion would become smaller than that of 
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(a) von Mises stress vs. radial position on the middle cross section (b) von Mises stress distribution and 

deformation at T=100°C 

Fig. 5 Results from the 3D cylinder with axisymmetric assumption 

 

 

the undeformed state under uniform heating. Global plastic collapse temperature can be easily 

calculated by the methodology presented here no matter the inclusion is an elastically hard or soft 

phase. Furthermore, the plane strain and 3D cylinder modeling would give rise to similar results.  

 

3.5 Three-dimensional analysis – thin disc 
 

With all parameters are the same as the 3D cylinder case, Fig. 6 shows the results of the 3D 

disc case with =10, same as the previous plane problems studied. The von Mises stress at the 

middle plane, i.e., height z=0.05 m, half of the thickness, is plotted against radius in Fig. 6(a). Due 

to large deformation around the inclusion-matrix interface, numerical calculations failed to find 

converged solutions after T = 16°C in the 3D disc case. The global plastic collapse temperature 

was not able to be determined, and T=16°C can be considered as its lower bound. The elastic 

irreversible temperature in the 3D disc case was found to be similar to that found in the plane 

stress problem, i.e., Te~2°C. In Fig. 6 (b), the expanding deformation of the inclusion can be seen 

after magnified with a scale factor of 22.8. 

When =1 (Ei/E0=2.1 and i/0=4.3), Fig. 7 shows the results of the 3D disc case, i.e., three-

dimensional thin plate. The inclusion is a mildly elastically harder phase. From the von Mises 

stress distribution along the radius at various temperature loading, as shown in Fig. 6(a), the elastic 

irreversible temperature and global plastic collapse temperature are about 30°C and 60°C, 

respectively. The spatial distribution of the von Mises distribution in the 3D disc when T=30°C is 

shown in Fig. 6(b), and its deformation is magnified for better viewing with a scale factor of 395. 

In addition to global plastic collapse, one may define a local plastic collapse due to significant 

stress variations near the inclusion-matrix interface. The need of introducing the concept of local 

plastic collapse is for 2D plane stress analysis since it cannot model the pile up, along the Z 

direction, phenomenon near the interface. As can be seen in Fig. 6(b), under the thermal loading, 

the disc expands along the Z direction, i.e., thickness direction, significantly from the 
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(a) von Mises stress vs. radial position at middle plane of 

the plate 

(b) von Mises stress and deformation at 

T=16°C 

Fig. 6 Three-dimensional thin disc model with the axisymmetric assumption for =10. 

 

 
 

(a) von Mises stress vs. radial position at middle plane of 

the plate 

(b) von Mises stress and deformation at 

T=30°C 

Fig. 7 Three-dimensional thin disc model with the axisymmetric assumption for =1 

 

 

axisymmetric analysis. Therefore, in the 2D analysis, significant pile up may set a limitation on the 

validity of the analytical solutions of the plane stress problem, as a result of local plastic collapse. 

The principle stress distributions of the 3D disc with =1 are shown in Fig. 8 for the thermal 

loading Tp=60°C, the global plastic collapse temperature. The principle stresses are more 

heterogeneous distributed near the inclusion-matrix interface. 

To further examine the effects of , defined as =Ei/Ei0=i/i0, Figs. 9 (a) and (b) show the von 

Mises stress distribution along the radius for =0.1 and =0.01, respectively. The inclusions are an  
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(a) First principle stress (b) Second principle stress (c) Third principle stress 

Fig. 8 Principle stresses of the 3D disc with =1 

 

  

(a) for =0.1 (b) for =0.01 

Fig. 9 Three-dimensional thin disc model with the axisymmetric assumption 

 

 

elastically weaker phase. When decreasing , one reduces the Young‟s modulus and thermal 

expansion coefficient of the inclusion, hence the mechanical and thermal resistance from inclusion 

becomes weaker. When =0.1, Te=50~60°C and Tp=70~80°C. When =0.01, Te=40~50°C and 

Tp~80°C. The level of the stresses in the matrix of the two  cases is similar, but very different in 

the inclusion due to its weakness. Therefore, weak inclusions play a minor role in the stress 

distribution in the matrix. In addition, for all three  cases studied here, there is a significant stress 

drop near the outer rim of the 3D disc, which is not seen in the plane stress results. Since, in the 

3D disc, only the circumferential surface on the outer rim is fixed, the effective stress may be 

strongly affected by the local deformation along the Z direction (thickness direction). The strange 

tail behaviour in the von Mises stress vs. radius plot is due to the fixed boundary condition used in 

the 3D disc is different from that in the plane stress case. In the 3D disc, the fixed boundary 

condition on the outer rim sets zero displacement along the three orthogonal coordinates, while in  
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Fig. 10 Effects of temperature-dependent material properties for the 3D disc with =1 and T=40 °C 

 

 

the plane stress, only the two in-plane displacements are set to be zero.     

With the chosen parameters used in the finite element calculations for =1, Fig. 10 shows the 

Mises stress distribution along the radius for the temperature-dependent and temperature-

independent material properties under a given temperature difference loading (T=40°C). Since 

the yield stress in the temperature dependent case is largely reduced at high temperature, the Mises 

stress is expected to be smaller than that for the temperature independent case. In other words, 

analysis based on the temperature independent model always overestimates the capacity of the 

materials, which leads to non-conservative design. We remark that, in Figs. 6-10, von Mises stress 

distribution showing a strange behavior near the outer rim of the disc is due to the fixed boundary 

condition that set zero displacements along three orthogonal coordinates. The deformation near the 

outer rim is not uniform along the z axis under the fixed boundary condition in the 3D disc case. 

 

 

4. Conclusions 
 

Based on our numerical results from the composite disc, when material and geometric 

parameters are chosen to be the same, the plane and 3D solutions show similar results in terms of 

von Mises stress distribution, elastic-irreversible temperature and plastic collapse temperature. In 

our 3D disc case, von Mises stress distribution is significantly different from the plane stress case 

because of the fixed boundary condition setting zero displacement along the three coordinates. For 

the elastically hard inclusion, the plane stress and 3D disc case may encounter numerical 

difficulties due to local plastic collapse, i.e., large deformation, at the inclusion-matrix interface. 

Since the plane stress assumption does not consider stress in the z direction, it may not be able to 

correctly model the composite disc when pile up is significant. In addition, considerations of 

temperature-dependent mechanical properties are crucial to obtain realistic results when under 

temperature loading. 
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