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Abstract.  In this paper, we propose a method for taking into account uncertainties based on the projection 

on polynomial chaos. Due to the manufacturing and assembly errors, uncertainties in material and geometric 

properties, the system parameters including assembly defect, damping coefficients, bending stiffness and 

traction-compression stiffness are uncertain. The proposed method is used to determine the dynamic 

response of a one-stage spur gear system with uncertainty associated to gear system parameters. An analysis 

of the effect of these parameters on the one stage gear system dynamic behavior is then treated. The 

simulation results are obtained by the polynomial chaos method for dynamic analysis under uncertainty. The 

proposed method is an efficient probabilistic tool for uncertainty propagation. The polynomial chaos results 

are compared with Monte Carlo simulations. 
 

Keywords:  uncertainty; one-stage gear system; polynomial chaos; assembly defect, random variable; 
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1. Introduction 
 

The gearing is the best solution to transmit rotational motions and couple which has been 

offered numerous advantages (Dalpiaz et al. 1996): it ensures a mechanical reliability. 

Furthermore, its mechanical efficiency is of the order of 0.96 to 0.99. But today, several 

applications inquire for the gearing transmissions to be more and more reliable, light and having 

long useful life that requires the control of the acoustic broadcast and the vibratory behavior of 

these gearings (Begg et al. 2000).  

Several parametric studies have shown the great sensitivity of the dynamic behavior of gear 

systems. However, these parameters admit strong dispersions. Therefore, it becomes necessary to 

take into account these uncertainties to ensure the robustness of the analysis (Nechak et al. 2011, 

Lee et al. 2012). Guerine study the dynamic response of a gear system with uncertainty associated 

to gear parameters (Guerine et al. 2015a, Guerine et al. 2015b, Guerine et al. 2016a, Guerine et al. 
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2016b). Also there are several studies in reliability for vibration structures taking into account the 

uncertainties (Mohsine and El Hami 2010, El Hami et al. 2009, Radi and El Hami 2007, El Hami 

and Radi 1996, El Hami et al. 1993). 

The gear transmissions are widely used in industry. They are of a great utility when it comes to 

of transmitting high torques, producing of high speed of rotation, making a change in direction of 

rotational movement. During the operations of assemblies, the relative positioning of teeth within 

a real transmission is dependent on the quality of realization of all the components of the 

transmission. In particular, this positioning will be affected by the defect of distance between axis 

of the wheels. To have a smooth running of the transmission of the gearings, it is necessary that the 

distance between wheels axis of functioning has to be equal to the normal distance between axis of 

the wheels. But in reality the gap between wheels axis of functioning will be different from the 

normal gap between axis of the wheels. 

Mitchell (Mitchell 1971) and Pearce (Pearce et al. 1986) consider that the distance between 

wheels axis is an important parameter but its influence on the transmission error has not been 

addressed. 

Remond observed a decrease in noise when we decrease slightly the distance between wheels 

axis of functioning as compared to the normal distance between axis of the wheels (Remond 

1991). 

The distance between wheels axis is an important parameter. It acts directly on the backlash of 

functioning and modifies the geometry of the contact. Indeed, we consider that the distance 

between axis of the wheels take an uncertainty value because in reality the distance between 

wheels axis of functioning will be different from the normal distance between wheels axis. 

Several methods are proposed in the literature. Monte Carlo (MC) simulation is a well-known 

technique in this field (Fishman 1996). It can give the entire probability density function of any 

system variable, but it is often too costly since a great number of samples are required for 

reasonable accuracy. Parallel simulation (Papadrakakis and Papadopoulos 1999) and proper 

orthogonal decomposition (Lindsley and Beran 2005) are some solutions proposed to circumvent 

the computational difficulties of the MC method. 

Polynomial chaos (PC) gives a mathematical framework to separate the stochastic components 

of a system response from the deterministic ones. The stochastic Galerkin method (Babuska et al. 

2004, Le Maître et al. 2001), collocation and regression methods (Babuska et al. 2007, Crestaux et 

al. 2009) are used to compute the deterministic components called stochastic modes in an intrusive 

and non-intrusive manner while random components are concentrated in the polynomial basis 

used. Non-intrusive procedures prove to be more advantageous for stochastic dynamic systems 

since they need no modifications of the system model, contrary to the intrusive method. In the 

latter, Galerkin techniques are used to generate a set of deterministic coupled equations from the 

stochastic system model, and then a suitable algorithm is adapted to obtain stochastic modes. 

The capabilities of polynomial chaos have been tested in numerous applications, such as 

treating uncertainties in environmental and biological problems (Isukapalli et al. 1998a, Isukapalli 

et al. 1998b), nonlinear random vibration (Li and Ghanem 1998), in multibody dynamic systems 

Sandu et al. 2006a, Sandu et al. 2006b), solving ordinary and partial differential equations 

(Williams 2006, Xiu and Karniadakis 2002a, Xiu and Karniadakis 2002b ), in component mode 

synthesis techniques (El Hami and Radi 1996, Sarsri et al. 2011) and parameter estimation (Saad 

et al. 2007, Blanchard et al. 2009, Blanchard et al. 2010, Smith et al. 2007).   

The main originality of the present paper is that the uncertainty of the assembly defect in the 

dynamic behavior study of the one stage gear system is taken into account. The main objective is 
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Dynamic behavior of the one-stage gear system with uncertainties 

to investigate of the capabilities of the proposed approach to determine the dynamic response of a 

spur gear system subject to uncertain assembly defect. Other contribution is to analysis the effect 

of an assembly defect on the gear system dynamic behavior. So, an eight degree of freedom system 

modelling the dynamic behavior of a spur gear system is considered. The modelling of a one stage 

spur gear system is presented in Section 2. In the next section, the theoretical basis of the 

polynomial chaos is presented. In Section 4, the equations of motion for the eight degrees of 

freedom are presented. In Section 5, the modeling of an assembly defect is presented. Numerical 

results are presented in Section 6. Finally in Section 7, to conclude, some comments are made 

based on the study carried out in this paper. 

   

 

2. Modelling of a one stage gear system 
 

The global dynamic model of the one stage gear system is shown in Fig. 1. This model is 

composed of two blocks (j=1 to 2). Every block (j) is supported by flexible bearing which the  

bending stiffness is x

j
k  and the traction-compression stiffness is y

j
k . 

The wheels (11) and (22) characterize respectively the motor side and the receiving side. The  

shafts (j) admit some torsional stiffness 

j
k . 

Angular displacements of every wheel are noticed by θ(i,j) with the indices j=1 to 2 designates 

the number of the block, and i=1 to 2 designate the two wheels of each block. Moreover, the linear 

displacements of the bearing noted by xj and yj are measured in the plan which is orthogonal to the 

wheels axis of rotation. 

In this study, we modelled the gear mesh stiffness variation k(t) by a square wave form (Fig. 2). 

The gear mesh stiffness variation can be decomposed in two components: an average component 

noted by kc, and a time variant one noted by kv(t) (Walha et al. 2009). 
The extreme values of the mesh stiffness variation are defined by 


min

kc
k

2 
and 





max min

2
k k

1








                             (1) 

 

 

 

Fig. 1 Global dynamic model of the one stage gear system 
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Fig. 2 Modelling of the mesh stiffness variation 

 

 

ε
α
 and Te represent respectively the contact ratio and mesh period corresponding to the two gear 

meshes contacts.  

  

 

3. Polynomial chaos method 
 

In this section, we propose a new methodological method based on the projection on 

polynomial chaos. This method consists in projecting the stochastic desired solutions on a basis of 

orthogonal polynomials in which the variables are Gaussian orthonormal (Dessombz 2000). The 

properties of the base polynomial are used to generate a linear system of equations by means of 

projection. The resolution of this system led to an expansion of the solution on the polynomial 

basis, which can be used to calculate the moments of the random solution. With this method, we 

can easily calculate the dynamic response of a mechanical system. 

Let us consider a multi-degrees of freedom linear system with mass and stiffness matrices [MT] 

and [KT] respectively. The equations of motion describing the forced vibration of a linear system 

are 

          
T TT T T

M Ku u f                                  (2) 

Where {uT} is the nodal displacement vector and {fT} is the external excitation. 

The chaotic polynomials ψm 
corresponding to the multidimensional Hermite polynomials 

obtained by the Eq. (3) 

   
  

   

 

  
 

 
 

   
 
 


 

 

T

T

1

1 P 2
P 2

m 1 P

1 P

e
,..., 1 e

...
                      (3) 

Where {α} is the vector grouping the random variables 

  T

1 P
...                                  (4) 

k(t) 

(α - 1) Te 

kmax 

kc 

   kmin   

(2 - α)Te 

Te 

Time (s) 
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Dynamic behavior of the one-stage gear system with uncertainties 

Where P is the number of random variables. 

The random matrices mass and stiffness [MT] and [KT] of the mechanical system can be written 

as 

        T T T0
M M M                               (5) 

        T T T0
K K K                               (6) 

The matrices [MT]0
 

and [KT]0 are deterministic matrices, the matrices ]
~

[ TM  and ]
~

[ TK  

correspond to the random part of the mass and stiffness matrices. 

]
~

[ TM  and ]
~

[ TK  are rewritten from an expression of type Karhunen-Loeve (Ghanem and 

Spanos 1991) in the following form 

  


    
P

T T pp

p 1

M M                              (7) 

  


    
P

T T pp

p 1

K K                               (8) 

Where αp are independent Gaussian centered reduced which may correspond to the first 

polynomial ψp, while the matrices [MT]p and [KT]p are deterministic. 

We pose α0=1, we can write then 

    



P

T T pp

p 0

M M                              (9) 

    



P

T T pp

p 0

K K                             (10) 

In the same way, we can write for {fT} 

    



P

T T pp

p 0

f f                              (11) 

The dynamic response is obtained by solving the following equation knowing that the initial 

conditions are predefined 

        eq T eq
K u t t F                            (12) 

Where 

        T Teq 0
K K a M                             (13) 

                    
eq 0 T 1T T TT 2

F t t a u t a u t a uf tM              (14) 

Where 




0 2

1
a

A t
, 




1

B
a

A t
 and 




2

1
a

A t
                     (15) 
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A and B are the parameters of Newmark.  

{uT}(t+Δt) is decomposed on polynomials to P Gaussian random variables orthnormales 

           




   n i i 1n

N
P

n

T

0

T
u t t u t t                     (16) 

Where N is the polynomial chaos order.  

[Keq] and {Feq}
 
are written in the following form 

     
  

          
P P

eq 0 eq2

0 0 0

P

T p T p pp p p
p p p

K MK a K                 (17)

 

                    

 

  



 



    



 



P P

eq T 0 T 1 T 2 T
0 0

p T ppp
p

0
0 p 0

P

eq2

0

p
p

p

MF f t t a u t a u t a u t

F     (18)

 

Substituting Eqs. (16), (17) and (18) into Eq. (12) and forcing the residual to be orthogonal to 

the space spanned by the polynomial chaos ψm yield the following system of linear equation 

      
 

     p n m p mnp

P N P

eq2 T eq 2

0
p

p n 0 p 0

K m 0, 1,u F . . . ,N           (19) 

Where N is the order of Polynomial Chaos. 

Where . .  denotes the inner product defined by the mathematical expectation operator. 

This algebraic equation can be rewritten in a more compact matrix form as 

 
 

 
 

 
 

 
 

 
 

   

   

   

 
 

 
 

 
 







     
    
    
        

     
    
    
            

000 0 N

T
0

T

N 0 NN

ji

j

T

j

N

N

u t t fD D

u t t f ,D

D D fu t t

           (20) 

Where 

 
 

 


   
ij

p i j
p

P

q 2

p

e

0

D K                        (21) 

 
 

   



j

p j
p

p

P

eq2

0

f F                          (22)  

After resolution of the algebraic system (20), the mean values and the variances of the dynamic 

response are given by the following relationships 

         T T
0

E u u t t                          (23)   

         


      j
n

N
2

n

T T

1

2

Var u u t t                     (24) 
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4. Equations of motion 
 

The equation of motion describing the dynamic behavior of our system (Fig. 1) is obtained by 

applying Lagrange formulation and is given by 

       x x

1 1 1
m x c x sin( )c( t ) L Q k x sin( ) k( t ) L Q 0               (25) 

         y y

1 1 1
m y c y cos( )c( t ) L Q k y cos k( t ) L Q 0               (26) 

         x x

2 2 2
m x c x sin( )c( t ) L Q k x sin k( t ) L Q 0               (27) 

         y y

2 2 2
m y c y cos( )c( t ) L Q k y cos k( t ) L Q 0               (28) 

        
1,1 1,1 1,2

I k Cm                            (29) 

                b b

( 1,2 )2,1 2,1 2,2 2,1
I r c( t ) L Q k r k( t ) L Q 0                  (30) 

                b b

( 2,1 )2,1 2,1 2,2 2,1
I r c( t ) L Q k r k( t ) L Q 0                  (31) 

        
2,2 2,1 2,2

I k 0                            (32) 

Where I is the moment of inertia of the wheels. 

Where L
 

is defined by 

         
b b

( 1,2 ) ( 2 ,1 )
L sin( ) sin( ) cos( ) cos( ) 0 r r 0           (33) 

b

( 1,2 )
r , b

( 2,1 )
r

 
represent the base gears radius. α is the pressure angle.  

{Q(t)} is the vector of the model generalized coordinates, it is in the form 

         
T

1 1 2 2 ( 1,1 ) ( 1,2 ) ( 2,1 ) ( 2,2 )
Q t x y x y                 (34) 

 
 
5. Modelling of an assembly defect 
 

The distance between wheels axis represents the distance between the centers of the pinion and 

the wheel. In normal functioning, its value is equal to the half sum of the primal rays of the pinion 

and the wheel. 

In an assembly operation, when we assembly the wheels that constitute the gear system we 

must verify the theoretical gap between wheels axis. For the first train, this theoretical gap shape1 

is defined by 

   1 1 2 2 1
 

, ,
e r r                               (35) 

r(j,i) represent the pitch radius of the wheels (12) and (21). 

Practically, it is impossible to verify this assembly condition and we will have a defect of 

distance between axis (noted by the algebraic value a) of the wheels. We suppose next that the  
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Fig. 3 Assembly defect 

 

 

block 1 is shifted from its theoretical position inducing an assembly defect. As it is represented in 

the Fig. 3, there are numerous consequences of this defect. 

Teeth gap provokes the average stiffness kav reduction since the average teeth thickness 

decreases. We approximate this average thickness variation by a decreasing linear function.  

Furthermore, and according to the definitions given by the norms of the AGMA, a defect assembly 

in gear design is accompanied by the change of the pressure angle and the primitive radius. 

The new angle of pressure can be written as 

   1 2 2 11

1


 
 
 
 

b b

, ,
r r

' cos
e a

                            (36)  

The new primitive radiuses are defined by 

 
 1 2

1 2


b

,

,

r
r'

cos( ' )
,    12 1 1 2

  
, ,

r' a e r'                     (37) 

 

 

6. Numerical simulation 
 

The technological and dimensional features of the one-stage gear system are summarized in the 

Table 1. 

 

6.1 Dynamic response for an assembly defect 
 

When we assembly the wheels that constitute the gear system, we must verify the theoretical 

gap between wheels axis. However, practically it is impossible to verify this assembly condition 

and we will have a defect of distance between axis of the wheels. We suppose next that the block 1  

   

a 

 X  

 Y    2,1
r '  

 
 
b

2,1
r  

 
 2,1

r  

 
 1,2

r  

  1,2
r '  

 
 
b

1,2
r  

 α 
 

α' 

 a 
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Table 1 System parameters 

Material : 42CrMo4 =7860 Kg/m
3
 

Motor torque Cm=200 N.m 

Number of teeth Z(12)=40 ; Z(21)=50 

Module of teeth module=4.10
-3

 m 

Contact ratio  = 1.7341 

The pressure angle =20° 

 

 
 
 

Fig. 4 Time dynamic response of the first bearing ― without assembly defect; ∙∙∙∙∙ with assembly 

defect (a=1 mm) 

 

 
 

 

Fig. 5 Time dynamic response of the second bearing ― without assembly defect; ∙∙∙∙∙ with assembly 

defect (a=1 mm) 

 

 

is shifted from its theoretical position inducing an assembly defect. 

Fig. 4 represents the temporal features of the dynamic components of the linear displacements 

of the first bearing in two directions x and y. The assembly defect with amplitude a=1 mm will 

A: x1                                                    B: y1                                                                                                   

Time (s) Time (s) 

A
m

p
li

tu
d

e 
(m

) 

A
m

p
li

tu
d

e 
(m

) 

A: x2                                                       B: y2                                                                                                      

Time (s) Time (s) 

A
m

p
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(m

) 

A
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p
li

tu
d

e 
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) 
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amplify the amplitude of the linear displacements on the first bearing. This result is the same on 

the second bearing. We represent on Fig. 5 the temporal features of the dynamic components of the 

linear displacements of the second bearing. 

Fig. 6 represents the frequency responses of the linear displacement of the first bearing. We 

clearly see the presence of several peaks in every signal. These peaks correspond to the mesh 

frequency fe=1300 Hz with its first harmonics. We notice that an assembly defect provokes the 

vibratory level amplification on the spectrums associated to the temporal signatures on the eight 

degrees of freedom of the model. 

 

6.2 Study with polynomial chaos  
 
In this section numerical results are presented for the proposed approach formulations derived 

in the Section 4. The polynomial chaos results are compared with Monte Carlo simulations with 

100000 simulations. 

The assembly defect a, the coefficients of damping c
x and c

y
, the bending stiffness k

x and the 

traction-compression stiffness k
y
 are supposed independent random variables and defined as follow 

0   aa a  0  x

x x

c
c c  0  y

y y

c
c c  0  x

x x

k
k k  0  y

y y

k
k k       (38) 

Where ξ is a zero mean value Gaussian random variable, a0, c
x
0, c

y
0, k

x
0 and k

y
0 are the mean  

values and σa,  xc
,  yc

,  xk
and  yk

 are the associated standard deviations. 

 

6.2.1 Effect analysis of the uncertain parameters  
The mean value and the standard deviation of the dynamic component of the linear 

displacement of the first bearing in two directions x and y and the second bearing in direction x 

have been calculated by the polynomial chaos approach using the same order (3
rd

 order). The 

obtained results are compared with those given by the Monte Carlo simulations with 100000 

simulations. 

Firstly, the effect of uncertain assembly defect is considered. The simulation of the mean value 

and the standard deviation of the dynamic component on the linear displacement of the first  
 

 

 
 

Fig. 6 Frequency responses of the first bearing with assembly defect 
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Fig. 7 Mean value and standard deviation of x1(t) considering uncertain assembly defect σa=3% 

 

 

Fig. 8 Mean value and standard deviation of x1(t) considering uncertain assembly defect σa=7% 

 

 

bearing following direction x is plotted in Figs. 7 and 8. The result shows that the uncertain 

assembly defect has a more significant influence on the dynamic response of the system. 

Then, the effect of uncertain damping coefficients is examined. Figs. 9 and 10 present the mean 

value and the standard deviation of y1. Compared with uncertain assembly defect, the effect of 

uncertain damping coefficients is less significant. The result shows that the polynomial chaos 

method can obtain high accuracy with uncertain damping coefficients. 

Figs. 11 and 12 show the mean value and the standard deviation of the dynamic component of 

the linear displacement of the second bearing following direction x considering the uncertain 

bending stiffness k
x and the traction-compression stiffness

yk . The results show that as the level of 

uncertainty increases from  x yk k
=3% to  x yk k

=7%, the error using the same order (3
rd

 

order) polynomial chaos also increases. 
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Fig. 9 Mean value and standard deviation of y1(t) considering uncertain damping coefficients 
x yc c

  =3% 

 

  

Fig. 10 Mean value and standard deviation of y1(t) considering uncertain damping coefficients
x yc c

  =7% 

 

  

Fig. 11 Mean value and standard deviation of x2(t) considering uncertain bearings stiffness 
x yk k

   =3% 
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Fig. 12 Mean value and standard deviation of x2(t) considering uncertain bearings stiffness
x yk k

   =7% 

 

 

Fig. 13 Mean value and standard deviation of x2(t) considering uncertain assembly defect σa=15% 

 

 

6.2.2 Effect analysis of the polynomial chaos order  
The mean value and the standard deviation of the dynamic component of the linear 

displacement of the second bearing in two directions x and y are presented in Figs. 13 and 14 for 

σa=15%. 

The polynomial chaos results are compared with Monte Carlo simulation with 100000 

simulations. It is evident from these figures that N=3 case clearly does not have enough chaos 

terms to represent the output. As N increases, the results seem to become better and the error 

decreases with the increase of the polynomial chaos order N. With N=10, the dynamic response of 

the linear displacement of the second bearing with polynomial chaos values almost exactly match 

with the Monte Carlo simulation results and the error is fairly minimal indicating the results are 

very close to those of Monte Carlo. An N=10 has been used for the PC model and is seen to be 

enough to capture the dynamic response of the linear displacement of the system. 
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Fig. 14 Mean value and standard deviation of y2(t) considering uncertain assembly defect σa=15% 

 
 
7. Conclusions 
 

An approach based on the polynomial chaos method has been proposed to study the dynamic 

behavior of one stage gear system was modeled by eight degrees of freedom in the presence of 

assembly defect that admits some dispersion. The one stage gear system behavior is affected by 

assembly defect. This defect increases the vibratory level. The polynomial chaos method has been 

used to determine the dynamic response of this system. The efficiency of the proposed method 

compared with the Monte Carlo simulation. The main results of the present study show that the 

polynomial chaos may be an efficient tool to take into account the dispersions of the assembly 

defect in the dynamic behavior study of a spur gear system. An interesting perspective is to apply 

this method to a system with higher degree of freedom like epicyclic gear system. Further work in 

this context is in progress.  
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