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Abstract.  Various vague and unstructured problems encountered the civil engineering/ designers that 

persuaded by their experiences. One of these problems is the structural failure of the reinforced concrete 

(RC) building determination. Typically, using the traditional Limit state method is time consuming and 

complex in designing structures that are optimized in terms of one/many parameters. Recent research has 

revealed the Artificial Neural Networks potentiality in solving various real life problems. Thus, the current 

work employed the Multilayer Perceptron Feed-Forward Network (MLP-FFN) classifier to tackle the 

problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure 

possibility of the multistoried RC building structure in the future. In order to evaluate the proposed method 

performance, a database of 257 multistoried buildings RC structures has been constructed by professional 

engineers, from which 150 RC structures were used. From the structural design, fifteen features have been 

extracted, where nine features of them have been selected to perform the classification process. Various 

performance measures have been calculated to evaluate the proposed model. The experimental results 

established satisfactory performance of the proposed model. 
 

Keywords:  Reinforced Concrete (RC) structures; structural failure; Artificial Neural Network (ANN); 

Multilayer Perceptron Feed-Forward Network (MLP-FFN); scaled conjugate gradient algorithm; cross-

entropy 

 
 
1. Introduction 
 

Civil Engineering is an expanded domain concerned mainly with the structures design and 

analysis. Numerous complex/ heuristic problems encountered the civil engineer there by requires 

his/her intervention and experience. These challenges oblige the researchers to develop 
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computational tools to save time and resources. Hence, Neural Networks (NN), Genetic 

Algorithms (GA) and Fuzzy Logic either autonomous/integrated (hybrid) are used to support the 

engineering activities via simulating the human mind to achieve robust and cost effective 

solutions. These techniques are able to model unknown or complex relationships which are either 

nonlinear or noisy. 

Artificial Neural Network (ANN) can be considered an engineering equivalent of a biological 

neuron. The ANNs is inspired by the human brain functioning by modeling complex/ unknown 

functional relationships with interconnected processing units (artificial neurons) that replicate the 

biological neurons function. Unlike conventional methods that based on predefined relations, 

ANNs can handle in distinct functional relationships during its learning (training) stage. The ANN 

model is arranged interconnected computational neurons used to execute a mathematical mapping 

during a process of learning. The learning facility of neural networks is attributed to the 

adjustment in the synaptic weight value. Compliance to changing the input-output data, non-linear 

function mapping and the capability to capture indefinite relationships, provides the ANNs a 

flexibility to model the real world problems, such as applications in the of Civil Engineering 

domain. 

Numerous studies have been done to analyze different aspects related to RC buildings using 

ANNs. They have mainly focused on the post-seismic effect on RC buildings. A trained ANN 

operates the information generated from a number of features selected design vectors to perform 

both deterministic and probabilistic constraint tests during the optimization process. The trained 

NN is then applied to predict the structure response in terms of probabilistic and deterministic 

constraint test due to different design parameters. These parameters are due to several effects, such 

as fundamental periods, base bending moments, base shear force and top-floor displacement of 

buildings in two directions. Thus, these parameters are required to be predicted (Caglar et al. 

2008).  

Throughout the last decade, numerous studies have been performed in the Data mining domain 

to fetch meaningful information from the large amount of available data. The extracted knowledge 

has successfully been utilized in market survey, production control, customer retention, scientific 

explorations and evolutionary analysis (Agrawal et al. 1993, Chen et al. 1996). In data mining, 

Classification (Pujari 2001, Han and Kamber 2005) is one of the most important tools that aim to 

reveal hidden patterns of large data sets thereby giving a better understanding of many real life 

data sets. Classification has utmost utilization in decision making that primarily depends on the 

accuracy and effectiveness of the classification method being used. Technically, classification is a 

method to create a classifier that can discriminate between different data classes and further can 

put an entity with an unknown class label into the correct class. 

These mentioned studies proved the efficiency of using the ANN to predict and study the 

different parameter effects on the buildings. Consequently, in the present study a prediction of RC 

structures‟ failure has been handled by employing the MLP-FFN with scaled conjugate gradient 

algorithm as learning algorithm in (Møller 1993). A dataset of 257 RC structures of multi-storied 

buildings was designed by professional engineers. 150 out of these datasets have been used. In the 

training phase, a Cross-Entropy error function has been used. Then, several performance 

measuring parameters such as the accuracy, precision, recall, Fp-rate and F-Measure has been 

calculated to evaluate the proposed method. The proposed model is capable of identifying if a 

given RC structure will fail in future or not. Hakim and Razak (2014) presented a review which 

included technical literature for previous two decades related to the structural damage detection 

using ANNs with modal parameters including natural frequencies and mode shapes as inputs. 
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The remaining of this work is organized as follows: Section 2 represents the related work 

followed by section 3 to introduce the methodology based on a theoretical background on Civil 

engineering aspects. While, proposed model is discussed in section 4 followed by Section 5 

focuses on the experimental results are depicted and, finally section 6 includes the conclusion. 

 

 

2. Related work 
 

Hajela and Berke (1991) tested the neural computing role in structural engineering to obtain the 

optimum weight of a truss. Mukherjee and Deshpande (1995) proposed neural network for 

preliminary reinforced-concrete rectangular single-span beams design. The network calculated a 

good preliminary design via determining the beam depth, the beam width, tensile reinforcement 

required, and the moment capacity for certain set of input parameters such as the live load, dead 

load, steel type and concrete grade. At the design conceptual stage, the authors in (Elazouni et al. 

1997) presented the use of the neural network to estimate the resource requirements. The results 

demonstrated that accurate performance of the neural network as adaptable tool. Hadi (2003) 

suggested neural network for optimum simply supported concrete beams and reinforced fibrous 

concrete beams design. The results verified the ANNs effectiveness compared to conventional 

design techniques. Jakubek (2012) employed the neural network to calculate the load capacity for 

loaded reinforced concrete columns. Gupta et al. (2006) suggested the ANN for precise prediction 

of the concrete strength based on different parameters such as the specimen‟s size and shape, 

concrete mix design, and the environmental conditions. 

Caglar et al. (2008) employed Multilayer perceptron trained with back-propagation (BP) 

algorithm to predict several effects of a building under earthquake by generating data using Finite 

Element Analysis.  The authors claimed that NN based approach can determine these effects 

successfully. Dynamic response of buildings has been obtained by employing a training phase with 

150 data instances along with 15 data instances for validation phase. Joghataie and Farrokh (2008) 

proposed a new activation function based on Prandtl-Ishlinskii operator in the Feed-Forward 

neural networks to analyze Non-linear frame structures. The authors used the GA to train the 

network in order to analyze two shear frames for a single degree of freedom (SDOF) and a 3DOF 

(both subjected to earthquake excitations). The authors have claimed a high precision of the 

proposed models in solving hysteretic problems.  

Erdem (2010) investigated the application the neural network was employed for the ultimate 

moment capacity prediction of the RC slabs in fire. Bagci (2010) examined the moment-curvature 

relationship of the RC governed by many variables and non-linear material performance using 

ANN. 

Kameli et al. (2011) predicted a seismic response of RC frames having masonry in-filled walls 

using ANN. Using Finite Element Method (FEM), a total of 855 data instances has been used to 

train the ANN to predict the roof displacement and base shear displacement. A multi-layer 

perceptron (MLP) has been trained with Levenberg-Marquardt (LM) BP algorithms and a Radial 

Basis function (RBF). Then, the authors used the Mean square error (MSE) and correlation 

coefficient to evaluate the ANN performance. The results proved that the ANN trained with RBF is 

fast and accurate in determining the objective. Jasim and Mohammed (2011) deployed the neural 

network for the ultimate spandrel beams torsional strength prediction. The results of the resilient 

BP algorithm were compared to a steepest descent algorithm. 

Lagaros and Papadrakakis (2012) proposed a prediction of nonlinear behavior of 3-dimensional 
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structures. A new ANN based adaptive scheme was proposed in order to nonlinear behavior under 

severe earthquake actions. The results proved that the Performance-based design (PBD) can be 

successfully tackled by ANNs and can considerably reduce the computational complexity. 

From the previous survey, it is clear that the ANN has an essential role for the structures design 

under different conditions and parameters. Therefore, this proposed work adds a contribution by 

employing the ANN not for the design, but in order to classify the structural failure of multistoried 

reinforced concrete buildings via detecting the failure possibility of the multistoried RC building 

structure in the future or not.  

 

 

3. Methodology 
 

Generally, a RC beams are designed to support any structure with external loads such as walls, 

slabs of roofs and floor systems. Thus, there are different parameters that should be considered for 

optimal structures design. For example, the cross-section dimensions are generally assumed based 

on the service ability requirements. In order to control deflections within safe permissible limits, 

both the building width and depth are fixed and selected based on the wall thickness and the 

housing reinforcements. 

In addition, the reinforcements in the beam are designed for flexure and shear forces along the 

length of the beam based on structural analysis. The designed beam is checked for the limit state of 

serviceability and safety against collapse. 

Typically, the design of any structure is not unique as it can be performed in different ways as 

several parameters affect the reinforcements such as material property, loads on the beam, cross-

sectional dimensions of beam, etc. 

 

3.1 Structure design assumptions 
 

In the current study, the „IS 456-2000‟ (Indian Standard 2000) plain and reinforced concrete is 

followed. The „IS 456-2000‟ is an Indian standard code of practice for common structural use of 

plain and reinforced concrete, jointly with the limit state design procedure. Various parameters are 

considered, such as the loads of parapet walls on the top floor, loads on the outer walls of 

intermediate floors, loads on the internal walls of internal floors, the building area, the beams cross 

section, the columns section, number of beams, number of columns. 

Here, the „STAAD. Pro‟ is applied, which refers to the beams parallel to the x-axis and parallel 

to the z-axis. While, the beams parallel to the y-axis are considered as the columns. Every single 

node to node connection is considered one beam. Thus, line diagram is used by the system to plot 

10 different plans of „STAAD. Prov8i‟ structure. The „STAAD.Pro V8i‟ is an integrated finite 

element analysis (FEA) that used to analyze and design any structure exposed to different load 

types. From the STAAD output file, the values of the concrete‟s volume as well as the area of the 

reinforcement are obtained. In this structure, only beams and columns are designed. A slab design 

is not done, as it assumes the number of beams of one meter size to be used. While, the loads on 

the slabs are taken in the accounts and it is imposed on the beams. Besides in stair case, the loads 

are calculated then it is imposed on the adjacent beams.   

The cross sectional dimensions of the RC beams are selected based on some criteria of the IS 

456:2000. The effective depth and overall depth of the beam is calculated by the limit state method 

of serviceability. Also, it is assumed that the overall depth to width should be in the range of 1.5 to 
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2. The depth of the beam should be such that the percentage of steel required should be around 

75% of that particular sectional area. In the IS 456:2000 in „Clause 23.0‟ (Compliance with Law - 

Licenses), the procedure of beam design is given. Thus, the beam design is according to the clause. 

In „Clause 23.0‟, the effective depth of the beam is given. Even as, the clause number 22.5 of IS 

456:2000 is followed for the continuous beams moment and shear coefficients. The bending 

moment and the shear coefficients are calculated based on clause no. 22.5.1 and 22.5.1, 22.5.2; 

respectively (Indian Standard 2000). 

Moreover, „Clause 22.7‟followed by „37.1.1‟ are to be used for the redistribution of moments, 

where the latter describes the redistribution of moments in continuous beams and frames. If the 

moment capacity after redistribution is less than that from the elastic maximum moment diagram, 

the following relationship will be satisfied 

 

(1) 

Where, xu is the depth of neutral axis, d is the effective depth, and ∂M is the percentage 

reduction in moment.  

Furthermore, the Span/depth ratio of the continuous beam is given by the IS 456:2000, where 

the span is the length from a support centre to and the depth is the average depth from the top of 

the beam to the bottom. Therefore, the span-to-depth ration is the span divided by depth. There is a 

recommendation for basic span/depth ratio that can be modified by using factors kC, kt, kf. Where, 

the modification factor for compression reinforcement is kC, the modification factor for tension 

reinforcement is kt, while the reduction factor for flanged beam is kf. Normally heavy dead loads 

and live loads are carried by continuous beams. The span/depth ratio is between 15 and 20 in the 

practical cases. However, sometimes span/depth ratio is taken as 26 if the depth is shallow or high 

reinforcement is required.  

Since the deflection is defined as the degree to which a structural element is displaced under 

a load. Therefore, in this study, the deflection check is done as per Clause 23.2, where the control 

of deflection is given. Modification factor for tension reinforcement is achieved from the graph of 

modification factor versus the percentage tension reinforcement. Modification factor for 

compression reinforcement is achieved the graph of modification factor versus the percentage 

compression reinforcement (Indian Standard 2000). Slenderness limits for the beams to ensure the 

lateral stability is specified by Clause 23.3. The cantilever beams are used generally to support 

Chazza slabs or Canopy of largest span at the entry area of the building. The cantilever beams are 

generally designed for maximum moments and shear forces develops at support section; this is 

normally a reinforced concrete column. 

The column design has followed the procedure of the compression member as per Clause 

25.1.1. As the definition of the compression member of the column or strut is the effective length 

that exceeds three times the least lateral dimension. Clause number 25.1.2 describes the type of 

compression member. From Clause 25.1.2 Short and Slender Compression Members is defined. A 

compression member may be considered as short when both the slenderness ratios 
D

l
ex  and 

b

l
ey  

are less than 12, where: lex is the effective length with respect to the major axis, D is the depth with 

respect of the major axis, ley is the effective length with respect to the minor axis, and b with width 

of the member. Otherwise, it shall consider as a slender compression member. From Clause 25.1.3, 

the Unsupported Length of any compression member is calculated. The effective Length of the 

compression members is given in Clause number 25.2. In the absence of the more exact analysis, 
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the effective length of the columns is obtained as described in (Indian Standard 2000). If a column 

is sway or no sway that can be calculated by stability index Q that given by 

su

uu

hH

p
Q





                                (2) 

Where, Σpu is the sum of axial loads on all columns in the storey, Δu is the elastically computed 

first order lateral deflection, Hu is the total lateral force acting within the storey, and hs is the height 

of the storey. 

The effective length ratios for a column in a frame with no sway are calculated from the graph 

of β1 versus β2, where β1 and β2 are equal to 
 



bC

C

kk

k
. The summation is to be done for the 

members framing into a joint at top and bottom; respectively. Also, kC and kb are the flexural 

stiffness for column and beam; respectively. The effective length of the compression member is 

determined in (Indian Standard 2000). The slenderness limits for the columns are determined from 

Clause 25.3. The minimum eccentricity of the columns is determined from Clause 25.4. In the 

limit state of collapse: compression Clause 39 is followed. In case of the limit state of collapse: 

flexure Clause number 39 is specified. For the short axially loaded members in compression the 

axial load on the member is given in Clause 39.3. It can be determined by 

scyCCku
A.f.A.f.p 67040                            (3) 

Where, the axial load on the member is pu, the concrete area is AC, while the longitudinal 

reinforcement for the columns area is AsC, fck is the concrete characteristic compressive strength 

and fy is the characteristic strength of compression reinforcement. 

In the case of compression member that are subjected to combined axial load and biaxial 

bending, following equation is used at the design time as (Indian Standard 2000) 
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                          (4) 

Where, Mux and Muy are the moments about x and y axes due to design loads, Mux1 and Muy1 are 

the maximum uniaxial moment capacity for an axial load of pu, bending about x and y axes; 

respectively, and αn is related to pu/puz. Where 

 
scyCCkuz

A.f.A.f.p 750450                           (5) 

For limit state of collapse: shear Clause 40 is followed. At the time of the loads calculation on 

the stair and during the design of stairs, Clause 33 is followed.        

Therefore, the pervious parameters are used to achieve the main contribution of the proposed 

study by predicting/ classifying the RC structures‟ failure based on the MLP-FFN with the scaled 

conjugate gradient algorithm as learning algorithm. 

 

3.1 Classification based on Neural Network 
 

A multistep procedure is followed to accomplish the classification of the RC structures‟ failure. 

The general classification steps for any application are as follows: i) The training phase, where a 

set of training data (part of the dataset that consists of attribute values) is used to identify an entity 
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along with its class label to construct the classification model. The model tries to acquire sufficient 

knowledge to understand how the entities are classified into giving classes. ii) The Evaluation 

(testing) phase, where the constructed model accuracy tests with a set of test data. This phase is 

used to find the class of each entity and evaluate the classification accuracy. For more accurate 

results, sometime data cleaning, data selection and transformation are performed. Generally, there 

are different data modeling tools, while the ANN (Haykin 1998) is considered the most popular 

one. It assures high precision and accurate classification even if very little data are available. These 

ANN advantages are due to its following characteristics: is a self-adaptive data driven method, has 

the capability to approximate any function with random accuracy (Hornik 1991), has the facility to 

model real life problems as it has nonlinear models, and is able to find posterior probabilities that 

provide a way to statistical analysis (Richard and Lippmann 1991). 

ANNs can formally be defined as structures comprised of highly interconnected adaptive 

simple processing units known as artificial neurons or nodes that are capable of performing 

parallel computation at a large scale of data processing and knowledge representation (Jain et al. 

1996, Schalkoff 1997). Mostly, nonlinearity, high parallelism, robustness, fault and failure 

tolerance, learning, ability to handle imprecise and fuzzy information, and their capability to 

generalize have been successfully embedded in an ANN (Jain et al. 1996). 

The principle idea behind the mechanics of a single artificial neuron and „Perceptron‟ are 

devised by Rosenblatt in 1958. An artificial neuron receives inputs as stimuli from the 

environment, combines them using the input signal (x) and their corresponding weights (w) to 

form „net‟ input (netj). The „net‟ input is then passed through a linear threshold filter and finally 

passes the signal (output, y) to another neuron. The neuron is activated if and only if netj exceeds 

the threshold (or bias „ϑj‟) of that neuron. The net input (netj) is calculated by the following linear 

equation 

i

n

i
ijj
xwnet 

1

                                 (6) 

It is computed for „n‟ input signals by adding the dot products of weight (w) and strength (x) of 

each signal. Thus, the output (y) which is the activation function is calculated as follows 
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Fig. 1 depicted a typical artificial neuron having an activation function, which used as step  

 

 

 

Fig. 1 A typical Artificial Neuron having „n‟ inputs 
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Fig. 2 A typical 2-layer perceptron feed-forward network 

 

 

function (Maren et al. 2014, Ghannouchi et al. 2015). The weighted sum of the inputs is used as 

transfer function. Though, several other functions such as sigmoid and logistic can be used. 

Several learning algorithms are available to train a NN. The perceptron learning rule is one of 

the basic learning algorithms that have been derived to get optimal weight vector infinite number 

of iterations, regardless of the initial weight vector. This rule has been found to be usable only for 

linearly separable classes. To improve the performance of NN several network architectures have 

been proposed. Fig. 2 depicts one typical 2-layer perceptron feed-forward network that is also used 

for the MLP-FFN experiments. 

Consequently, the MLP-FFN is to be used for the classification step in the proposed system. 

 
 
4. Proposed system 
 

The experiments are performed using real coded MLP-FFN. Scaled conjugate gradient 

algorithm (Møller 1993) has been used as the learning algorithm and Cross-entropy has been used 

as error function. The learning algorithm is well known and benchmarked against traditional BP 

and other algorithms. The network architecture MLP- FFN used was introduced in (Han and 

Kamber 2005). The basic flow of experiment opted in the present work is discussed below: 

i) Preprocessing: it is performed before the classification step on the dataset as follows: 

a) Feature Extraction: This step involves the task of extracting those attributes that are most 

important and have effective features to classify the dataset accurately into two or more 

classes. The selected, extracted features of the proposed system are mentioned clearly in the 

results section. 

Meanwhile, the classes‟ separation depends on the class distributions and the used classifier. 

Therefore, for optimum feature set with the Bayes classifier; the minimum error for the given 

distributions will be achieved. Then, classes‟ separation becomes equivalent to the probability of 

misclassification due to the Bayes classifier. Theoretically, the Bayes error is the optimum measure 

of feature effectiveness as it is calculated experimentally. That is, having selected a set of features 

intuitively from giving data; estimate the Bayes error in the feature space. A major disadvantage of 

the Bayes error is due to its explicit mathematical expression is not available except for a very few 

special cases. Even for normal distributions, the calculation of the Bayes error involves a 

numerical integration, except for the equal covariance case. 
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b) Data Cleaning: The data might contain missing values or noise. It is important to remove 

noise and fill up empty entries by suitable data by means of statistical analysis.  

c) Data Normalization: is required before classification to reduce the distance between 

attribute values. It is generally achieved by keeping the value range in between -1 to +1.  

ii) Dividing the dataset into two parts, namely the training data set and the testing dataset. In 

the present work 90% of the data is used as training data and rest (10%) as validation & testing 

data. Since, the selection of test training and validation percentage is itself an optimization 

problem. Thus, a future scope is to select the optimal test training and validation percentage 

setting. 

iii) Training phase: the training dataset is supplied to different algorithms respectively to build 

the required classification model.  

iv) Testing phase: where the classification models obtained from the training phase is employed 

to test the accuracy of the model. 

The flow of the experiment has been depicted by the block diagram in Fig. 3. 

Fig. 3 demonstrated the proposed NN model consisting of the following processes: i) pre-

processing the RC dataset to extract the significant features such as the height of parapet wall, 

thickness of side/ inner walls of interior floors, depth/ width of the beam, breadth/ width of the 

column, concrete volume and the reinforcement area. This is followed by feature extraction, 

cleaning and normalization, performed to attain clean data with reduced distance between the 

attributes. ii) classification of RC structure data is a two class problem namely: „Structure Failure‟ 

and „No Structure Failure‟. 90% of the overall experimental data is used to train the neural 

network to classify the RC structure data instances. iii) Finally, test/ validation phases are 

performed followed by performance metrics generation. Classification output helps to predict the 

status of the RC structural failure. 

 

 

5. Results and discussion 
 

The experiments are carried out by following the previous proposed model. The initial dataset 

description has been depicted in Table 1. After „Feature Extraction‟ the features selected are 

tabulated in Table 2 by employing the greedy forward selection method as described in (Guyon 

and Elisseeff 2003). The experiments are then performed upon the dataset considering the features 

of Table 3.  

 

 

 

Fig. 3 Block diagram of proposed model 
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Table 1 Initial dataset features 

Sl. Feature Explanation 

1 NOC No. of columns 

2 NOB No. of beams 

3 A Area 

4 HPW Height of parapet wall 

5 TSIF Thickness of side walls of interior floors 

6 TIIF Thickness of inner walls of interior floors 

7 D Depth of beam 

8 wb Width of beam 

9 BC Breadth of column 

10 WC Width of column 

11 fy Grade of steel 

12 fck Grade of concrete 

13 q Bearing capacity of soil 

14 Vc Concrete volume 

15 Ar Reinforcement area 

 
Table 2 Dataset features after feature extraction 

Sl. Feature Explanation 

1 HPW Height of parapet wall 

2 TSIF Thickness of side walls of interior floors 

3 TIIF Thickness of inner walls of interior floors 

4 D Depth of beam 

5 wb Width of beam 

6 BC Breadth of column 

7 WC Width of column 

8 Vc Concrete volume 

9 Ar Reinforcement area 

 
Table 3 Typical example of confusion matrix of a binary classification problem 

Predicted Class 

Actual Class 
Positive Negative 

Positive TP FP 

Negative FN TN 

 

 

To measure the proposed system performance, several statistical performance measures such as 

the accuracy, precision, recall, Fp-rate and F-measure are to be calculated as given by (Sokolova 

and Lapalme 2009, Srivastava and Singh 2015). Measuring the performance parameters which are 

defined as follows; 

• Accuracy: is the ratio of sum of the instances classified correctly to the total number of 
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instances. 

tnfnfptp

tntp
Accuracy




                            (8) 

• Precision: is the ratio of correctly classified data in positive class to the total number of data 

classified as to be in positive class. 

fptp

tp
ecisionPr


                              (9) 

• Fp-Rate (false-positive rate): is the same as precision except it is measured on negative class. 

tnfp

fp
rate FP


                              (10) 

• Recall (TP rate): is the ratio of tp to the total number of instances classified under positive 

class. 

fntp

tp
callRe


                              (11) 

• F-measure: is a combined representation of Precision and Recall and is defined as follows. 

callReecisionPr

callRe*ecisionPr
*measureF


 2                      (12) 

Therefore, a confusion Matrix (Schalkoff 1997) is to be calculated to provide visualization of 

the performance of a classification algorithm. Each column of the matrix denotes the examples in a 

predicted class, while each row indicates the examples in an actual class. This helps to find out any 

type of misclassification due to the classifier. It provides more detailed analysis than classification 

accuracy. Classification accuracy is not a reliable metric for assessing the performance of a 

classifier as it may produce misleading results when the numbers of samples in different classes 

vary greatly. The confusion matrix entries can be defined as follows; 

i) True positive (TP) is the number of „positive‟ instances categorized as „positive‟. 

ii) False positive (FP) is the number of „negative‟ instances categorized as „positive‟. 

iii) False negative (FN) is the number of „positive‟ instances categorized as „negative‟. 

iv) True negative (TN) is the number of „negative‟ instances categorized as „negative‟. 

Fig. 4 depicted the Confusion matrices of training, validation, testing phases along with an 

overall confusion matrix for the proposed model. The model has achieved an outstanding 

performance of in training and validation phases by correctly classifying all data instances. Overall 

an accuracy of 99% has been achieved. 

In Fig. 5 the error histogram has been depicted for all data instances. The histogram has 

revealed that most of the instances have been found near the minimum error region. Thus, the 

model is found to be extremely accurate. In Fig. 6 the cross-entropy versus the Epochs plot has 

been shown.  

The plot in Fig. 6 revealed that the best validation performance (0.016) has been achieved at the 

50th epoch of validation phase. Fig. 6 reports that the best cross-entropy reaches the 50th epoch 

for both the training and validation phases. As Matlab NN tool box is extensively used for this 
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Fig. 4 Confusion matrices of training, validation, testing & overall cases. Class „1‟ denotes structural 

failure and „2‟ denotes the building is structurally stable 

 

 

Fig. 5 Error histogram of the different phases. Maximum instances have been found near 

minimum error region 
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Fig. 6 Cross-entropy versus epochs plot depicting the performance of the model in different phases 

 
Table 4 Performance measures of the proposed model for different phases 

 Training Validation Testing Overall 

Accuracy 100 100 80 99 

Precision 100 100 100 100 

Recall 100 100 50 98.04 

Fp-rate 0 0 0 0 

F-Measure 100 100 66.67 99.01 

 

 
study, available tr.best_epoch built-in function of the said tool box is used to evaluate the 

performance of network after training phase termination. Function output indicates the iteration at 

which the validation performance reached minima. Significant increase of test curve before the 

increase of validation curve indicates the possibility of test data over fitting. In the present work, 

90% of the data is used as training data and rest (10%) as validation & testing data. Selection of 

training, test and validation (in %) is in itself an optimization problem. It is believed that, more 

study is required to investigate the behavior of proposed classified model with larger data pool and 

size varying optimal partition selection of training, test and validation data. 

Since, the accuracy may not be a good performance parameter, hence the couple of other 

parameters that are obtained from the confusion matrix, has been used and are found to be 

promising. Table 4 illustrated different performance metrics for training, validation and testing 

phases along with the overall performance.  

Table 4 established that 100% precision has been achieved in the „Testing‟ phase, while the 

overall recall has a value of 98.04% for the proposed model. Therefore, the proposed system is 

promising and efficient for determining the status of the multistoried RC building structure. 
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6. Conclusions 
 

The present work has proposed an MLP-FFN based model to predict the structural failure of a 

multistoried RC building. The proposed model has been trained with a scaled conjugate gradient 

algorithm which has been found to be benchmarked against the traditional back-propagation and 

other algorithms. Besides, Cross-Entropy has been used as the error estimator. The performance of 

the model has been evaluated by using several standard performance measurement metrics. The 

experimental results have suggested that the proposed model is extremely successful in 

determining the structural status of a multistoried RC building structure.  
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