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Abstract.  The main objective of the present paper is to study the effect of the yield criterion on the 

magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic 

incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The 

boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer 

surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys 

quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner 

surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and 

plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity 

factor does not depend on the yield criterion but the plastic work rate intensity factor does. 
 

Keywords:  strain rate intensity factor; plastic work rate intensity factor; generalised yield criterion; 

axisymmetric flow 

 
 
1. Introduction 
 

The strain rate intensity factor has been introduced for isotropic incompressible rigid perfectly 

plastic material in Alexandrov and Richmond (2001). This factor is the coefficient of the leading 

singular term in a series expansion of the equivalent strain rate (quadratic invariant of the strain 

rate tensor) in the vicinity of maximum friction surfaces. In the case of isotropic incompressible 

rigid perfectly plastic materials the definition for maximum friction surfaces is that the friction 

stress at sliding is equal to the shear yield stress. The aforementioned series is singular. In 

particular, the equivalent strain rate approaches infinity near the maximum friction surface and the 

strain rate intensity factor controls the magnitude of the equivalent strain rate in a narrow region 

near the surface. On the other hand, it is known that plastic deformation is one of the main 

contributory mechanisms responsible for hard layer generation in the vicinity of frictional 

interfaces (Griffiths 1987). This is in qualitative agreement with the asymptotic behaviour of the 

equivalent strain rate found in Alexandrov and Richmond (2001). Hard layers are often generated 
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in the vicinity of frictional interfaces in metal forming processes (Murai et al. 2003, Kajino and 
Asakawa 2006, Trunina and Kokovkhin 2008, Alexandrov et al. 2015). Such layers affect the 
performance of structures and machine parts under service conditions (Griffiths and Furze 1987, 
Warren and Guo 2005, Kajino and Asakawa 2006, Choi 2010). Several approaches to relate the 
strain rate intensity factor and properties of hard layers in the vicinity of frictional interfaces have 
been proposed in the literature (see, for example, Alexandrov and Lyamina 2006, Alexandrov and 
Goldstein 2015). In order to further develop these approaches, it is necessary to reveal the effect of 
constitutive equations on the magnitude of the strain rate intensity factor. In particular, the concept 
of the strain rate intensity factor has been extended to plastically anisotropic materials in 
Alexandrov and Jeng (2013). Then, it has been shown in Alexandrov and Mustafa (2014) that 
plastic anisotropy has a significant effect on the magnitude of the strain rate intensity factor in 
plane strain compression of a strip between parallel platens. In Alexandrov and Mustafa (2014), 
the plastic work rate intensity factor has been introduced.  

In the case of isotropic incompressible rigid perfectly plastic materials, available solutions for 
the strain rate intensity factor are restricted to plane strain and axisymmetric problems 
(Alexandrov 2009). The yield criterion is immaterial in the case of plane strain problems (all 
possible yield criteria reduce to the same plane strain yield criterion). The available expressions for 
the strain rate intensity factor in axisymmetric flow are for Tresca’s and Mises’ yield criteria. 
These expressions have been derived from the solutions proposed in Shield (1955) and Spencer 
(1965). Note that Shield (1955) has adopted quite a general yield criterion. However, this general 
solution has not been used for calculating the strain rate intensity factor. In the present paper, the 
solution given in Spencer (1965) is extended to the yield criterion proposed in Hosford (1972). 
This criterion includes both the von Mises and Tresca yield criteria as particular cases. It is shown 
that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate 
intensity factor does.  

 
 

2. Statement of the problem 
 

 The boundary value problem considered here consists of an axisymmetric deformation of a  
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rigid perfectly plastic tube on a rigid fibre (Fig. 1). The length of both the fibre and tube is 2L.  
It is convenient to introduce a cylindrical coordinate system (r,θ,z) such that the z-axis 

coincides with the axis of symmetry of the flow and the plane z=0 is the plane of symmetry. Then, 
it is sufficient to consider the region 0≤z≤L. The outer radius of the tube is defined by the equation 
r=b, and its inner radius as well as the radius of the fibre by the equation r=a. The constitutive 
equations for the tube are the yield criterion proposed in Hosford (1972) and its associated flow 
rule. The yield criterion reads 

  
     

1

1 2 2 3 1 3
02

nn n n     
 

  

     
   (1) 

where σ1, σ2 and σ3 are the principal stresses, n and σ0 are material constants. In particular, σ0 is the 
yield stress in tension and n can vary in the range 1≤n≤∞. Equation (1) reduces to Tresca’s yield 
criterion if n=1 or n→∞ and to Mises’ yield criterion if n=2. With no loss of generality it has been 
assumed that 

  1 2 3    .  (2) 

The associated flow rule reads 

  
       

   

1 1 1 1

1 1 2 1 3 2 2 3 1 2

1 1

3 2 3 1 3

, ,
n n n n

n n

   

 

             
      

           

     
  (3) 

where ξ1, ξ2 and ξ3 are the principal strain rates and λ is a non-negative multiplier. The equation of 
incompressibility is a consequence of Eq. (3). Eqs. (1) and (3) should be supplemented with the 
equilibrium equations. In the case under consideration, the latter reduce to 

  0, 0h rr rz rr rz h zz rz

r r z r r z z r

      
       

     
        

.           (4) 

Here σh is the hydrostatic stress and τrr, τθθ, τzz, and τrz are the deviatoric stress components in the 
cylindrical coordinate system. The other deviatoric stress components vanish.  

The boundary conditions imposed on the shear stress are 

  0rz             (5) 

for r=b and 

  rz k   (6) 

for r=a. Here k is the shear yield stress. The boundary condition (6) expresses the maximum 
friction law. Therefore, according to the general theory (Alexandrov and Richmond, 2001) the 
velocity field is singular in the vicinity of the surface r=a. It follows from Eqs. (1) and (3) that 

  0

11 2n n
k







.  (7) 

The exact stress boundary conditions at the ends of the tube are replaced with an approximate 
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condition of the form 

  0
b

zz z L
a

rdr


 .           (8) 

Here σzz is the axial stress, σzz=σh+τzz. The condition (8) is approximately equivalent to the 
condition that σzz=0 at z=L. The exact boundary condition σrz=0 at z=L is ignored.  

The boundary conditions imposed on the radial velocity, ur, are 

  0ru             (9) 

for r=a and 

  ru U             (10) 

for r=b. The exact velocity boundary condition at the plane of symmetry is replaced with an 
approximate condition of the form 

  
0

0
b

z z
a

u rdr


 .        (11) 

Here uz is the axial velocity. The average pressure p (Fig. 1) can be found from the solution by 
means of 

  
0

1 L

rr r b
p dz

L 
   .        (12) 

Here σrr is the radial stress, σrr=σh+τrr. 
In the case under consideration the strain rate intensity factor, D, is defined by the following 

equation (Alexandrov and Richmond 2001) 

  
1

eq

D
o

r a r a

      
   (13) 

as r→a. Here ξeq  is the equivalent strain rate defined as 

   2 2 2
1 2 3

2

3eq       .  (14) 

It is also possible to introduce the plastic work rate intensity factor, ω, by (Alexandrov and 
Mustafa 2014) 

  
1

W o
r a r a

      


 (15) 

as r→a. Here W is the plastic work rate defined as 

  1 1 2 2 3 3W         .  (16) 
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3. Solution 
 

The solution of Spencer (1965) suggests that the radial velocity should be of the form 

   ru Ug r    (17) 

where g (r) is an arbitrary function of r. Using Eq. (17) the boundary conditions (9) and (10) can 
be transformed to 

  0g   (18) 

for r=a and 

  1g   (19) 

for r=b. It follows from Eq. (17) that the radial and circumferential strain rates are 

  , .r r
rr

u dg u g
U U

r dr r r


     
     (20) 

The axial strain rate is found from the incompressibility equation ξzz=−ξrr−ξθθ. Substituting Eq. 
(20) into this equation leads to 

  z
zz

u dg g
U

z dr r

       
 .  (21) 

Integrating this equation gives 

   zu dg g
z f r

U dr r
    
 

  (22) 

where f (r) is an arbitrary function of r. Using Eqs. (17) and (22) the shear strain rate in the 
cylindrical system of coordinates is determined as 

  
 1

2 2
r z

rz

d rgu u U d df
z

z r dr rdr dr


               
.  (23) 

Assume that 

  2    (24) 

where σθθ=σh+τθθ is the circumferential stress. This assumption should be verified a posteriori. Let 
ψ be the angle the σ1 principal stress direction makes with the direction of r. Then 

  
2

tan 2 rz

rr zz





 
.  (25) 

The model under consideration is coaxial (i.e., the principal stress and strain rate directions 
coincide). Therefore 

  
2

tan 2 rz

rr zz





 
. (26) 
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Substituting Eqs. (20)-(22) into Eq. (26) results in 

  
  1

tan 2 2
d rgd df dg g

z
dr rdr dr dr r

           
   

 .  (27) 

The solution of Spencer (1965) suggests that ψ is independent of z. It is possible if and only if 
  12d rg dr rA  where A1 is constant. The general solution of this equation is 

  1
1 2g A r A r    (28) 

where A2 is a constant of integration. Eqs. (18), (19) and (28) combine to give 

     
2

1 22 2 2 2
,

b ba
A A

b a b a
  

 
. (29) 

Substituting Eq. (29) into Eq. (28) leads to 

   
2

2 2

b a
g r

rb a

 
    

.  (30) 

Using this equation it is possible to transform Eq. (27) to 

  
 
 
2 2 2

2 2
tan 2

3

r a b df

drb r a





 . (31) 

Eqs. (25) and (31) combine to give 

  
 
 
2 2 2

2 2

2
.

3
rz

rr zz

r a b df

drb r a




 


 
  (32) 

Substituting Eq. (30) into Eqs. (20), (21) and (23) leads to 

      
2 2

2 22 2 2 2 2 2

2
1 , 1 , , .

2rr zz rz

Ub a Ub a Ub U df

r r drb a b a b a

   
               

      (33)  

The principal stresses σ1 and σ3 are related to the (r,z) stress components according to the 
equations 

  cos2 , cos2 , sin2rr zz rzq q q             (34) 

where 

  1 3 1 3, 0
2 2

q
 

  
    .  (35) 

Analogously 

 
         1 3 1 3 1 3 1 3 1 3cos2 , cos2 , sin 2 .

2 2 2 2 2rr zz rz

    
    

         
        (36) 
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The direction of flow dictates that τrz≥0 (Fig. 1). Moreover, it is reasonable to assume that σzz>σrr. 
Then, it follows from Eqs. (34) and (35) that 

  
4 2
 

  .  (37) 

It follows from Eq. (24) that ξ2=ξθθ and then from Eq. (36) that 

  
 1 3

2 2

cos2 .rr zz rr zz
 

 


     
  

  (38) 

Substituting Eq. (3) into Eq. (38) and using Eqs. (24) and (33) result in 

  
 
 

     
   

1 1 12 2

2 2 1 1

2 2 cos23
n n n

n n

q q qr a

r a q q

  

 

        
       

 

 

    

   
.  (39) 

Eqs. (1), (24) and (35) combine to give 

  
     

1

0

2

2

nn n n
q q q      

 
  

    
 . (40) 

Assuming that q is independent of z and substituting Eq. (34) into Eq. (4) lead to 

  
   cos2 sin 2cos2 sin 2

0, 0
d q d qq q

r dr r z dr r

   
     

 
      

. (41) 

These equations are compatible if 

   0
0

B r Bz



          and          
0

r  



   (42) 

where B is constant whereas B0(r) and μ (r) are arbitrary functions of r. The second equation in Eq. 
(42) is also compatible with both Eqs. (39) and (40). Substituting Eq. (42) into Eq. (41) yields 

  
     00

0 0

cos 2 cos 2 sin 2 sin 2
0,

d q r q d qdB q
B

dr dr r dr r

      


      .  (43) 

Integrating the second equation in Eq. (43) gives 

  1

0

sin 2

2

q Br B

r
  




  (44) 

where B1 is a constant of integration. Taking into account Eqs. (1), (7), (34), (35) and (37) the 
boundary conditions (5) and (6) can be rewritten as 

  
2


   (45) 

for r=b and 
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4


   (46) 

for r=a. Equations (44) and (45) combine to give B1=Bb2/2. Then, Eq. (44) becomes 

  
2

0

sin 2

2

q B b
r

r

 
   

 




. (47) 

Moreover, q=k at r=a. Therefore, it follows from Eqs. (7), (46) and (47) that 

  
 1 2 2

2

1 2n n

a
B

b a


 
.  (48) 

 Substituting Eqs. (42) and (47) into Eqs. (39) and (40) yields 

  
 
 

   
 
   

1 12 2 1 2 2

1
2 22 2

1 12 2 2 2 2 2

2 sin 2 2
cos2

2 sin 23

2 sin 2 2 sin 2

n nn n

n

n n

r B b r B b r

B b r rr a

r a B b r r r B b r

 



 

        
 
      

           

 


 

   
 (49) 

and 

  
   

 

2 2 2 2

2 2 1

2 sin2 2 sin 2

2 2 sin 2 .

n n

nn n n n n

r B b r B b r r

B b r r

           

  

   


  (50) 

Eqs. (49) and (50) in which B should be eliminated by means of Eq. (48) should be solved 
numerically to find ψ and μ as functions of r. However, it will be seen in the next section that the 
strain rate and plastic work rate intensity factors can be found without having this numerical 
solution.  

Once Eqs. (49) and (50) have been solved, the dependence of q on r can be readily determined 
from Eqs. (47) and (48). Therefore, Eqs. (34) and (42) give σzz as a function of r and z. This 
solution also involves B0(r). This function should be determined by integrating Eq. (43)1. The 
solution so found contains a new constant of integration. Eq. (8) can be used to determine this 
constant. Then, p can be found from Eq. (12). In order to find the velocity field, ψ should be 
eliminated in Eq. (31) by means of the solution of Eqs. (49) and (50). Then, the function f can be 
found by integration with respect to r. As a result, the right hand side of Eq. (22) will involve an 
arbitrary constant. This constant should be found from Eq. (11). Finally, it is necessary to verify 
Eq. (24). The circumferential stress is determined from Eq. (42) and the solution of Eqs. (49) and 
(50). Since the other principal stresses have been already found, it is straightforward to verify Eq. 
(24). 
 
 
4. Strain rate and plastic work rate intensity factors 

 
Eq. (14) can be rewritten as 
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   2 2 2 22
2

3eq rr zz rz        .  (51) 

Since the normal strain rates in the cylindrical coordinate system are bounded in the vicinity of the 
maximum friction surface r=a, Eqs. (13) and (51) combine to give 

  
3 1

2rz

D
o

r a r a

      
  (52) 

as r→a. Analogously, Eqs. (15) and (16) result in 

  
1

2
rz rz o

r a r a

      

    (53) 

as r→a. Using Eqs. (26) and (33) the shear strain rate in the cylindrical coordinate system is 
represented as 

   
2

22 2
3 tan 2 .

2
rz

Ub a

rb a

 
     

    (54) 

It is seen from this equation that the asymptotic behaviour of ξrz in the vicinity of the surface r=a 
is completely controlled by the asymptotic behaviour of the function ψ (r). In the vicinity of the 
maximum friction surface r=a Eq. (54) can be represented as 

   
1 1

2 2 4 4rz

Ub
o

b a

                  

      (55) 

as ψ→π/4. Comparing Eqs. (52) and (55) shows that 

   14
r a o r a    

    (56) 

as r→a. Here ψ1 is constant. Since μ=0 at r=a, it follows from the binomial theorem that 

 
         

         

1 1 22 2 1 2 2 2 2 2

1 1 22 2 1 2 2 2 2 2

2 sin 2 2 1 sin 2 ,

2 sin 2 2 1 sin 2

n n nn n

n n nn n

B b r r B b r r n B b r o

B b r r B b r r n B b r o

   

   

         

         

    

    
 (57) 

as μ→0. Moreover 

  cos2 2
4 4

o          
   

      (58) 

as ψ→π/4. Substituting Eqs. (56)-(58) into Eq. (49) leads to 

  
  

     
2 2

3 2 3 21

2

2 2

4 1

nB b a
r a o r a

n a

 
     


   (59) 
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as r→a. Substituting Eqs. (56) and (59) into Eq. (50), equating coefficients of like powers of r−a  
and using Eq. (48) yield 

   
2 2

1 2 22

b a

a b a





 . (60) 

Then, it follows from Eqs. (52), (55), (56), and (60) that 

  
4 4

2 2
.

3

aUb
D

b a



  (61) 

It is seen from this equation that the strain rate intensity factor is independent of n. In particular, 
Eq. (61) coincides with the expression for the strain rate intensity factor found in Alexandrov 
(2009) for Tresca’s yield criterion. Substituting Eqs. (7), (52), and (61) into Eq. (53) gives 

  0

1 4 4

2 2

1 2n n

Ub a

b a


 

 .  

It is seen from this equation that the plastic work rate intensity factor depends on n and attains its 
minimum value at n≈2.767. 
 
 
5. Conclusions 
 

A semi-analytical solution for compression of an axisymmetric plastic tube on a rigid fibre has 
been found. It has been assumed that the material of the tube obeys the yield criterion proposed in 
Hosford (1972) and its associated flow rule. The objective of the present paper is to reveal the 
effect of the yield criterion on the strain rate and plastic work rate intensity factors. The yield 
criterion proposed in Hosford (1972) is quite general and includes widely used the von Mises and 
Tresca yield criteria as particular cases. The strain rate and plastic work rate intensity factors have 
been derived from the general solution by means of asymptotic analysis. It has been shown that the 
strain rate intensity factor is independent of the yield criterion. However, the plastic work rate 
intensity factor depends on the yield criterion and this dependence is not monotonic with respect to 
the parameter n involved in the yield criterion (see Eq. (1)). In particular, the plastic work rate 
intensity factor attains its minimum value at n≈2.767. 
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