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Abstract. In the present work, a simple first-order shear deformation theory is developed and validated for
a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates
with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the
present first-order shear deformation theory involves only four unknowns and has strong similarities with
the classical plate theory in many aspects such as governing equations of motion, and stress resultant
expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed
to be graded in the thickness direction according to a simple power-law distribution in terms of the volume
fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The
thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness
direction. The results reveal that the volume fraction index, loading type and functionally graded layers
thickness have significant influence on the thermal buckling of functionally graded sandwich plates.
Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve
the same accuracy of the existing conventional first-order shear deformation theory which has more number
of unknowns.

Keywords: plate theory; thermal buckling; functionally graded plate; sandwich plate; volume fraction
index

1. Introduction

Sandwich structures made of a core bonded to two face sheets are widely employed in the
aerospace industry because of their important bending rigidity, low specific weight, excellent
vibration properties and good fatigue characteristics. However, the sudden variation in the material
properties from one layer to another can lead in stress concentrations which produce generally an
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interface debonding. To overcome this type of damage, the solution of functionally graded (FG)
sandwich structures is developed. In such materials, two face sheets are made from isotropic
FGMs while the core is made from an isotropic homogeneous material. Thanks to the smooth and
continuous change in the characteristics of FGMs, the stress concentration which can be occurred
in laminated sandwich structures is avoided in FG sandwich structures. FGMs are widely
employed in many engineering applications such as spacecraft industry, mechanics, civil
engineering, aerospace, nuclear, automotive and so on (Miamoto et al. 1999, Lu et al. 2009, Ould
Larbi et al. 2013, Hadji et al. 2014, Yaghoobi et al. 2014, Liang et al. 2014, 2015, Bouguenina et
al. 2015, Hebali et al. 2015, Ait Atmane et al. 2015, Pradhan and Chakraverty 2015, Sallai et al.
2015, Sofiyev and Kuruoglu 2015, Kar and Panda 2015, Bourada et al. 2015, Arefi 2015, Akbas
2015, Al-Basyouni et al. 2015, Kirkland and Uy 2015, Ebrahimi and Dashti 2015, Hadji and
Adda Bedia 2015a,b, Cunedioglu 2015, Meksi et al. 2015, Meradjah et al. 2015, Darilmaz 2015,
Ait Atmane et al. 2016, Bellifa et al. 2016).

With the increased use of FG sandwich structures in the design of engineering structures,
understanding their mechanical behaviors becomes an essential task (Lu et al. 2009, Talha and
Singh 2010, Shahrjerdi et al. 2011, Wen et al. 2011, EI Meiche et al. 2011, Jha et al. 2013,
Chakraverty and Pradhan 2014, Mantari and Granados 2015). Indeed, in scientific literature,
several researches have been reported on the bending, dynamic, and buckling analyses of sandwich
plates with FG face sheets. Using an accurate higher-order shear deformation theory (HSDT),
Natarajan and Manickam (2012) investigated the static and free vibration response of two types of
FG sandwich plates. Bourada et al. (2012) proposed a new four-variable refined plate theory for
thermal buckling analysis of FG sandwich plates. Based on the first-order shear deformation plate
theory (FSDT), Yaghoobi and Yaghoobi (2013) studied the buckling response of sandwich plates
with FG face sheets resting on elastic foundation. Kettaf et al. (2013) developed a new hyperbolic
shear displacement model for thermal buckling response of FG sandwich plates. Tounsi et al.
(2013) analytically studied the thermoelastic bending problem of FG sandwich plates based on the
refined trigonometric shear deformation theory. Sobhy (2013) investigated the free vibration and
the buckling responses of exponentially graded sandwich plates resting on Pasternak elastic
foundation. Bessaim et al. (2013) employed a new higher-order shear and normal deformation
theory for the static and free vibration behavior of sandwich plates with functionally graded
isotropic face sheets. Houari et al. (2013) investigated the thermoelastic bending response of FG
sandwich plates using a new higher order shear and normal deformation theory. Xiang et al.
(2013) studied the free vibration behavior of FG sandwich plates by employing an nth-order shear
deformation theory and a meshless method, while Ait Amar Meziane et al. (2014) examined the
buckling and free vibration of FG sandwich plates using an efficient and simple refined shear
deformation theory. Three-dimensional finite element simulations for investigating low velocity
impact behavior of sandwich panels with a FG core were presented by Etemadi et al. (2009).
Swaminathan and Naveenkumar (2014) proposed a higher order refined computational models for
the stability analysis of FG sandwich plates. Khalfi et al. (2014) proposed a refined and simple
shear deformation theory for thermal buckling of solar FG plates on elastic foundation. Ahmed
(2014) examined the post-buckling of FG sandwich beams by employing a consistent higher order
theory. Bennai et al. (2015) presented a new higher-order shear and normal deformation theory for
FG sandwich beams. Bakora and Tounsi (2015) analyzed the thermo-mechanical post-buckling
response of thick FG plates resting on elastic foundations. Bouchafa et al. (2015) discussed the
thermal stresses and deflections of FG sandwich plates using a new refined hyperbolic shear
deformation theory. Hamidi et al. (2015) presented a sinusoidal plate theory with 5-unknowns and
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stretching effect for thermo-mechanical bending behaviour of FG sandwich plates. Mahi et al.
(2015) proposed a new hyperbolic shear deformation theory for bending and free vibration
analysis of isotropic, functionally graded, sandwich and laminated composite plates. Tebboune et
al. (2015) studied the thermal buckling response of FG plates resting on elastic foundation based
on an efficient and simple trigonometric shear deformation theory. Zidi et al. (2014) presented the
bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable
refined plate theory. Ebrahimi and Habibi (2016) examined the bending and vibration behaviour of
higher-order shear deformable compositionally graded porous plate. Hadji et al. (2016) analyzed
the mechanical response of FG beam using a new first-order shear deformation theory. Bennoun et
al. (2016) developed a novel five variable refined plate theory for vibration analysis of FG
sandwich plates.

It should be signaled that HSDTSs are highly computational cost because of their use of many
unknowns (e.g., theories (Talha and Singh 2010) with eleven unknowns and (Natarajan and
Manickam 2012) with thirteen unknowns). To reduce computational cost, HSDTs with four and
five unknowns were recently proposed for FG plates (see references (Benachour et al. 2011,
Tounsi et al. 2013, Bouderba et al. 2013, Thai and Kim 2013, Thai and Choi 2011, 2013,
Yaghoobi and Fereidoon 2014, Thai et al. 2014, Belabed et al. 2014, Fekrar et al. 2014, Draiche et
al. 2014, Bousahla et al. 2014, Mantari and Guedes Soares 2014, Nedri et al. 2014, Attia et al.
2015, Jiang et al. 2015, Chattibi et al. 2015, Ait Yahia et al. 2015, Sobhy 2015, Nguyen et al.
2015).

This work presents the thermal buckling response of FG sandwich plates composed of FG face
sheets and an isotropic homogeneous core using a simple first-order shear deformation theory
(FSDT). By considering a further assumption, the number of variables and governing stability
equations of the present FSDT is diminished, thus makes it simple to use. Indeed, the number of
unknown variables involved in the present model is only four, as opposed to five in the case of the
conventional FSDT. Various boundary conditions are considered in this work. Governing
equations are obtained from the principle of minimum total potential energy. Analytical solutions
for thermal buckling analysis of FG sandwich plates are determined. Numerical results are
presented to prove the accuracy of the present formulation.

2. Theoretical formulation

In this work, a sandwich plate composed of three layers is considered as presented in Fig. 1.
Two FG face sheets are made from a mixture of a metal and a ceramic, while a core is composed
of an isotropic homogeneous material. The vertical positions of the bottom surface, the two
interfaces between the core and faces layers, and the top surface are denoted, respectively, by
ho=—h/2, hy, h, and hs=h/2. The total thickness of the FG plate is h, where h=tc=trgy and tc=t,—h;.
tc and teoym are the layer thickness of the core and all-FGM layers, respectively. The material
properties of FG face sheets are supposed to change continuously within the plate thickness
according to a power law distribution as

P(Z) = I:)m + (Pc - Pm)\/ (1)

where P denotes the effective material property such as Young’s modulus P, Poisson’s ratio Vv,
thermal expansion coefficient «; subscripts ¢ and m represent the ceramic and metal phases,
respectively; and V is the volume fraction of the ceramic phase expressed by
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" Fig. 1 Geometry of the FGM sandwich plate
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where p is the power law index that governs the volume fraction gradation.
2.1 Kinematics and constitutive equations

The displacement field of the conventional FSDT is given by
U(X,y,2) =Ug (X, y) + 20, (X, Y)
V(X Y,2) =V (X, Y) + 20, (X, Y)
W(X, Y,2) =Wy (X,Y)

)

®3)

where Up, Vo, Wo, ¢x and gy are five unknown displacement functions of the midplane of the plate.
Using the same methodology presented by Bouremana et al. (2013) in the case of beam, the

displacement field of the new FSDT can be expressed in a simpler form as

oW,
U(Xx,Vv,z2)=uU,(X, —7—
(X,,2) =u,(X,y) P

OW,
V(X Y, 2) = Vo (X, y) — N

W(X! yl Z) = Wb (X’ y) + Ws (X, y)

(4)

Clearly, the displacement field in Eq. (4) has only four unknowns (ug, Vo, Wy, Ws). In fact, this
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reduction of the unknown variables is due to dividing the vertical displacement w into bending
and shear parts (i.e., w=wy+ws) and the further assumptions given by p,=—0ow,/0x and ¢,=—0w,/dy.
The non-linear von Karman strain-displacement equations are as follows

ou 1l(ow, ow,
g, =—+=| —+—
ox 2

ox  OX
Lo 1(8w ow, j
oy 2ley oy
ov ou (ow, ow,\ ow, 8w
Vo =+t —+ +
oX oy OX oy ay
o [ ow, aw
Ve =t
0z Gy 8y
ou (ow, ow
=4 5
e =5 ( ox X ] ©)
On the basis of the displacement field presented in Eq. (4), Eq. (5) becomes
g, =&l +1k’
e, =& +zk;
Vi =V T 2Ky
Ve =Vy (6)
}/XZ :7;2

where

T X2 ox

o _ 1(% é‘wsf

Yooy 2loy oy

o OV U, (ow, ow, ) ow, ow,
T = oy Uax & oy
kb:_azwb

§ ox?

kb:_azwb

y ayZ

kb __Zazwb
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7/5 _ aWs
yz ay
s _ oW, ()
Ve = OX
The linear constitutive relations of a FG sandwich plate can be written as
() q(n n
o]" [Qu @ 0 0 0]"[a] [a@)"”
oy Q. Q, 0 0 0 ey | |a(@)
¢ =0 0 Q, 0 0 Yei—1 0 ¢ T(2) (8)
TXZ O O 0 Q55 0 7/)(2 O
Ty | 0 0 0 0 Qg | Yy 0

where (oy, 0y, Tyz, T Txy) aNA (&x, &y, Wy2s Pxr Pxy) @re the stress and strain components, respectively.
T(z) is the temperature difference with respect to the reference and the stiffness coefficients, Qj;,
can be expressed as

E(n) Z n n
0-Q =2 Qi -vap (o2

Qi = Qi = Q' =6(2)" =

(9b)

2.2 Stability equations

The equilibrium equations of FG sandwich plates under thermal loadings may be obtained on
the basis of the stationary potential energy (Reddy, 1984). The equilibrium equations are obtained
as

oN
Suy: Ny, By g
OX oy
ON,, ON,
oVy,: —+——=0
X oy (10)
2 o*M,, o*M, —
5wb:aN2|X+2 L+—2L+N=0
OX oxoy oy
0 _
SW, : aQX+—QV+N=0
OX
with
2 2 2
N: Nxa (ijws)_'_Nya (Wb—:ws)_'_Znya (Wb+Ws) (11)
OX oy Oxoy
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Using constitutive relations, the stress and moment resultants are defined as

h/2

(NX’NY’NXY): O-X’O-y'rxy)dz (128)
-h/2
h/2

M, M, M )= (o, , Jedz (12b)
-h/2
h/2

QX ! Q (sz ! z-yz )dZ (12C)

-h/2

Upon substitution of Eq. (6) into Eq. (8) and the subsequent results into Eqg. (12) the stress
resultants are obtained in the matrix form as

N, A, A, 0 B, B, 0|¢g \M

N, A, A, 0 B, By 0 5(3? Ny

N 0 0 0O 0 B

MXI ) B, By Age Dy, Dy 86 7;()(: ) MOI s
M, B, B, 0 D, D, 0 |k, My

My] [0 0 By 0 0 Dg|lk, 0

{Qx} _ {Hss 0 }{7;} (13b)
Q, 0  Hy 7)3/2

where (A, Bjj, Dj)) and (Has, Hss) are the stiffness coefficients defined by

hi2 A

(Au’ B;,D ): J(l z, Zz)Qi,- (2)dz=73" f(l z,2° Q" (2)dz (14a)
-h/2 n=1 hy 1

H, =Hg =k hj2Q44(Z)dz = kz IQ(n)(Z)dZ (14b)
_h/2 np

with k being the shear correction factor.
The stress and moment resultants, N =NJ and M; =M/ to thermal loading are defined by

{ANA} [ f2ewre] o if CDraie 0

X -h/2

In order to obtain the stability equations and study the thermal buckling behavior of the FG
sandwich plate, the adjacent equilibrium criterion is employed (Brush and Almroth 1975). By
employing this approach, the governing stability equations are determined as
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L 0N}
Ny Ny,
OX oy
oN;, +ﬁ:0
OX oy (16)
*ML  _O’My  O°M| o2 (wi +w}) 02 (w} +w) o2 (w +w})
42— L4 ——L 4Ny P+ NJ Pl 2N /=0
OX Oxoy oy OX oy oxoy

1
62(w§ +W§)

oxoy

ny and NS are the pre-buckling forces. Eqg. (16) can be written in terms of

6Q Q

V00 o wrwd) 0w +w)

=0
ox oy X2 Y ay?

0
+2NXy

where N°

displacements ((U,, Vg, W; ,W:) by substituting for the stress resultants from Eq. (13). For FG
sandwich plate, the stability equations Eq. (16) take the form

Aildllué + A%adzzué + (A12 + Ase )dlzvé - Blldlllwtl) - (Bl2 + 2866)d122Wk1; = O: (173)
Azzdzzvé + A\aednvtlu + (A12 + Ase )dlzué - Bzzdzzzwé - (BIZ + ZBGG)dllz\Ntl) = 0, (17b)
Blldmu(l) + (Blz + 2866 )dlZZUé + (BlZ + ZBsa)dnzV(lJ + Bzzdzzzvé - Dlldllllvvé - 2(D12 + 2D66)d1122Wé
- Dzzdzzzzwi + NS dn(Wé + \Aé)+ N;(/)dzz(wé +W§)= 0
(17¢c)
H55d11Wi + H44d22Wi + NS dn( b +V\é)+ N;)dzz( b +W:)= 0 (17d)

3. Thermal buckling solution

The exact solution of Eq. (17) for the FGMs sandwich plate under various boundary conditions
can be constructed. The boundary conditions for an arbitrary edge with simply supported and
clamped edge conditions are:

* Clamped (C)
Up=Vo =W, =W, /OX=0W, /oy =W, =ow, /ox=0w,/oy=0at x=0,a and y=0,b (18)
« Simply supported (S)
Vo =W, =0ow, /oy =w, =0w,/ody=0at x=0,a (19a)
Up =W, =0W, /oX=wW, =ow,/ox=0at y=0,b (19b)

The following representation for the displacement quantities, that satisfy the above boundary
conditions, is appropriate in the case of our problem
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Table 1 The admissible functions Xq,(x) and Y, (y)

Boundary conditions The functions X, and Y,
At x=0, a Aty=0, b Xm(X) Yn(y)
Xm(0)=X,(0)=0 Y, (0)=Y,(0)=0 , .
A
Xp@=X,@=0  Y,[)=Y,®)=0 ) Sy
csss  n@=Xn@=0 ¥, (O=Y, =0 G 3 lcos x)—1] sin( 2 y)
Xn@=X,(@=0 Y, (b)=Y,(b)=0

Xy (0)=X,(0)=0 Y, (0)=Y,(0)=0

SSSS

A ) : ~
CSCS @ =X @)=0  Y.(b) =Y (b) =0 sin(4 x)[cos(A x) -1 sin(u x)[cos(u x) —1]
cess  mO=Xn@=0 1 ¥,O) =Y, 0)=0 sin(4 x) sin(u y)
Xn@)=X,@=0  Y,(b)=Y,(0)=0
X, (0)=X,(0)=0 ~Y'(0) =
ccce n(0)=X,(0) "n(©=Y,(0)=0 sin(4 x) sin(uy)

Xp@=X,@=0 Y, (b)=Y,(b)=0
Xn(0)=X,0)=0  Y,(0)=Y,(0)=0 ) - .,
FFCC X' (@) = X" (a) =0 Y (B)=Y (b) =0 cos” (4 x)[sm 4 x)+1] sin“(uy)

()’ Denotes the derivative with respect to the corresponding coordinates.

X (¥)

Ué Umn TYn(y)

1
VO = an X m (X) aYn—(y) (20)
Wyq oy
w 1 Wbmn X m (X)Yn (y)

s0

Wernn X ()Y, (Y)

where Ui, Vinn, Womn, and Wqn, are arbitrary parameters.

The functions X,(x) and Y,(y) are suggested by Sobhy (2013) to satisfy at least the geometric
boundary conditions given in Eqgs. (18) and (19), and represent approximate shapes of the
deflected surface of the plate. These functions, for the different cases of boundary conditions, are
listed in Table 1 noting that A=mz/a and x=nz/b.

Substituting expressions (20) into the governing Eqg. (17), we can obtain, after some
mathematical manipulations, the following equations

u Sp Sis Sia Uin
S22 S23 . Sz4 . an -0 (21)
31 Ssz S33 _ﬂE S34 _ﬂE Wbmn
S42 S43 —ﬂP S44 —ﬂP Wsmn
in which
Sy =ALa, + Ay
Si = (AL + A )
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wn

13 =—Buag, — (B:I.Z + 2By )as
14 = 0

wn

Sy = (A12 + Ass )alo
Sy = Apa, + Aty
S,; =-B,,a, —(812 +2Bgg )0‘10
S,, =0
Ss1 = Buays + (B, +2Bgg )y,
Sz, = (B, +2Bgg)ay, + By
S3s = —Dyay; —2(Dy, +2Dgg )y, — Dy
Sy =—Djioy; —2(Dy, +2Dgg)ay, — Doy
S41 =0
S, =
S4 =—Djiay; —2(Dy, +2Dgg)ay, — Do
Su =—Hpou; —2(Hp, +2Hg )y, — Hoa + Alay + A,
P=N?
E=NJIN]
B =Sy +aq

(a7r Ay, Ay, a13):j.j‘.(xrvnYr;v X;Yn’ Xrlr'\Yn"’ Xryr"]‘YnX Y
00

The non-trivial solution is obtained when the determinant of Eq. (21) equals zero.

3.1 Buckling of FGM plates under uniform temperature rise

(22a)

(22b)

The plate initial temperature is assumed to be T;. The temperature is uniformly raised to a final
value T; in which the plate buckles. The temperature change is AT=T¢T,;. The thermal force

resultant is evaluated as

hﬂ

EC (Z)a (z)AT

3
n=1 hyt

(23)

3.2 Buckling of FGM plates subjected to graded temperature change across the

thickness
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We assume that the temperature of the top surface is T; and the temperature varies from T,
according to the power law variation through-the-thickness, to the bottom surface temperature T,
in which the plate buckles. In this case, the temperature through-the-thickness is given by

z 1Y
T(z):AT(HJrE) +T, (24)

where the buckling temperature difference AT=T,—T;and y is the temperature exponent (0<y<co).

Note that the value of y equal to unity represents a linear temperature change across the
thickness. While the value of y excluding unity represents a non-linear temperature change
through-the-thickness. Similar to the previous loading case, the critical buckling temperature
change AT, is obtained by using Egs. (24) and (23).

4. Numerical results

In this section, numerical examples are proposed and discussed for checking the accuracy of
the present formulation in predicting the thermal buckling temperatures. Critical buckling
temperatures are obtained and the comparison is carried out with the existing results.

The first comparative study for evaluation of the critical buckling temperature difference T,
between the proposed theory and the solution developed by Zhao et al. (2009) based on FSDT, in
conjunction with the element- free kp Ritz method, results of Kiani et al. (2011) based on the
combined Galerkin-power series solution, results of Nguyen-Xuan et al. (2011) based on the
smoothed finite elements method, results of Bateni et al. (2013) based on the multi-term Galerkin
solution and those of Bouhadra et al. (2015) is performed in Table 2. The plate here is subjected to
a uniform temperature rise across the thickness and with clamped boundary conditions. From the
results presented in Table 2, it is observed that our results have a good agreement with the

Table 2 Critical buckling temperature difference T, of a clamped square Al/Al,O; FGM plate under uniform
temperature rise for different values of power law index p and side-to-thickness ratio

h/a Theory p=0 p=0.5 p=1 p=2 p=5
Present 181.299 102.787 84.306 74.738 77.025
Bouhadra et al. (2015) 181.300 102.795 84.307 74.715 76.934
0.01 Zhao et al. (2009) 175.817 99.162 82.357 71.013 74.591
Kiani et al. (2011) 182.06 103.15 84.58 74.99 77.36
Nguyen-Xuan et al. (2011) 188.28 105.27 86.07 76.07 78.06
Bateni et al. (2013) 180.30 102.23 83.84 74.30 76.50
Present 45.529 25.800 21.157 18.756 19.345
Bouhadra et al. (2015) 45.529 25.800 21.156 18.754 19.339
0.02 Zhao et al. (2009) 44.171 24.899 20.771 18.489 19.150
Kiani et al. (2011) 4551 25.79 21.15 18.75 19.34
Nguyen-Xuan et al. (2011) 47.50 26.54 21.70 19.18 19.70

Bateni et al. (2013) 45.28 25.65 21.04 18.65 19.23
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Table 3 Material properties used in the FG sandwich plate

Properties Metal: Ti-6A1-4V Ceramic: ZrO,
E (GPa) 66.2 244.27
v 0.3 0.3
a (10°/K) 10.3 12.766

Table 4 Minimum critical temperature parameter aT. of the simply supported isotropic plate (a/b=1,
05=1.0x10° K, E=1.0x10® N/m?, v=0.3)

a/h Present Kettaf et al. (2013) Matsunaga (2005)
10 0.1198 10" 0.1198 10" 0.1183 10"
20 0.3119 10° 0.3119 10° 0.3109 10
100 0.1265 10°° 0.1265 10 0.1264 10°°

Table 5 Critical buckling temperature (10%zAT,) of a homogeneous isotropic plate under uniform
temperature rise

b/a Theory a/h=5 a/h=10 a/h=15 a/h=25 a/h=50
Present 80.90487 27.72437 13.23020 4.94967 1.25824

FSDPT® 80.90487 27.72437 13.23021 4.94968 1.25824

05 HSDPT® 81.15170 27.73347 13.23144 4.94979 1.25825
' SSDPT® 81.18685 27.73638 13.23205 4.94987 1.25825
TSDPT® 81.09991 27.73011 13.23079 4.94970 1.25824

CPT 126.5334 31.63335 14.05927 5.06134 1.26533

Present 41.29710 11.97782 5.48619 2.00643 0.50500

FSDPT® 41.29710 11.97782 5.48619 2.00643 0.50499

1 HSDPT® 41.32613 11.97877 5.48633 2.00644 0.50500
SSDPT® 41.33313 11.97927 5.48643 2.00646 0.50500

TSDPT® 41.31747 11.97825 5.48623 2.00643 0.50499

CPT 50.61336 12.65334 5.62371 2.02453 0.50613

Present 27.72437 7.63907 3.46060 1.25824 0.31589

FSDPT® 27.72437 7.63907 3.46060 1.25824 0.31589

) HSDPT® 27.73347 7.63938 3.46065 1.25824 0.31589
SSDPT® 27.73638 7.63958 3.46069 1.25825 0.31589

TSDPT® 27.73011 7.63918 3.46061 1.25824 0.31589

CPT 31.63335 7.90834 3.51482 1.26533 0.31633

Present 23.55569 6.39227 2.88670 1.04784 0.26288

FSDPT® 23.55569 6.39227 2.88670 1.04784 0.26288

. HSDPT® 23.56145 6.39248 2.88674 1.04785 0.26288
SSDPT® 23.56351 6.39261 2.88676 1.04785 0.26288

TSDPT® 23.55914 6.39233 2.88671 1.04784 0.26288

CPT 26.31895 6.57974 2.92433 1.05276 0.26319

@ Taken from Kettaf et al. (2013)

available data in (Bouhadra et al. 2015, Zhao et al. 2009, Kiani et al. 2011, Nguyen-Xuan et al.
2011, Bateni et al. 2013). Good agreement is demonstrate between our results and the available
data (Zhao et al. 2009, Kiani et al. 2011, Nguyen-Xuan et al. et al. 2011, Bateni et al. 2013,
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Bouhadra et al. 2015).

For numerical results, the combination of materials consists of Titanium and Zirconia. The
Young’s modulus and the coefficient of thermal expansion for Titanium and Zirconia are given in
Table 3.

In order to prove the accuracy of the present method, a comparison study is made with the
results obtained by both Matsunaga (2005) based on two-dimensional global higher-order
deformation theory and Kettaf et al. (2013) based on hyperbolic shear deformation plate theory
(HSDPT) for simply supported homogeneous isotropic plates under uniform temperature rise. The
critical buckling temperature difference is listed in Table 4. As this table shows, the present results
have a good agreement with those reported in Ref. (Matsunaga 2005). Excellent agreement can be
observed for different values of thickness ratio a/h.

Non-dimensional critical buckling temperatures (10%¢,AT,) of homogeneous isotropic plate
(p=0, E(2)=Eq, a(2)=aq, v=0.3) for different values of the side-to-thickness ratio a/h and aspect
ratio b/a are listed in Table 5. The calculated non-dimensional critical buckling temperatures are
compared with those reported by Kettaf et al. (2013). It should be noted that the results reported
by Kettaf et al (2013) were based on hyperbolic shear deformation plate theory (HSDPT),
sinusoidal shear deformation plate theory (SSDPT), third shear deformation plate theory (TSDPT),
and the conventional first shear deformation plate theory (FSDPT) with five independent
variables. An excellent agreement between the results is obtained for all values of geometric ratios
a/h and b/a. The difference between the shear deformation plate theories and the CPT decreases as
the ratios a/h or b/a increase because the plate becomes thin or long. It should be recalled that the
present theory contains only four unknowns and four governing equations, while the number of
unknowns and governing equations of the SSDPT, TSDPT and FSDPT is five. Thus, it can be
stated that the present model is not only accurate but also simple in predicting the critical buckling
temperature of FG sandwich plates.

For verification of the thermal buckling solutions obtained in this work, the critical buckling
temperature difference (Tcr=10'3ATcr), for FG sandwich plates for the uniform, linear and nonlinear
cases of temperature distribution through the thickness are shown in Tables 6-8, respectively. The
comparison between the present simple first-order shear deformation theory and different CPT,
FSDPT, SSDPT, TSDPT and HSDPT is established. A good agreement between the results is seen
for all values of volume fraction index p and thickness of the core tc of FG sandwich plates. In
general, the present FSDPT and existing FSDT gives almost identical results. It should be noted
that the proposed FSDPT contains less number of unknowns than the existing FSDPT. It can be
concluded that the present FSDPT not only gives comparable results with the existing FSDPT, but
also is simpler than the existing FSDPT due to having less number of unknowns, i.e., four as
against five.

Tables 6-8 indicate also the effect of the layer thickness of the core tc (ceramic layer) on the
thermal buckling response of the FG sandwich plates. As can be observed from Tables 6 and 7, the
thermal buckling temperatures increase with the decrease in volume fraction index p. Thus, the
increase in thermal buckling temperature of an FG sandwich plate could be attributed to the
ceramic property. Indeed, this remark is also proved when a small volume fraction index is
considered (p<2) for all values of tc. A small volume fraction index Kk indicates that the ceramic is
the dominant constituent in FG sandwich plates. However, Table 8 shows that the thermal
buckling temperatures decrease with the decrease in volume fraction index p when the plate is
under non-linear temperature rise with y=5. It can be seen that the thermal buckling temperature
increases with decreasing thickness of the thickness of the core layer (tc) for all considered volume
fraction index.
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Table 6 Critical buckling temperature T, of FG sandwich square plates under uniform temperature rise
versus volume fraction index p and tc/h (a/h=5)

p
0 0.2 0.5 1 2 5 10
Present  3.23493  3.04858 2.83507 2.64222 257355 2.86226  3.23289
FSDPT® 323493 3.04858 2.83507 2.64222 2.57355 2.86226  3.23289
HSDPT® 3.23720 3.07138 2.87207 2.68975 2.63325 293978  3.30959

te/h Theory

0 SSDPT® 323775 3.07197 2.87277 2.69065 2.63460 2.94205  3.31226
TSDPT® 323652 3.07042 2.87074 2.68781 2.63018 2.93446  3.30340

CPT 3.96470 3.66606 3.34559  3.06734 2.96200 3.32950  3.82441

Present 3.23493 3.03394 2.79675 255053 2.34734 2.28926  2.35538
FSDPT® 3.23493 3.03394 279675 255053 2.34734 2.28926  2.35538

02 HSDPT® 323720 3.05543 2.83135 259388 2.39856 2.35252  2.42641
' SSDPT® 323775 3.05598 2.83194 2.59458 2.39953 2.35401  2.42827
TSDPT® 3.23652 3.05461 2.83030 259241 2.39637 2.34898  2.42195

CPT 3.96470 3.64978 3.30066 2.95538 2.68016 259922  2.68195

Present  3.23493 3.04170 2.81495 257037 233409 2.15296  2.12571
FSDPT® 3.23493 3.04171 2.81495 257038 2.33409 2.15296  2.12571

04 HSDPT® 323720 3.05915 2.84285 260512 237406 2.19921  2.17624
: SSDPT® 323775 3.05956 2.84318 2.60545 2.37450 2.19992  2.17714
TSDPT® 323652 3.05867 2.84246 2.60462 2.37320 2.19763  2.17417

CPT 3.96470 3.66567 3.33354 2.99117 2.67295 2.43609  2.39804

Present 3.23493 3.05527 2.84659 2.62069 2.39542 2.20129  2.13606
FSDPT® 3.23493 3.05527 2.84659 2.62069 2.39542 2.20130  2.13606

05 HSDPT® 3.23720 3.06980 2.86974 2.64965 2.42885 2.23972  2.17737
: SSDPT® 323775 3.07014 2.86992 2.64976 2.42900 2.24005 2.17784
TSDPT® 323652 3.06952 2.86972 2.64970 2.42873 2.23910  2.17640

CPT 3.96470 3.68764 3.38155 3.06366 2.75801 2.50252  2.41816

Present 3.23493 3.07586 2.89364 2.69680 2.49698 2.31286  2.24191
FSDPT® 323493 3.07586 2.89364 2.69680 2.49698 2.31286  2.24190

06 HSDPT® 323720 3.08713 2.91139 271917 252309 2.34313  2.27452
: SSDPT® 323775 3.08741 291146 2.71909 2.52297 2.34310  2.27458
TSDPT® 3.23652 3.08699 291168 2.71971 252367 2.34345  2.27461

CPT 3.96470 3.71993 3.45164 3.17226 2.89771 2.65182  2.55878

Present 3.23493 3.13952 3.03406 292193 2.80661 2.72895  2.64315
FSDPT® 323493 3.13952 3.03406 2.92193 2.80661 2.72895  2.64315

08 HSDPT® 323720 3.14445 3.04101 293052 2.81681 2.74134  2.65659
: SSDPT® 323775 3.14474 3.04107 2.93038 2.81650 2.74092  2.65609
TSDPT® 3.23652 3.14431 3.04137 2.93131 2.81794 2.74272  2.65798

CPT 3.96470 3.81800 3.66058 3.49712 3.33246 3.21552  3.10423

Present  3.23493 3.23493 3.23493 3.23493 3.23493 3.23493  3.23493
FSDPT® 323493 3.23493 3.23493 3.23493 3.23493  3.23493  3.23493

1 HSDPT® 3.23720 3.23720 3.23720 3.23720 3.23720 3.23720  3.23720

SSDPT® 323775 323775 3.23775 3.23775 323775 3.23775  3.23775
TSDPT® 323652 3.23652 3.23652 3.23652 3.23652 3.23652  3.23652
CPT 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470  3.96470

@ Taken from Kettaf et al. (2013)
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Table 7 Critical buckling temperature T, of FG sandwich square plates under linear temperature rise versus
volume fraction index p and tc/h (a/h=5)

p
0 0.2 0.5 1 2 5 10
Present  6.41986 6.04716 5.62014 5.23443 5.09711 5.67452  6.41578
FSDPT® 641986 6.04716 562014 523443 509711 5.67452  6.41578
HSDPT® 6.42441 6.09275 569414 5.32949 521651 5.82957  6.56918

te/h Theory

0 SSDPT® 642550 6.09396 5.69554 533130 5.21920 5.83411  6.57458
TSDPT® 642305 6.09084 5.69148 5.32562 5.21036 5.81891  6.55680

CPT 7.87940 7.28211 6.64118 6.08468 587400 6.60901  7.59882

Present 6.41986 6.01788 554350 5.05105 4.64468 452851  4.66058
FSDPT® 6.41986 6.01789 554350 5.05105 4.64468 4.52851  4.66058

0.2 HSDPT® 6.42441 6.06087 5.61271 5.13775 4.74712 4.65504  4.80264
' SSDPT®  6.42550 6.06197 561388 513917 4.74907 4.65803  4.80632
TSDPT®  6.42305 6.05922 5.61059 5.13482 4.74275 4.64797  4.79372

CPT 7.87940 7.24955 655131 5.86076 531032 5.14843  5.31369

Present  6.41986 6.03341 557990 5.09075 4.61818 4.25591  4.16712
FSDPT® 6.41986 6.03341 557990 5.09075 4.61818 4.25591  4.16712

0.4 HSDPT® 6.42441 6.06830 5.63571 5.16024 4.69812 4.34842  4.26735
: SSDPT®  6.42550 6.06913 5.63636 5.16089  4.69900 4.34984  4.24818
TSDPT® 6.42305 6.06734 5.63491 5.15923 4.69640 4.34526  4.26325

CPT 7.87940 7.28133 6.61708 593233 529588 4.82217  4.70737

Present  6.41986 6.06053 5.64319 5.19137 4.74084 4.35259  4.22211
FSDPT® 6.41986 6.06053 5.64319 5.19137 4.74084 4.35259  4.22211

05 HSDPT® 6.42441 6.08961 5.68948 5.24929 4.80770 4.42943  4.30474
' SSDPT®  6.42550 6.09029 5.68986 5.24952 4.80800 4.43011  4.30569
TSDPT® 6.42305 6.08903 5.68943 5.24940 4.80746 4.42821  4.30281

CPT 7.87940 7.32529 6.71310 6.07732 546601 4.95505  4.78633

Present  6.41986 6.10171 573727 5.34360 4.94396 457561  4.43382
FSDPT® 6.41986 6.10171 5.73728 5.34361 4.94396 457561  4.43382

06 HSDPT® 6.42441 6.12425 577278 538833 4.99619 4.63616  4.49905
' SSDPT®  6.42550 6.12482 577291 538818 4.99595 4.63609  4.84881
TSDPT® 6.42305 6.12398 5.77335 5.38942 4.99734 4.63680  4.49922

CPT 7.87940 7.38985 6.85328 6.29453 574542 525352  5.06756

Present  6.41986 6.22905 6.01812 579385 556322 5.33541  5.23630
FSDPT® 6.41986 6.22905 6.01812 5.79385 556322 5.33541  5.23630

08 HSDPT® 6.42441 6.23889 6.03202 5.81104 558362 5.35987  5.26317
' SSDPT®  6.42550 6.23949 6.03215 5.81076 558301 5.35923  5.26229
TSDPT® 642305 6.23862 6.03273 5.81262 5.58589 5.36259  5.26598

CPT 7.87940 7.58600 7.27115 6.94424 6.61492 6.29563  6.15846

Present  6.41986 6.41986 6.41986 6.41986 6.41986 6.41986  6.41986
FSDPT® 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986  6.41986

1 HSDPT® 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441  6.42441

SSDPT®  6.42550 6.42550 6.42550 6.42550 6.42550  6.42550  6.42550
TSDPT® 642305 6.42305 6.42305 6.42305 6.42305 6.42305  6.42305
CPT 6.42363  6.12545 577544 539175 4.99944 463813  4.49981

@ Taken from Kettaf et al. (2013)
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Table 8 Critical buckling temperature T, of FG sandwich square plates under non-linear temperature rise
versus volume fraction index p and tc/h (a/h=>5 and y=5)

p

0 0.2 0.5 1 2 5 10

Present 19.25957 20.41729 21.34246 22.02700 22.52869 23.12129 23.49484
FSDPT® 1925057 20.41729 21.34246 22.02700 22.52869 23.12129 23.49484
HSDPT® 1927322 2057122 21.62347 22.42701 23.05643 23.75304 24.05661
SSDPT® 19.27655 20.57531 21.62882 22.43468 23.06838 23.77163 24.07624
TSDPT® 1926915 20.56479 21.61337 22.41074 23.02926 23.70963 24.01127
CPT  23.63820 24.58692 25.21986 25.60494 2596247 26.92893 27.82720
Present 19.25957 20.28528 21.08307 21.62417 21.89055 22.03367 22.17958
FSDPT® 1925957 20.28528 21.08307 21.62417 21.89055 22.03367 22.17958
HSDPT® 19.27322 20.43016 21.34626 21.99533 22.37338 22.64929 22.85562
SSDPT®  19.27655 20.43388 21.35077 22.00145 22.38259 22.66392 22.87344
TSDPT® 1926915 20.42463 21.33822 21.98279 22.35275 22.61489 22.81317
CPT  23.63820 24.43703 24.91598 25.09061 25.02775 25.04991 25.28770
Present 19.25957 20.12913 20.79943 21.25144 21.44811 21.40709 21.36153
FSDPT® 19.25057 20.12913 20.79943 21.25144 21.44811 21.40709 21.36153
HSDPT® 19.27322 20.24553 21.00745 21.54152 21.81937 21.87237 21.87534
SSDPT® 19.27655 20.24830 21.00993 21.54429 21.82352 21.87961 21.88463
TSDPT® 1926915 20.24234 21.00447 2153734 21.81141 21.85652 21.85429
CPT  23.63820 24.29255 24.66557 24.76464 2459556 24.25535 24.13098
Present 19.25957 20.03597 20.63466 21.04804 21.24818 21.22586 21.16437
FSDPT® 1925957 20.03597 20.63466 21.04804 21.24818 21.22586 21.16437
HSDPT® 19.27322 20.13209 20.80394 21.28287 21.54783 21.60059 21.57856
SSDPT® 19.27655 20.13435 20.80531 21.28380 21.54921 21.60389 21.58333
TSDPT® 1926915 20.13019 20.80375 21.28330 21.54679 21.59462 21.56887
CPT  23.63820 24.21722 2454686 24.64006 24.49836 24.16380 23.99263
Present 19.25957 19.92815 20.44424 20.81202 21.01752 21.04701 21.00808
FSDPT® 1925957 19.92815 20.44424 20.81202 21.01752 21.04701 21.00808
HSDPT® 19.27322 20.00176 20.57076 20.98623 21.23955 21.32555 21.31715
SSDPT® 19.27655 20.00362 20.57125 20.98565 21.23856 21.32526 21.31771
TSDPT® 19.26915 20.00087 20.57280 20.99045 21.24446 21.32848 21.31794
CPT  23.63820 24.13520 24.42100 24.51562 24.42463 24.16529 24.01085
Present 19.25957 19.65105 19.95177 20.17887 20.33926 20.43371 20.45455
FSDPT® 1925957 19.65105 19.95177 20.17887 20.33926 20.43371 20.45455
HSDPT® 1927322 19.68210 19.99784 20.23872 20.41383 20.52740 20.55953
SSDPT® 19.27655 19.68400 19.99828 20.23774 20.41159 20.52420 20.55608
TSDPT® 19.26915 19.68124 20.00022 20.24422 20.42213 20.53780 20.57050
CPT  23.63820 23.93190 24.10594 24.18546 24.18431 24.11121 24.05679
Present 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957
FSDPT® 1925057 19.25057 19.25057 19.25957 19.25957 19.25957 19.25957
HSDPT® 1927322 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322
SSDPT® 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655
TSDPT® 1926915 19.26915 19.26915 19.26915 19.26915 19.26915 19.26915
CPT  23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820

@ Taken from Kettaf et al. (2013)
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Table 9 Critical buckling temperature T, of FG sandwich square plates under uniform, linear and non-linear
temperature rise versus volume fraction index p and tc/h (a/h=5)

Boundary condition
SSSS CSSS CSCs CCsS CCcCC FFCC
0.5 2.83507 4.09320 5.00928 4.66511 6.02729 6.71974

te/h  Temperature p

v 2 2.57355 3.76007 4.63724 4.32208 5.63185 6.32716

0 L 0.5 5.62014 8.13640 9.96856 9.28023 12.0046 13.3895
2 5.09711 7.47013 9.22448 8.59416 11.2137 12.6043

NL 0.5 21.3425 30.8980 37.8556 35.2416 45.5874 50.8465

2 22.5287 33.0172 40.7712 37.9853 49.5634 55.7098

U 0.5 2.81495 4.05752 4.96039 4.61914 5.96099 6.63909

2 2.33408 3.41853 4.22279 3.93652 5.13854 5.78242

0.4 L 0.5 5.57990 8.06503 9.87079 9.18828 11.8720 13.2282
2 4.61818 6.78707 8.39557 7.82304 10.2271 11.5148

NL 0.5 20.7994 30.0629 36.7940 34.2499 44.2535 49.3088

2 21.4481 31.5211 38.9914 36.3324 47.4974 53.4781

U 0.5 3.03406 4.33623 5.27233 4.90741 6.29511 6.97530

2 2.80661 4.04054 4.93576 4.59588 5.92583 6.59496

0.8 L 0.5 6.01812 8.62246 10.4947 9.76483 12.5402 13.9006
2 5.56322 7.73077 9.82152 9.14176 11.8017 13.1399

NL 0.5 19.9518 28.5859 34.7928 32.3732 41.5744 46.0844

2 20.3393 29.6075 35.9077 33.4225 43.1471 48.0399

U 0.5 3.23493 4.59106 5.55750 5.17128 6.60133 7.28509

2 3.23493 4.59106 5.55750 5.17128 6.60133 7.28509

1 L 0.5 6.41986 9.13213 11.0650 10.2926 13.1527 14.5202
2 6.41986 9.13213 11.0650 10.2926 13.1527 14.5202

NL 0.5 19.2596 27.3964 33.1950 30.8777 39.4580 43.5606

2 19.2596 27.3964 33.1950 30.8777 39.4580 43.5606

The effect of the volume fraction index p and thickness of the core tc on the critical buckling
temperature difference of FG sandwich plate under uniform temperature rise (U), linear (L) and
non-linear (NL) temperature distributions is shown in Table 9 for various boundary conditions. It
can be seen from results presented in Table 9 that the SSSS plate is the softer structure, whereas
the FFCC plate is the stiffer structure.

For more clarity, the influence of the volume fraction index p on the non-dimensional critical
buckling temperature T, of a square FG under uniform, linear and non-linear temperature change
through-the-thickness is plotted in Fig. 2 using the simple first-order shear deformation theory. It
is interesting to note from this figure that the critical buckling temperature T, for the plates under
uniform temperature change is smaller than that for the plates under a non-linear temperature
change. While T, for the plates under linear temperature change is intermediate to the two
previous thermal loading cases. It can be concluded also that the non-dimensional critical buckling
temperature initially decreases, and then the change of curves are not significant by increasing in
the value of the volume fraction index.

Further verification of critical buckling temperature is displayed in Fig. 3 for thick plates. In
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Fig. 2 Critical buckling temperature difference T, versus the power law index p (tc=0.8h, a/h=10, a/b=1)

20 - - - - -Kettaf et al (2013)

cr

Non-linear

Present

T T T T T T
4 6 8 10 alh 12

T T T T T
14 16 18

20

Fig. 3 Critical buckling temperature difference T versus the side-to-thickness ratio a/h (tc=0.8h,

a/b=1, k=1)

this figure, the variations of dimensionless critical buckling temperatures versus thickness ratio a/h
are compared for square FG sandwich plates under uniform, linear and non-linear temperature
change through-the-thickness. It is observed that the critical temperature difference decreases
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monotonically as the thickness ratio a/h increases. Also, it is seen that T, increases as the
nonlinearity parameter y increases.

Fig. 4 indicates the influences of the aspect ratio b/a on the critical buckling temperature
change T, of FG sandwich plates under various thermal loading types. It is observed that,

- - - - Kettaf et al (2013)
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Non-linear
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Fig. 4 Critical buckling temperature difference T, versus the plate aspect ratio b/a (t-=0.8h, a/h=10, p=1)

(a): Case of uniform temperature
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Fig. 5 Critical buckling temperature difference T, versus the plate side-to-thickness ratio a/h with various
boundary conditions. (a) uniform temperature; (b) linear temperature; (c) non-linear temperature (y=5)
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(b): Case of linear temperature
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Fig. 5 Continued

regardless of the sandwich plate types, the critical buckling T, decreases gradually with the
increase of the plate aspect ratio b/a wherever the loading type is. It is also noticed from Fig. 4 that
the T, increases with the increase of the non-linearity parameter y. It can be concluded from Figs.
2, 3 and 4, that the obtained results are in excellent agreement with those generated by Kettaf et al.
(2013) based on the HSDPT. Thus, it can be stated that the present model is not only accurate but
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also simple in predicting the critical buckling temperature of FG sandwich plates.

Fig. 5 presents the critical buckling temperatures of FG sandwich square plate with various
boundary conditions and under various thermal loading types. It can be seen that the critical
buckling temperature decreases gradually with the side-to thickness ratio a/h. The results of the
simply supported sandwich plate are less than that of the clamped-clamped and free-clamped
sandwich plate. For the FG sandwich plate with intermediate boundary conditions, the results take
the corresponding intermediate values.

5. Conclusions

A simple and accurate FSDT is presented and implemented in the present study for the thermal
buckling analysis of FG sandwich plates with various boundary conditions. By dividing the
deflection into bending, and shear components, the number of unknowns and governing equations
of the present theory is reduced to four as against five or more unknown in the corresponding
theories. Thus, a considerably lower computational effort is reached. The governing differential
equations are obtained using the principle of minimum total potential energy. Verification studies
prove that the present FSDT is not only more accurate than the conventional one, but also
comparable with existing higher-order shear deformation theories which have a greater number of
unknowns. The formulation lends itself particularly well to nanostructures (Besseghier et al. 2015,
Chemi et al. 2015, Tagrara et al. 2015, Ould Youcef et al. 2015, Chakraverty and Behera 2015,
Larbi Chaht et al. 2015, Bessaim et al. 2015, Zemri et al. 2015, Belkorissat et al. 2015, Rahimi
Pour et al. 2015, Bounouara et al. 2016, Moradi-Dastjerdi 2016), which will be considered in the
near future.

Acknowledgments

This research was supported by the Algerian National Thematic Agency of Research in Science
and Technology (ATRST) and university of Sidi Bel Abbes (UDL SBA) in Algeria.

References

Ahmed, A. (2014), “Post buckling analysis of sandwich beams with functionally graded faces using a
consistent higher order theory”, Int. J. Civil Struct. Envir., 4(2), 59-64.

Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), “An efficient and simple refined theory for
buckling and free vibration of exponentially graded sandwich plates under various boundary conditions”,
J. Sandw. Struct. Mater., 16(3), 293-318.

Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), “A computational shear displacement
model for vibrational analysis of functionally graded beams with porosities”, Steel Compos. Struct., 19(2),
369-384.

Ait Atmane, H., Tounsi, A. and Bernard, F. (2016), “Effect of thickness stretching and porosity on
mechanical response of a functionally graded beams resting on elastic foundations”, Int. J. Mech. Mater.
Des. (In press)

Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), “Wave propagation in functionally
graded plates with porosities using various higher-order shear deformation plate theories”, Struct. Eng.


http://link.springer.com/journal/10999
http://link.springer.com/journal/10999

418 Bachir Bouderba, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud

Mech., 53(6), 1143 - 1165.

Akbag, S.D. (2015), “Wave propagation of a functionally graded beam in thermal environments”, Steel
Compos. Struct., 19(6), 1421-1447.

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), “Size dependent bending and vibration analysis
of functionally graded micro beams based on modified couple stress theory and neutral surface position”,
Compos. Struct., 125, 621-630.

Arefi, M. (2015), “Elastic solution of a curved beam made of functionally graded materials with different
cross sections”, Steel Compos. Struct., 18(3), 569 - 672.

Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), “Free vibration analysis of functionally
graded plates with temperature-dependent properties using various four variable refined plate theories”,
Steel Compos. Struct., 18(1), 187-212.

Bakora, A. and Tounsi, A. (2015),” Thermo-mechanical post-buckling behavior of thick functionally graded
plates resting on elastic foundations”, Struct. Eng. Mech., 56(1), 85 - 106.

Bateni, M., Kiani, Y. and Eslami, M.R. (2013), “A comprehensive study on stability of FGM plates”, Int. J.
Mech. Sci., 75, 134-144.

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Bég, O. (2014), “An efficient and
simple higher order shear and normal deformation theory for functionally graded material (FGM) plates”,
Compos. Part B, 60, 274-283.

Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), “Bending and free vibration
analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral
surface position”, J Braz. Soc. Mech. Sci. Eng., 38, 265-275.

Belkorissat, 1., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), “On vibration
properties of functionally graded nano-plate using a new nonlocal refined four variable model”, Steel
Compos. Struct., 18(4), 1063-1081.

Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), “A four variable refined
plate theory for free vibrations of functionally graded plates with arbitrary gradient”, Compos. Part B, 42,
1386-1394.

Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), “A new higher-order shear and normal deformation
theory for functionally graded sandwich beams”, Steel Compos. Struct., 19(3), 521-546.

Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), “A novel five variable refined plate theory for
vibration analysis of functionally graded sandwich plates”, Mech. Adv. Mater. Struct., 23(4), 423-431.

Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), “A new higher-
order shear and normal deformation theory for the static and free vibration analysis of sandwich plates
with functionally graded isotropic face sheets”, J. Sandw. Struct. Mater., 15, 671-703.

Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), “A nonlocal quasi-3D trigonometric plate
model for free vibration behaviour of micro/nanoscale plates”, Struct. Eng. Mech., 56(2), 223-240.

Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), “Nonlinear vibration
properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix”, Adv. Nano Res.,
3(1), 29-37.

Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), “Thermal stresses and
deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation
theory”, Steel Compos. Struct., 18(6), 1493-1515.

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), “Thermomechanical bending response of FGM thick
plates resting on Winkler-Pasternak elastic foundations”, Steel Compos. Struct., 14(1), 85-104.

Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), “Numerical analysis of FGM
plates with variable thickness subjected to thermal buckling”, Steel Compos. Struct., 19(3), 679-695.

Bouhadra, A., Benyoucef, S., Tounsi, A., Bernard, F., Bachir Bouiadjra, R. and Houari, M.S.A. (2015),
“Thermal buckling response of functionally graded plates with clamped boundary conditions”, J. Therm.
Stress., 38, 630-650.

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), “A nonlocal zeroth-order shear
deformation theory for free vibration of functionally graded nanoscale plates resting on elastic



Thermal stability of functionally graded sandwich plates using a simple shear deformation theory 419

foundation”, Steel Compos. Struct., 20(2), 227 - 249.

Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), “A new four-variable refined plate
theory for thermal buckling analysis of functionally graded sandwich plates”, J. Sandw. Struct. Mater., 14,
5-33.

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A new simple shear and normal
deformations theory for functionally graded beams”, Steel Compos. Struct., 18(2), 409-423.

Bouremana, M, Houari, M.S.A, Tounsi, A, Kaci, A. and Adda Bedia, E.A. (2013), “A new first shear
deformation beam theory based on neutral surface position for functionally graded beams”, Steel Compos.
Struct., 15(5), 467-479.

Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), “A novel higher order shear and
normal deformation theory based on neutral surface position for bending analysis of advanced composite
plates”, Int. J. Comput. Meth., 11(6), 1350082.

Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates, and shells, McGraw-Hill, New York.

Chakraverty, S. and Pradhan, K.K. (2014), “Free vibration of exponential functionally graded rectangular
plates in thermal environment with general boundary conditions”, Aerosp. Sci. Technol., 36, 132-156.

Chakraverty, S. and Behera, L. (2015), “Small scale effect on the vibration of non-uniform nanoplates”,
Struct. Eng. Mech., 55(3), 495 - 510.

Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), “Thermomechanical effects
on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory”, Steel
Compos. Struct., 19(1), 93-110.

Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), “Critical buckling load of
chiral double-walled carbon nanotube using non-local theory elasticity”, Adv. Nano Res., 3(4), 193-206.
Cunedioglu, Y. (2015), “Free vibration analysis of edge cracked symmetric functionally graded sandwich

beams”, Struct. Eng. Mech., 56(6), 1003-1020.

Darilmaz, K., (2015), “Vibration analysis of functionally graded material (FGM) grid systems”, Steel
Compos. Struct., 18(2), 395-408.

Draiche, K., Tounsi, A. and Khalfi, Y. (2014), “A trigonometric four variable plate theory for free vibration
of rectangular composite plates with patch mass”, Steel Compos. Struct., 17(1), 69-81.

Ebrahimi, F. and Dashti, S. (2015),” Free vibration analysis of a rotating non-uniform functionally graded
beam”, Steel Compos. Struct., 19(5), 1279-1298.

Ebrahimi, F. and Habibi, S. (2016), “Deflection and vibration analysis of higher-order shear deformable
compositionally graded porous plate”, Steel Compos. Struct., 20(1), 205-225.

El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), “A new hyperbolic shear
deformation theory for buckling and vibration of functionally graded sandwich plate”, Int. J. Mech. Sci.,
53(4), 237-247.

Etemadi, E, Khatibi, AA. and Takaffoli, M. (2009), “3D finite element simulation of sandwich panels with a
functionally graded core subjected to low velocity impact”, Compos. Struct., 89, 28-34.

Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), “A new five-unknown refined theory
based on neutral surface position for bending analysis of exponential graded plates”, Meccanica, 49, 795-
810.

Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2014), “A higher order shear deformation
theory for static and free vibration of FGM beam”, Steel Compos. Struct., 16(5), 507-519.

Hadji, L. and Adda Bedia, E.A. (2015a), “Influence of the porosities on the free vibration of FGM beams”,
Wind Struct., 21(3), 273-287.

Hadji, L. and Adda Bedia, E.A. (2015b), “Analyse of the behavior of Functionally graded beams based on
neutral surface position”, Struct. Eng. Mech., 55(4), 703-717.

Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and Adda Bedia, E.A. (2016), “Analysis
of functionally graded beam using a new first-order shear deformation theory”, Struct. Eng. Mech., 57(2),
315-325.

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), “A sinusoidal plate theory with 5-
unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates”,



420 Bachir Bouderba, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud

Steel Compos. Struct., 18(1), 235-253.

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), “A new quasi-3D
hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded
plates”, ASCE J. Eng. Mech., 140, 374-383.

Houari, M.S.A., Tounsi, A. and Anwar Bég, O. (2013), “Thermoelastic bending analysis of functionally
graded sandwich plates using a new higher order shear and normal deformation theory”, Int. J. Mech. Sci.,
76, 467-479.

Jha, D.K,, Kant, T. and Singh, R.K. (2013), “A critical review of recent research on functionally graded
plates”, Compos. Struct, 96, 833-849.

Jiang, H.J., Dai, H.L. and Li, S.Z. (2015), “Refined plate theory for bending analysis of a HSLA steel plate
under 3D temperature field”, Appl. Math. Comput., 250, 497-513.

Kar, V.R. and Panda, S.K. (2015), “Nonlinear flexural vibration of shear deformable functionally graded
spherical shell panel”, Steel Compos. Struct., 18(3), 693-709.

Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), “Thermal buckling of functionally
graded sandwich plates using a new hyperbolic shear displacement model”, Steel Compos. Struct., 15(4),
399-423.

Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), “A refined and simple shear deformation theory for
thermal buckling of solar functionally graded plates on elastic foundation”, Int. J. Comput. Meth., 11(5),
135007.

Kiani, Y., Bagherizadeh, E. and Eslami, M.R. (2011), “Thermal buckling of clamped thin rectangular FGM
plates resting on Pasternak elastic foundation (Three Approximate Analytical Solutions)”, J. Appl. Math.
Mech., 91(7), 581-593.

Kirkland, B. and Uy, B. (2015), “Behaviour and design of composite beams subjected to flexure and axial
load”, Steel Compos. Struct., 19(3), 615-633.

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, O. and Mahmoud, S.R. (2015), “Bending
and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including
the thickness stretching effect”, Steel Compos. Struct., 18(2), 425 - 442.

Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), “Semi-analytical solution for three-dimensional transient
response of functionally graded annular plate on a two parameter viscoelastic foundation”, J. Sound Vib.,
333(12), 2649-2663.

Liang, X., Wu, Z., Wang, L., Liu, G., Wang, Z. and Zhang, W. (2015), “Semi-analytical three-dimensional
solutions for the transient response of functionally graded material”, ASCE J. Eng. Mech., 141(9), 1943-
78809.

Lu, C.F., Lim, CW. and Chen, W.Q. (2009), “Semi-analytical analysis for multi-directional functionally
graded plates: 3-d elasticity solutions”, Int. J. Numer. Meth. Eng., 79(1), 25-44.

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), “A new hyperbolic shear deformation theory for bending
and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates”,
Appl. Math. Model., 39, 2489-2508.

Mantari, J.L. and Granados, E.V. (2015), “Thermoelastic behavior of advanced composite sandwich plates
by using a new 6 unknown quasi-3D hybrid type HSDT”, Compos. Struct., 126, 132 - 144.

Mantari, J.L. and Guedes Soares, C. (2014). “Four-unknown quasi-3D shear deformation theory for
advanced composite plates”, Compos. Struct., 109, 231-239.

Matsunaga, H. (2005), “Thermal buckling of cross-ply laminated composite and sandwich plates according
to a global higher-order deformation theory”, Compos. Struct., 68, 439-454.

Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), “A simple shear deformation theory based
on neutral surface position for functionally graded plates resting on Pasternak elastic foundations”, Struct.
Eng. Mech., 53(6), 1215-1240.

Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), “A new higher order shear
and normal deformation theory for functionally graded beams”, Steel Compos. Struct., 18(3), 793-809.

Miamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R. G., (1999), Functionally graded
materials: design, processing and applications, Kluwer Academic Publishers, Boston.



Thermal stability of functionally graded sandwich plates using a simple shear deformation theory 421

Moradi-Dastjerdi, R. (2016), “Wave propagation in functionally graded composite cylinders reinforced by
aggregated carbon nanotube”, Struct. Eng. Mech., 57(3), 441-456.

Natarajan, S. and Manickam, G. (2012), “Bending and vibration of functionally graded material sandwich
plates using an accurate theory”, Finite Elem. Anal. Des., 57, 32-42.

Nedri, K., ElI Meiche, N. and Tounsi, A. (2014), “Free vibration analysis of laminated composite plates
resting on elastic foundations by using a refined hyperbolic shear deformation theory”, Mech. Compos.
Mater., 49(6), 641-650.

Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), “A refined higher-order shear deformation theory for
bending, vibration and buckling analysis of functionally graded sandwich plates”, Steel Compos. Struct.,
18(1), 91-120.

Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T. and Vu-Do, H.C. (2011), “Analysis of functionally graded
plates using an edge-based smoothed finite element method”, Compos. Struct., 93(11), 3019-2039.

Ould Larbi, L, Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), “An efficient shear deformation beam
theory based on neutral surface position for bending and free vibration of functionally graded beams”,
Mech. Bas. Des. Struct. Mach., 41, 421-433.

Ould Youcef, D., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), “On the
bending and stability of nanowire using various HSDTs”, Adv. Nano Res., 3(4), 177-191.

Reddy, J.N. (1984), Energy principles and variational methods in applied mechanics, John Wiley, New
York.

Pradhan, K.K. and Chakraverty, S. (2015), “Free vibration of functionally graded thin elliptic plates with
various edge supports”, Struct. Eng. Mech., 53(2), 337-354.

Rahimi Pour, H., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), “Nonlinear
vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential
quadrature method”, Struct. Eng. Mech., 54(6), 1061-1073.

Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), “Analytical solution for bending
analysis of functionally graded beam”, Steel Compos. Struct., 19(4), 829-841.

Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), “Free vibration analysis of solar
functionally graded plates with temperature-dependent material properties using second order shear
deformation theory”, J. Mech. Sci. Tech., 25(9), 2195-2209.

Sobhy, M. (2013), “Buckling and free vibration of exponentially graded sandwich plates resting on elastic
foundations under various boundary conditions”, Compos. Struct., 99, 76-87.

Sobhy, M. (2015), “A comprehensive study on FGM nanoplates embedded in an elastic medium”, Compos.
Struct., 134, 966-980.

Sofiyev, A.H. and Kuruoglu, N. (2015), “Buckling of non-homogeneous orthotropic conical shells subjected
to combined load”, Steel Compos. Struct., 19(1), 1 - 19.

Swaminathan, K. and Naveenkumar, D.T. (2014), “Higher order refined computational models for the
stability analysis of FGM plates: Analytical solutions”, Eur. J. Mech. A/Solid., 47, 349 - 361.

Tagrara, S.H., Benachour, A., Bachir Bouiadjra, M. and Tounsi, A. (2015), “On bending, buckling and
vibration responses of functionally graded carbon nanotube-reinforced composite beams”, Steel Compos.
Struct., 19(5), 1259-1277.

Tebboune, W., Benrahou, K.H., Houari, M.S.A. and Tounsi, A. (2015), “Thermal buckling analysis of FG
plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation
theory”, Steel Compos. Struct., 18(2), 443 - 465.

Thai, H.T., Vo, T.P., Bui, T.Q. and Nguyen, T.K. (2014), “A quasi-3D hyperbolic shear deformation theory
for functionally graded plates”, Acta Mech, 225(3), 951-964.

Thai, HT and Kim, SE. (2013), “A simple quasi-3D sinusoidal shear deformation theory for functionally
graded plates”, Compos. Struct., 99,172-180.

Thai, HT and Choi, DH. (2013), “Efficient higher-order shear deformation theories for bending and free
vibration analyses of functionally graded plates”, Arch. Appl. Mech., 83(12), 1755-1771.

Thai, HT and Choi, DH. (2011), “A refined plate theory for functionally graded plates resting on elastic
foundation”, Compos. Sci. Technol., 71(16), 1850-1858.


http://link.springer.com/journal/11029
http://link.springer.com/journal/11029

422 Bachir Bouderba, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud

Talha, M. and Singh, B.N. (2010), “Static response and free vibration analysis of FGM plates using higher
order shear deformation theory”, Appl. Math. Model., 34(12), 3991-4011.

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear
deformation theory for thermoelastic bending of functionally graded sandwich plates”, Aerosp. Sci. Tech.,
24, 209-220.

Wen, P.H., Sladek, J. and Sladek, V. (2011), “Three-dimensional analysis of functionally graded plates™, Int.
J. Numer. Meth. Eng., 87(10), 923-942.

Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013), “Natural frequencies of sandwich plate with
functionally graded face and homogeneous core”, Compos. Struct., 96, 226 - 231.

Yaghoobi, H. and Yaghoobi, P. (2013), “Buckling analysis of sandwich plates with FGM face sheets resting
on elastic foundation with various boundary conditions: an analytical approach”, Meccanica, 48, 2019-
2035.

Yaghoobi, H. and Fereidoon, A. (2014), “Mechanical and thermal buckling analysis of functionally graded
plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation
theory”, Compos. Part B, 62, 54-64.

Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), “Analytical study on post-
buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under
thermo-mechanical loading using VIM”, Steel Compos. Struct., 17(5), 753-776.

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), “A mechanical response of functionally
graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory”,
Struct. Eng. Mech., 54(4), 693-710.

Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), “Mechanical and thermal buckling analysis of functionally
graded plates”, Compos. Struct., 90, 161-171.

Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E. A. and Anwar Bég, O. (2014), “Bending analysis of
FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory”, Aerosp.
Sci. Technol., 34, 24-34.

cC





