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Abstract.  The elastoplastic response of functionally graded material (FGM) beams resting on a nonlinear 

elastic foundation to an eccentric axial load is investigated by using the finite element method. The FGM is 

assumed to be formed from ceramic and metal phases with their volume fraction vary in the thickness 

direction by a power-law function. A bilinear elastoplastic behavior is assumed for the metallic phase, and 

the effective elastoplastic properties of the FGM are evaluated by Tamura-Tomota-Ozawa (TTO) model. 

Based on the classical beam theory, a nonlinear finite beam element taking the shift in the neutral axis 

position into account is formulated and employed in the investigation. An incremental-iterative procedure in 

combination with the arc-length control method is employed in computing the equilibrium paths of the 

beams. The validation of the formulated element is confirmed by comparing the equilibrium paths obtained 

by using the present element and the one available in the literature. The numerical results show that the 

elastoplastic post-buckling of the FGM beams is unstable, and the post-buckling strength is higher for the 

beams associated with a higher ceramic content. Different from homogeneous beams, yielding in the FGM 

beam occurs in the layer near the ceramic layer before in the layer near metal surface. A parametric study is 

carried out to highlight the effect of the material distribution, foundation support and eccentric ratio on the 

elastoplastic response of the beams. 
 

Keywords:  FGM beam; elastoplastic behavior; nonlinear elastic foundation; eccentric axial load; 

nonlinear finite element analysis 

 
 
1. Introduction 
 

Analysis of beams resting on elastic foundation is an important topic in the field of structural 

mechanics, and it has been drawn much attention by many researchers for a long time. A large 

number of studies of beams on elastic foundation are referred to in the excellent monograph by 
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Hetényi (1946). Recent contributions that are most relevant to the present topic are briefly 

discussed herein. Zhaohua and Cook (1983) studied the bending problem of beams on a two-

parameter elastic foundation by using the exact interpolation in the derivation of the stiffness 

matrix. Chaht et al. (2015) addressed theoretical bending and buckling behaviors of size-

dependent nanobeams made of FGM on the basis of the nonlocal elastic continuum model. 

Razaqpur and Shah (1991) derived the exact stiffness matrix and nodal force vector for assessing 

the deflection and internal forces of beams resting on a two-parameter elastic foundation. 

Chegenizadeh et al. (2014) investigated FGM beams on the elastic and plastic soil mediums 

subjected to dynamic and static loadings by using commercial finite element software ABAQUS. 

Budkowska and Szymczak (1997) used a simple finite element model in studying the post-

buckling behavior of beams partially embedded in a Winkler foundation. Kounadis et al. (2006) 

have shown that the post-buckling behavior of elastic beams resting on a Winkler foundation is 

stable. The equilibrium paths, computed by Patel et al. (1999), Nguyen et al. (2004) by using the 

finite element method, have also confirmed the stable behavior in the post-buckling region of 

axially loaded beams resting on a two-parameter elastic foundation. However, due to the increase 

of the critical load by the elastic foundation support, the stress in beams on an elastic foundation 

may exceed yield stress when the deflection is still very small, even before buckling. Thus, the 

effect of plastic deformation is an important factor for the buckling behavior of beams resting on 

the elastic foundation. In this line of work, based on Hill‟s variational principle Cheb and Neal 

(1984) developed a finite element procedure for investigating the buckling and post-buckling 

behavior of elastic-plastic beams resting on a nonlinear elastic foundation. They have then shown 

that the post-buckling behavior of the elastic-plastic beams on the foundation is unstable, and the 

maximum load that the beams can withstand is sensitive to the imperfection and the foundation 

stiffness. Also using a finite element procedure, Nguyen and his co-workers have confirmed that 

the post-buckling behavior of beams on elastic foundation subjected to an eccentric axial load is 

unstable, and the post-buckling strength, measured in term of a ratio between the axial load and the 

critical load, increases with an increment in the foundation stiffness. 

The new type of composite developed recently, namely functionally graded material (FGM) 

has high potential to use as a structural material. This composite, usually formed from metals and 

ceramics, has no thermal stress concentration and delaminating problems as often met in 

conventional composites. Many investigations have been reported on the behavior of FGM 

structures subjected to static or dynamic loadings. Concerning to analysis of FGM beams, 

Chakraborty et al. (2003) derived a first-order shear deformable beam element for investigating 

the thermoelastic behavior of FGM beams. Based on the third-order shear deformation beam 

theory, Kadoli et al. (2008) derived a beam element for studying the static behavior of FGM 

beams under ambient temperature. Singh and Li (2009) proposed a model for computing buckling 

loads of non-uniform axially FGM columns by approximating the column by another one with 

piecewise uniform geometric and material properties. Kang and Li (2009, 2010) took the shift in 

the neutral axis position into account in their derivation of the expressions for tip response of a 

cantilever FMG Euler-Bernoulli beam subjected to a transverse end force or an end moment. 

Nguyen (2013, 2014) derived the co-rotational beam elements for large displacement analysis of 

tapered beams made of axially or transversely FGM. Also using the finite element method, 

Nguyen and Gan (2014), Nguyen et al. (2014) investigated the geometrically nonlinear behavior 

of beams and frames made of transversely FGM. 

Analysis of elastoplastic FGM structures in general and FGM beam, in particular, has not been 

carried out sufficiently by researchers. Only a few recent publications on this topic can be found in 
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the literature. Gunes et al. (2011) employed the finite element code LS-DYNA to study the 

elastoplastic response of FG circular plates under low-velocity impact loads. Jahromi et al. (2012) 

used a bilinear tress-strain relationship in modeling the elastoplastic behavior of an FG rotating 

disk. The stress field of the disk is then computed with the aid of the commercial finite element 

package ABAQUS. Huang and Han (2014) assumed a multi-linear hardening elastoplastic material 

to study the elastoplastic buckling of FG cylindrical shells subjected to the axial load. Also using 

the multi-linear hardening elastoplastic material model, Zhang et al. (2015) studied the buckling 

behavior of elastoplastic FG cylindrical shells under a combination of the axial compressive load 

and external pressure.  

The present article aims to investigate the elastoplastic response of FGM beams resting on a 

nonlinear elastic foundation under an eccentric axial load. The FGM is assumed to be formed from 

ceramic and metal whose volume fraction varying in the thickness direction by a power-law 

function. A bilinear tress-strain relationship with isotropic hardening is assumed for the metal, and 

the effective elastoplastic properties of the FGM are evaluated by a model proposed by Tamura-

Tomota-Ozawa (Tamura et al. 1973), which is called TTO model herein. Based on the classical beam 

theory, a nonlinear two-node beam element is formulated by adopting the nonlinear von Kármán 

strain-displacement relationship, and taking the shift in the neutral axis position into account. An 

incremental-iterative procedure in combination with the arc-length control method is employed in 

solving the nonlinear equilibrium equations and computing the load-displacement curves. 

Numerical investigations are presented in detail for cantilever and simply supported beams. The 

effect of the material distribution, foundation support, plastic deformation on the behavior of the 

beam is investigated. The influence of eccentric ratio of the behavior of the beam is also examined 

and highlighted. 

 

 

2. FGM beam on elastic foundation 
 

Fig. 1 shows a cantilever FGM beam with length L, height h, width b, resting on a nonlinear 

elastic foundation under an eccentric axial load P. The beam material assumed to be formed from 

ceramic and metal with the volume fraction of constituent materials varies in the beam thickness 

according to a power-law function  
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Fig. 1 Cantilever FGM beam on a nonlinear elastic foundation under eccentric axial load 
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where z is the transverse coordinate; Vc and Vm are respectively the volume fractions of ceramic 

and metal, and n is the non-negative volume fraction exponent. In Eq. (1) and hereafter, the lower 

subscripts „c‟ and „m‟ stand for „ceramic‟ and „metal‟, respectively. 

The linear elastic behavior of FGM is described by Hooke‟s law, and its effective material 

properties can be evaluated by micromechanics models used in conventional composites. The 

elastoplastic behavior of ceramic/metal FGMs is widely described by TTO model (Tamura et al. 

1973). According to the TTO model, the ceramic constituent is assumed to be elastic. Material 

flow of FGMs mainly arose by plastic flow of the metallic constituent, and the effective 

elastoplastic properties of FGMs are evaluated as (Jin et al. 2003) 
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(2) 

where E(z), ζY(z) and Et(z) are respectively the effective Young‟s modulus, yield stress and tangent 

modulus of the FGM; Ec and Em are Young‟s moduli of ceramic and metal constituents, 

respectively; E0, ζYm are the tangent modulus and yield stress of the metal, and the parameter q is 

the ratio of stress to strain transfer between the two material constituents, defined as 

     

, 0c m

c m

q q
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
 

(3) 

The value of q depends on the properties of constituent materials and the microstructural 

interaction in the composite. Various values of q for FGMs formed from different ceramics and 

metals are given in the papers by Gunes et al. (2011), Huang et al. (2014). In the present work, 

SiC and Aluminum (Al) with properties listed in Table 1 are employed as ceramic and metal 

phases of the FGM beam. This Al/SiC FGM has q=91.6 GPa, which has been experimentally 

determined by Bhattacharyya et al. (2007). Fig. 2 shows the variation of the Young‟s modulus and 

the yield stress in the beam thickness direction of the Al/SiC FGM beam according to Eq (2). 

Young‟s modulus of the FGM defined by Eq. (2) is not symmetrical with respect to the 

midplane of the beam. As a result, the neutral axis of the beam is no longer on the midplane, but it  

 

 
Table 1 Material properties of Al and SiC 

Materials Young‟s modulus (GPa) Yield stress (MPa) 

Al 67 24 

SiC 302 From Eq. (2) 
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Fig. 2 Variation of Young‟s modulus and yield stress in thickness of Al/SiC FGM beam 

 

 
shifts from this plane a distance h0 (see Fig. 1), which can be determined by requiring the axial 

resultant on a section vanishes (Levyakov, 2013) 
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(4) 

where ζx denotes the axial stress of beam under pure bending. It should be noted that with the 

Young‟s modulus given by Eq. (2), the integrals in Eq. (4) are not able compute explicitly. 

Simpson‟s rule is employed herewith in the determination of h0. 

The elastic foundation is assumed to be a nonlinear model with its reaction force is given by 

Rajasekhara and Venkateswara (1996) 

3( ) L NLr x k w k w                               (5) 

where w is the transverse displacement of the beam; KL and KNL are the linear and nonlinear 

foundation stiffness, respectively. 

 

 

3. Finite element formulation 
 

This section derives the finite element formulation for the buckling analysis of the FGM beam. 

The element is assumed to be initially straight and has a rectangular cross section. The bonding 

between the beam and the foundation is assumed to be perfect, and the beam does not lift off from 

the foundation. Based on the classical beam theory, displacements in , ,x y z directions at any point 

in the beam are given by 
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1 0 ,

2
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( , ) ( ) ( )

( , ) 0

( , ) ( )

xu x z u x z h w

u x z

u x z w x
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



                         (6) 

where (.),x=∂(.)/∂x
 
and h0 is defined by Eq. (4). 

The vector of nodal displacement for a two-node beam element, (i, j), can be written as 

     with ,T T T T T

i j i i j ju u w w   d u w u w              (7) 

where and hereafter, a superscript „T‟
 
denotes the transpose of a vector or a matrix. It should be 

noted that the order of the nodal displacements is not necessary as in Eq. (7), but it is convenient to 

separate the stretching and bending nodal displacements. 

A bilinear stress-strain relation with isotropic hardening is assumed for the metal phase. The 

elastoplastic behavior of the FGM with the effective properties evaluated by Eq. (2) also follows a  

bilinear model, and this model represented by the elastoplastic modulus ( )E z , defined as 

( ) if ( ) ( ) or unloading
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t x Y

E z z z
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E z z z
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               (8) 

where ζx is axial stress, and E(z), Et(z), ζY(z) defined by Eq. (2). 

The element formulation, namely the internal nodal force vector fin and the tangent stiffness 

matrix ki can be derived from the expression of the internal virtual work. For a beam element with 

length of l, the internal virtual work is a contribution from the beam bending and the foundation 

deformation as 

0

( )

l

in x x

V

W dV r x w dx                              (9) 

where the subscript „ν‟ stands for the “virtual”; V is the element volume; δεv is the small virtual 

axial strain, and δwv is the virtual transverse displacement. 

Linear and cubic polynomials can be adopted to interpolate the axial and transverse 

displacements as 

,T T

u wu w N u N w                             (10) 
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where ξ=2x/l−1 is the dimensionless parameter, and with 0≤x≤l, then −1≤ξ≤1. 

The nonlinear von Kármán strain-displacement relationship is employed for the axial strain εx 

as 

2

, , 0

1
( )

2
x x xu w z h                              (12) 

where χ=−w,xx is the beam curvature, z is the distance from the considered point to the midplane. 
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However, the beam element based on the interpolation functions (11) and the axial strain (12) 

encounters the membrane locking (Crisfield 1991). To overcome this problem, the membrane 

strain in Eq. (12) should be replaced by an effective εeff, defined as (Crisfield 1991) 

2
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1 1

2

l

eff

u w
dx
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                         (13) 

Given Eqs. (10), (11) and (13), the axial strain in Eq. (12) can be written in the form 

0

0

1
( )

2

l

T T T T

x u w w wdx z h
l

    b u w b b w c w
                  

(14) 

in which 

 

 

 

2 2 2 2

2

2 2

1
1 1

1
6( 1) (3 2 1) 6( 1) (3 2 1)

4

1
6 (3 1) 6 (3 1)

T T

T u u

u

T

T w

w

T

w

x x l

l l
x l

w
l l

x l





     

   

  
   

  


        




      



N N
b

N
b

c

     
(15) 

From Eqs. (14) and (15), one can compute 
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is the vector stemming from the nonlinear part of the axial strain. 

The arbitrary axial and transverse displacements in Eq. (10) which make use shape functions in 

Eq. (11) can be obtained from the nodal displacement vectors in Eq. (7). By omitting the second 

term (distributed loading along the beam axis) of the internal virtual work in Eq. (9) and 

substituting the axial strain at the arbitrary point along the beam which can be calculated by using 

Eq. (14), we can write the internal virtual force defined in the form 
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where fu and fw respectively denote the nodal internal forces corresponding to the nodal 

displacements u, w, and they have the forms 
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where A=bh is the beam section area, and the dimensionless parameter,
 

2
z

h
  , is introduced for 

the purpose of evaluating the integrals numerically. The last two terms in Eq. (19) is the internal 

nodal forces due to the foundation deformation.  

The element tangent stiffness matrix is obtained by differentiating the nodal force vector in Eq. 

(19) with respect to the nodal displacements as 
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in which the kuu and kww are the stiffness matrices stemming from element stretching and bending, 

respectively; kuw=kwu
T
 is the stiffness resulted from the stretching-bending coupling. The 

expressions for these sub-matrices are as follows 
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in which matrix B is given by 
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Since the axial stress ζx varies in both the x and z directions, and the elastoplastic modulus E (z) 

is a function of z, Gauss quadrature is employed in computing the integrals in Eqs. (19) and (21). 

In addition, a simple algorithm for the one-dimensional elastoplastic problem described by Cook et 

al. (1991) is employed herein in updating the axial stress. 

 
 

4. Numerical procedure 
 

The formulated element internal force vector and tangent stiffness matrix are assembled to 

construct structural equilibrium equations, which can be written in the form (Crisfield, 1991)
 

( , ) ( )
in ef

  g p q p f                             (23) 

where the out-of-balance force vector g is a function of the current structural nodal displacements 

p and the load level parameter λ; qin is the structural nodal force vector, assembled from the 

element force vector fin; fef is the fixed external loading vector. Since the eccentric load P is 
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statically equivalent to a centric load P plus a moment M=Pe, the axial loads and moments at the 

element nodes have the same amplitude, but in opposite sign, and these loads and moments are 

offset by the loads and moments from the neighbouring elements, so that the external load vector 

λfef contains only the axial load P and the bending moment M at the beam ends. The system in Eq. 

(23) can be solved by an incremental/iterative procedure based on the Newton-Raphson method. In 

order to handle the complex nonlinear behavior such as the limit points, snap-though or snap-

though behavior the arc-length control method developed by Crisfield (1991) is employed herein. 

 
 
5. Numerical investigation 
  

An FGM beam composed of SiC and Al with L=5 m; b=0.2 m; and h=0.1 m is employed in the 

numerical investigation in this section. Different values of tangent modulus for Al are available in 

the literature, and the computations reported below are carried out with E0=0.2Em. Gauss 

quadrature with nine points in the beam thickness and five points along the element length is 

employed in computing the element nodal force vector and tangent stiffness matrix. The beam is 

discretized by ten uniform elements. Two kinds of boundary conditions, namely clamped-free (CF) 

and simply-supported (SS) are considered. In order to facilitate the numerical discussion, the 

following dimensionless parameters which will be called the linear and nonlinear foundation 

parameters below, respectively are introduced  

4 6

1 3
,

L NL

m m

L L
k k k k

E I E I
                             (24) 

The eccentric ratio rC=ec/r
2
 with c=h/2−h0 and r is the radius of gyration, as introduced by Gere 

and Timoshenko (1991), is again adopted herein. 

 
5.1 Formulation verification 

 
In case of homogeneous beams resting on a linear elastic foundation, the finite element 

formulation given by Eqs. (19) and (21) deduce exactly to the one previously derived by Nguyen 

and his co-workers (2012). Since there is no data on the elastoplastic response of FGM beams, the 

validation of the formulations is confirmed by comparing the response of an elastic FGM beam to 

an eccentric axial load. Fig. 3 shows the load-displacement curves for the Al/SiC cantilever beam 

under an eccentric tip load with e=h/2−h0 obtained by the present element, where for the sake of 

comparison, the result obtained by using the co-rotational element derived by Nguyen (2014) is 

also shown by the dashed lines. In the figure, the tip axial and transverse displacements, u and w, 

respectively are normalized by the beam length L, and the applied load is normalized by the Euler 

load of the cantilever full metal beam, that is Pcr=π
2
EmI/4L

2
. For the elastic analysis herein, the 

yield stress of the metal phase is set to a large value, and thus the yielding will not occur. 

Regardless of the exponent n, a good agreement is noted from the figure. It should be noted that 

the effective Young‟s modulus in the work by Nguyen (2014) was evaluated by using Voigt model, 

namely  

1
( ) ( )

2

n

c m m

z
E z E E E

h
   

 
 
                           

(25)
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Fig. 3 Load-displacement curves for elastic FGM cantilever beam under an axial load 

 

 

Fig. 4 Load-displacement curves of CF beam obtained by elastic and elastoplastic analyzes 

 

 

which is slightly different from the one computed by Eq. (2). 

 

5.2 Cantilever beam 
 
In Fig. 4, the load-displacement curves represented the equilibrium paths of the CF beam 

without the foundation support obtained by the elastic and elastoplastic analyzes are depicted for 
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rC=0.01, and for two values of the fraction exponent n=0.5 and n=5. In the figure, as in Fig. 3, Pcr 

is the Euler buckling load of the Al beam. The effect of plastic deformation is clearly seen from the 

figure, and as in case of the homogeneous beams (Nguyen et al., 2012), the post-buckling of the 

FGM beam changes from stable to unstable when the effect of plastic deformation is taken into 

account. The effect of the material distribution is also clearly seen from the figure, where the post-

buckling strength of the beam, measured in term of the ratio between the applied load P and the 

critical load Pcr, is higher for the beam associated with the lower exponent n. In other words, the 

post-buckling strength of the elastoplastic FGM beam is higher for the beam associated with a 

higher ceramic content.  

The effect of the linear and nonlinear foundation parameters is illustrated in Figs. 5 and 6 for an 

eccentric ratio rC=0.01 and an exponent n=5, respectively. The limit point of the beam, as seen 

from Fig. 5, increase considerably by increasing the linear foundation stiffness, but the post-

buckling strength of the beam is hardly recognized. On the other hand, the nonlinear foundation 

parameter, as seen in Fig. 6 contributes to an increase in the post-buckling strength, but it hardly 

alters the limit load of the beam. In Fig. 7, the load-displacement curves of the CF beam resting on 

a nonlinear elastic foundation obtained by the elastic and elastoplastic analyses are depicted for 

two values of the exponent n=0.5 and n=5, and for rC=0.01, k1=20 and k1=10. As in Fig. 4, the 

post-buckling strength of the beam on the elastic foundation is higher for the beam associated with 

a lower exponent n. The post-buckling strength of the beam is, however slightly improved by the 

foundation support. 

To investigate the effect of plastic deformation on the behavior of the beam in more detail, the 

stresses and strains at lower and upper Gauss points near the clamped end at various values of the 

applied load are given in Table 2. The z co-ordinate of the lower and upper points are respectively 

-0.0484 m and 0.0484 m for the Gauss quadrature used herein (five points along the element  

 

 

 
Fig. 5 Effect of linear foundation parameter on elastoplastic response of CF beam 
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Fig. 6 Effect of nonlinear foundation parameter on elastoplastic response of CF beam 

 

 

Fig. 7 Load-displacement curves for CF beam resting on a nonlinear elastic foundation obtained by 

elastic and elastoplastic analyzes 

 

 

length and nine points through the thickness). The x co-ordinate is 0.0235m for both the points. 

Since these points are near the metal and ceramic surfaces, for the sake of convenient, the 

subscripts “M” and “C” are used to denote the stress and strain at the points. The stresses  
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Table 2 Axial stress and strain at lower and upper Gauss points corresponding the points Pi, P’i (i=1..3) on 

the curves in Fig. 7 

Foundation 

parameter 
N 

Loading 

Stages 
/

cr
P P  7

(10 )
M

  7
(10 )

C
  4

(10 )
M


  4
(10 )

C


  

1

3

20

10

k

k




 

0.5 

 (2.7125) (4.3340)  
'

1
P  2.4674 0.9244 -5.8667 1.1045 -2.0036 

'

2
P  2.9887 2.8862 -12.607 4.0498 -4.3466 

'

3
P  2.9877 2.9428 -13.080 4.3135 -4.5111 

5 

 (2.4000) (4.1220)  

1
P  2.1460 0.9764 -7.4189 1.4574 -3.3631 

2
P  2.1480 1.0499 -7.6266 1.5670 -3.4677 

3
P  2.1467 1.1144 -7.8056 1.6632 -3.5580 

Note: the values inside the brackets show the initial yield stresses of “M” and “C” for different values of the 

exponent n. 
 

 
Fig. 8 Effect of eccentric ratio on the elastoplastic response of CF beam on nonlinear elastic foundation 

 

 

highlighted in red color corresponding to the applied loading stages where yielding at the point has 

already occurred. As seen in Table 2, the yielding occurs in FGM beam is very different from that 

of the homogeneous beams where the top and bottom fibers yield symmetrically about the neutral 

axis at the mid-height of the cross section. In FGM beam, at a given value of the applied load, the 

stress amplitude near the ceramic surface is considerably higher than that near the metal surface 

while the strain is on the opposite side. The stresses at the applied loading stages P’1, P1, P2 and P3  
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Fig. 9 Load-displacement curves of SS beam obtained by elastic and elastoplastic analyzes 

 

 

Fig. 10 Effect of linear foundation parameter on elastoplastic response of SS beam 

 

 

in Table 2 show that yielding has occurred in the layer near the ceramic surface, but it has not 

occurred in a layer near the metal surface. This result is totally different from the homogeneous 

beam, where the yielding occurs in the lower and upper surfaces at the same time. 

The effect of the eccentric ratio on the elastoplastic response of the CF beam is illustrated in 
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Fig. 8 for an exponent value n=3, and for k1=20, k3=10. The effect of the eccentric ratio on the 

elastoplastic behavior in the post-buckling region of the CF beam is similar to that of the 

homogeneous beams (Nguyen et al. 2012), in which the limit load of the beam steadily reduces by 

increasing the eccentric ratio. 

 
 

 

Fig. 11 Effect of nonlinear foundation parameter on elastoplastic response of SS beam 

 

 

Fig. 12 Load-displacement curves for SS beam resting on a nonlinear elastic foundation obtained 

by elastic and elastoplastic analyzes 
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Fig. 13 Effect of eccentric ratio on the elastoplastic response of SS beam on nonlinear elastic foundation 

 

 

5.3 Simply supported beam 
 
In Fig. 9, the load-displacement curves of unsupported SS beam obtained by elastic and 

elastoplastic analyzes are depicted for rC=0.01 and two values of the exponent n=0.5 and n=5. The 

effect of the foundation parameters, eccentric ratio for the SS beam is shown in Figs. 10-13. The 

effects of the plastic deformation, material distribution, linear foundation parameter, nonlinear 

foundation parameter, and eccentric ratio on the elastoplastic response of the SS beam is similar to 

that of the CF beam. However, comparing to the CF beam, the SS beam is less sensitive to the 

change in the foundation stiffness and the eccentric ratio. 

 

 

6. Conclusions 
 

The article investigated the elastoplastic response of FGM beams resting on a nonlinear elastic 

foundation to an eccentric axial load by using the finite element method. The formulation based on 

Euler-Bernoulli beam theory was derived by using the neutral surface as a reference plane. The 

TTO model was employed in evaluating the elastoplastic properties of the beam material. The 

nonlinear equilibrium equations have been solved by an incremental-iterative procedure in 

combination with the arc-length control method. Numerical examples are demonstrated for the 

beams with clamped-free and simply supported ends. 

The numerical results are compared with the homogeneous case and the other material 

distribution for verifying the accuracy of the proposed formulation. The current formulation is 

verified by comparing the numerical results with the work by Nguyen (2012, 2014). Through the 

evaluations of Cantilever and Simply supported beam examples, the following conclusions can be 
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drawn: 

• For different fraction exponent, n, the elastoplastic analyses curves show steady reduction of 

responses beyond the limit load compared to the elastic analyses results. 

• The limit point of a beam increase considerably by increasing the linear foundation stiffness, 

k, but the post-buckling strength of the beam is hardly recognized in the nonlinear elastic 

foundation. 

• The post-buckling strength of the beam is, however slightly improved by the type of 

foundation support (nonlinear elastic foundation). 

•The effect of eccentric ratio, r, on the elastoplastic behavior in the post-buckling region of the 

beam is similar to that of the homogeneous beams. 

It has been shown that yielding occurred in the FGM beam is very different from the 

homogeneous beam. The effects of the plastic deformation, material distribution, foundation 

parameters and eccentric ratio on the elastoplastic response of the FGM beams are studied and 

highlighted. 
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