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Abstract.  Laminated composite shells are commonly used in various engineering applications including 

aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling 

behavior of laminated composite deep as well as thick shells of revolution under follower forces which 

remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower 

forces subjected to external fibers in thick shells. The shell is divided into several closed strips with 

alignment of their nodal lines in the circumferential direction. The governing equations are derived based on 

first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements 

and rotations in the middle surface of shell are approximated by combining polynomial functions in the 

meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the 

circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be 

derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which 

may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, 

geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which 

is an eigenvalue problem are provided. In this study, different parameter effects are investigated including 

shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are 

compared with other researches. By considering the results of this article, it can be concluded that the 

deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. 

This characteristic is studied for different examples. 
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1. Introduction 
 

Once a structural model is subjected to a follower force, the strength direction will change due 

to structural deformation. Meanwhile, the model may experience divergence, flutter or both of 
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these instabilities which depend on structural conditions. Some of the most important applications 

of live pressure loading are: the aerodynamic drag forces acting on the body of rocket, the missiles 

and wings of aircraft carrying jet engines subject to follower forces, the forces acting on the rotor 

of a gas turbine, hydrostatic pressure and automobile disk brakes. 

Fiber-reinforced composite materials are extensively used in laminated thick-walled weight-

sensitive structural parts of various modern engineering structure in the aerospace, mechanical and 

civil engineering.  

The buckling phenomenon consists of a sudden change of equilibrium configuration at a certain 

critical load. Buckling has crucial role in the behavior of thin structures such as plates and shells. 

Since the load carrying capacity of thin-walled members is frequently governed by the buckling 

phenomenon, the ability to calculate the associated elastic critical loads is of great importance. In 

addition, if a linear initial equilibrium path is assumed, linearized stability analysis reduces the 

determination of the critical load to a linear eigenvalue problem (Euler’s method) (Nali et al. 

2011). 

Thangam et al. (1973) evaluated the natural frequency of a cylindrical panel which has simply 

supported ends by applying finite strip method. In their study, harmonic functions have been used 

in longitudinal direction. To predict the displacement functions in transverse direction, polynomial 

functions have been utilized. Classical plate theory plays a role in their research, as well. Chen and 

Zhang (1993) used finite strip method to evaluate buckling in the composite cylindrical shells 

reinforced by rings along with simply supported ends. By calculating the eigenvalues, buckling 

loads were obtained for different modes. In addition, the T-shaped and hat-shaped stiffness have 

been applied in the study. In another investigation, using semi-analytical finite strip method, 

Zhong and Cheung (1998) analyzed the prismatic structures. Therefore, they used the harmonic 

functions in longitudinal direction of strip.  Next, buckling of composite shells was investigated 

by solving eigenvalue problem as the method was introduced by Wang and Dawe (1999) 

investigated the buckling of composite shell structures by the finite strip method. They used the 

first-order shear deformation and thin shell theory to buckling analysis. The case study in this 

article was laminated structures having arbitrary boundary conditions.  Chen et al. (2000) 

presented a nonlinear geometric analysis by using semi-analytical finite strip method for 

composite plates subjected to vertical dynamic loads. The boundary conditions were simply 

support. The first-order shear deformation theory has been utilized. Moreover, to solve nonlinear 

equations, Newton-Raphson method has been used for isotropic and orthotropic plates. In another 

study, Dooms et al. (2004) simulated a thin-walled cylindrical structure by using two-dimensional 

(2-D) finite strip method. Consequently, they calculated the natural frequency at presence of lateral 

wind effect. Using finite strip method, Ovesy and Fazilati (2009) evaluated the stability of 

composite plates and cylindrical composite shells. In their study, post-buckling path was calculated 

by a nonlinear analysis. Afterwards, the critical buckling load was achieved through applying a 

linear analysis and Sanders (1959) relations. The boundary conditions at the both end and in along 

the length were simply supported. In addition, the first-order shear deformation theory has been 

applied in their study. Spagnoli (2001) calculated different buckling modes once conical thin-

walled shells with longitudinal stiffeners are instable under axial pressure. To simulate structural 

model as well as reinforcements, 9-node Lagrangian shell element having five degrees of freedom 

has been utilized. In addition, the critical buckling load was calculated by using eigenvalue 

analysis. Ross and Little (2007) accomplished empirical tests to calculate plastic buckling load for 

cylindrical shells which were reinforced by ring stiffeners under uniform hydrostatic pressure. In 

addition, small deformation assumption played an effective role in elastic analysis. Tornabene et 
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al. (2014) evaluated the free vibration of free-form doubly-curved shells made of functionally 

graded materials using higher-order equivalent single layer theories. Tornabene et al. (2014) used 

the local the Generalized Differential Quadrature method applied to general higher-order theories 

of doubly-curved laminated composite shells to analysis the free vibration. Tornabene et al. (2015) 

used higher-order theories for the free vibrations of doubly-curved laminated panels with 

curvilinear reinforcing fibers by means of a local version of the the Generalized Differential 

Quadrature method. Tornabene et al. (2015) used the Generalized Differential quadrature method 

and shell theories of different order to studied free vibrations of laminated cylinders of oval and 

elliptic cross-sections.  

On the other hand, thick shells have also extensive applications in different industries. 

Therefore, many researches have been conducted in this area. Wang and Schweizerhof (1996) 

established a boundary integral equation formulation of free vibration of moderately thick 

orthotropic laminated shallow shells by using the method of weighted residuals and the static 

fundamental solutions. In formulation of this study, the effects of neglecting the in-plane inertia 

and the rotatory inertia, singly and in combination are also considered. The boundary integral 

equations presented are reduced to a standard algebraic eigenvalue problem by means of 

boundary-domain elements. Heppler and Hansen (1986) derived a strain-displacement relation of 

the Reissner-Mindlin type for a general shell element which may be used equal confidence and 

ease in either plate or shell configurations over a wide range of thicknesses. The usual assumptions 

pertaining to thin and shallow shell geometry has not been employed resulting in strain-

displacement relations which are consistent with the Reissner-Mindlin hypotheses for thick shell 

configurations. Kasagi and Sridharan (1993) analyzed thick composite-layered shells under 

hydrostatic pressure for buckling and post-buckling response using axisymmetric solid elements. 

The numerical approach was based on p-version finite elements in conjunction with appropriate 

trigonometric functions. Particular attention was given to the evaluation of inter laminar stresses in 

the post-buckling range. The post buckling response was determined using an asymptotic 

approach. Chao et al. (1988) used the semi-analytical solution for the axisymmetric buckling for 

perfect complete thick orthotropic spherical shells and hemispherical shells under various edge 

conditions subjected to uniform full external pressures. The solutions were achieved directly by 

using the Ritz method without considering the force as well as moment equilibrium and solving 

the complicated governing equations. Critical buckling loads and the various modes were found 

from the equations by using orthogonality and integral relations. Kang (2012) presented a three-

dimensional (3-D) method of analysis to determine the free vibration frequencies of joined thick 

conical-cylindrical shells of revolution having variable thickness. Unlike conventional shell 

theories, which are mathematically 2-D, the study was based upon the 3-D dynamic equations of 

elasticity. Lu and Mao (2001) used a thick shell theory to calculate the critical load of plastic 

buckling of axially compressed cylindrical shells. The buckling equations were derived using the 

principle of virtual work on the basis of a transverse shear deformable displacement field. The 

deformation theory of plasticity was used for constitutive equations. Ross et al. (1999) described a 

theoretical and an experimental study into the collapse of three thick walled circular conical shells, 

which were tested to failure under external hydrostatic pressure. Two theoretical analyses were 

carried out which both were based on the finite element method. One of the theoretical analyses 

was based on inelastic non-symmetric bifurcation buckling and the other analysis was based on 

plastic axisymmetric buckling. Casimir et al. (2007) described a procedure for calculating the 

dynamic stiffness matrix of tubular shells with free edge boundary conditions. Such an analysis 

forms the basis for the continuous element method. The method was used to formulate a thick 
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axisymmetric shell element which takes into account rotatory inertia, transverse shear deformation 

and non-axisymmetric loadings. Kang and Leissa (2005) presented a three-dimensional 3-D 

method of analysis for determining the free vibration frequencies and mode shapes of thick, 

hyperboloidal shells of revolution. Unlike conventional shell theories, which are mathematically 2-

D, the method was based upon the 3-D dynamic equations of elasticity. Kang (2015) used a three-

dimensional method for determining the natural frequencies of a truncated shallow and deep 

conical shell with linearly varying thickness along the meridional direction free at its top edge and 

clamped at its bottom edge. Wang and Redekop (2011) analyzed the free vibration of moderately-

thick of toroidal shell based on a shear deformation shell theory by differential quadrature method. 

Tornabene et al. (2015) studied the free vibration nature of laminated composite thick and 

moderately thick elliptic cones, cylinders and plates. They used Generalized differential quadrature 

(GDQ) method. Tornabene et al. (2015) estimated the behavior of doubly-curved composite deep 

shells with variable radii of curvature under concentrated loads by a new approach. The paper 

showed convergence, stability and accuracy of the present approach when applied to beams, plates 

and doubly-curved thin and thick shells. Tornabene et al. (2015) evaluated a comparison between 

classical 2-D and 3-D finite elements (FEs), classical and refined 2D generalized differential 

quadrature (GDQ) methods and an exact three-dimensional solution for analysis of free vibration 

of cylindrical and spherical shell panels. 

Moreover, many researchers have investigated displacement dependent pressure. Bolotin 

(1963) was one of the pioneering researchers who studied the effects of load behavior on structures 

stability. He divided the loads into dead and follower types. The dead type remains constant both 

in magnitude and in direction. The follower load while remaining constant in magnitude but 

rotates in such a way that angle formed by the vector of the load and the normal to the shell 

surface follows a specific law. He also extracted the condition for uniformly distributed load over 

some part of the external surface of a body which remains normal to the deformed surface. In 

addition, he concluded that if the forces are non-conservative the form which the loss of stability 

assumes requiring special investigation in each problem. Both forms of instability are possible in 

this case. In a number of problems, depending on the relation between the parameters, the 

minimum critical loads can correspond to either the static or the oscillatory (flutter) forms of loss 

of stability. Another research which studied conservativeness of a normal pressure field acting on a 

shell, has been accomplished by Cohen (1966). He not only confirmed the Bolotin’s research for 

flat plates but also generalized the results to a non-uniform continuous normal pressure field acting 

on an arbitrary shell. Afterwards, he modified the potential energy of loading to incorporate shells 

of arbitrary curvature.  Romano (1971) extracted through the potential operator theory to present 

the correct proof of conservativeness condition. The analysis was performed in the large (finite 

deformation) obtaining a general condition for conservativeness of pressure loading. Sheinman 

and Tene (1974) emphasized on the functional potential energy derived by Cohen (1966); however, 

they suggested another expression for the normal pressure potential energy. Hibbitt (1979) 

extracted the contribution of follower forces to the tangent stiffness matrix which can be called 

load stiffness matrix. Generally, this matrix is un-symmetric but in special cases, it can appear as a 

symmetrical matrix. Due to non-uniform pressure, the investigator also demonstrated that the 

magnitude of non-symmetric matrix can be decreased by refining meshes while other aspects of 

non-symmetry are not dependent on element sizes. Schweizerhof and Ramm (1984) studied 

displacement-dependent pressure loads in nonlinear finite element analysis. They evaluated 

specific conditions when a pressure load is conservative and vice versa. The important part of their 

work was to propose a load classification into body attached and space attached loads. In the body 
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attached case, load stiffness matrix was divided into four parts so that three parts including two 

parts containing integrals along boundaries and the other related to variation of loading magnitude 

in the domain were skew-symmetric matrices. In the case of uniform pressure, the potential 

conditions were similar to those obtained by other researches. Altman et al. (1988-1990) studied 

vibration and stability of cylindrical shell panels under follower forces. The obtained solution 

(eigen curves) was used in conjunction with the dynamic criterion of stability to find the critical 

values of the frequency and loading parameters. Iwata et al. (1991) derived a symmetric load-

stiffness matrix for buckling analysis of shell structures under uniform pressure loads. It should be 

noted that in finite element method, in order to execute large deformation analysis and to calculate 

the buckling load, it is necessary to introduce a load-stiffness or load correction matrix as well as 

the conventional linear and geometrically non-linear (initial stress) stiffness matrices. Therefore, 

they used the results obtained by Schweizerhof and Ramm (1984). Poorveis and Kabir (2006) 

estimated buckling of discretely stringer-stiffened composite cylindrical shells under combined 

axial compression and external pressure in the form of live (follower) pressure. Cagdas and Adali 

(2011) investigated buckling of cross-ply cylinders under hydrostatic pressure by considering 

pressure stiffness and regarding semi-analytical finite element method. They studied the effects of 

pressure stiffness for different lay-ups and geometries. Park and Kim (2002) tried to reasonably 

simulate behavior of rockets or missile. They analyzed dynamic stability of completely free 

cylindrical shells under axial follower force for a specific situation in which the edge of shell is 

movable but not freely deformable. By executing geometric nonlinear analysis, Lazzari et al. 

(2003) carried out the study of large lightweight roof structures under the dynamic effects of the 

turbulent actions caused by wind. The wind loads were considered as deformation-dependent 

forces. Wang (2003) studied a beam structure subjected to a static follower force. The beam was 

fixed in the transverse direction and constrained by a rotational spring at one end, and by a 

translational spring and a rotational spring at the other end. Fukuchi and Tanaka (2006) 

investigated non-periodic motions and fractals of a circular arch under follower forces with small 

disturbances. The stability region chart of the disturbed equilibrium in an excitation field was 

calculated numerically. 

In this study, we propose a method to determine the effects of follower forces on buckling 

analysis of composite shells of revolution. In this regard, in order to calculate the pressure 

stiffness, the article proposes a procedure which is novel compared to prior methods. Prior studies 

have investigated the follower forces subjected to neutral axis. This assumption may not be 

appropriate in the general case, dealing with thick shells. Two factors can affect on the response of 

thick shell in this regard. First, applying loading on external surface or middle surface of the shell 

resulting different pre-buckling stresses and second, the deformation that will be experienced in 

each case through the buckling process can be dissimilar. Therefore, this article considers the 

subjected follower force on external fiber and suggests a general pressure stiffness matrix for 

every thick shells of revolution.  

 

 

2. Methodology 
 

2.1 Shell geometry and coordinate system 
 

The position of each shell point is introduced by a circumferential component (θ), a meridional 

component (φ), and a normal coordinate (z) to the middle surface illustrated in Fig. 1. 
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Fig. 1 Coordinate system 

 

 

Fig. 2 Geometry of shell of revolution: (a) meridional section; (b)circumferential section 

 

 

The angle formed by the extended normal to the surface and the z- axis rotation of the meridian 

curve is defined as the meridional angle (φ) and the angle between the radius of the parallel circle 

and the x-axis is designated as the circumferential angle (θ) as shown in Fig. 2. The parametric co-

ordinates are defined as (θ, φ), respectively. Each point distance from the mid-surface of the shell 

along the normal axis is z. The total thickness of the shell is also represented by h (Tornabene and 

Viola 2008). 

It should be noted that, owing to weakness of composite material in shear deformation, in this 

article, the first-order shear deformation theory has been utilized. Therefore, the displacement field 

corresponding to the first order shear deformation theory is given as 

                ),(),,(

),(),(),,(

),(),(),,(









swzsw

szsvzsv

szsuzsu s







                         (1) 

64



 

 

 

 

 

 

Buckling of thick deep laminated composite shell of revolution under follower forces 

 

Fig. 3 Strip method-discretization 

 

 

where: u, v and w are displacements in the middle plane of the laminate and βs, βθ are the rotations 

of the normal axis the middle plane around the θ and s axes, respectively.  

 

2.2 Semi analytical method (Finite strip method)  
 

The shell is divided into several closed strips being aligned with their nodal lines in the 

circumferential direction (Fig. 3). Displacements and rotations in the middle surface of shell are 

approximated by combining polynomial functions in the meridional direction and truncated 

Fourier series having appropriate number of harmonic term in the circumferential direction. 

The circumferential variables of the global displacements u, v, w, βs and βθ can be described by 

a suitable Fourier series expansion which generally consists of both symmetric and anti-symmetric 

terms 
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where θ stands for the circumferential angular coordinate, k represents a coefficient and NH is the 

number of terms in the truncated series, cn and sn are coefficients of Fourier series and ncr is the 
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circumferential wave number. The displacement and rotation expansions apply for both pre-

buckling state and buckling modes. The number of harmonics used in the analyses depends on the 

subjected loads as well as material anisotropy. In the case of uniform axisymmetric, axial or lateral 

pressure and material isotropy, only axisymmetric terms are active in the pre-buckling state. On 

the other hand, for buckling mode, only one wave number which leads to the minimum buckling 

loads is involved in the analysis. Generally, when a shell made by coupling material stiffness is 

subjected to partial deformation dependent loadings, full expansions are required for both pre-

buckling and buckling states. 

 

2.3 Thick shell theory  
 

The equations include accurate force and moment resultant relations for laminated composite 

deep thick shells where the 1+z/R (R is radius of shell) terms are considered in the stress resultant 

equations and integrated precisely (Asadi et al. 2012). The strain-displacement relationships at any 

arbitrary point of the shell thickness can be expressed as follows 
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where, linear strains of mid-plane and curvatures, based on Qatu (1999), Asadi et al. (2012) and 

Teng (1998) investigations, are as follows 
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(4) 

R12 is the radius of twist curvature and A1 and A2 are lame’s parameters and calculated according to 

R1 and R2 (Fig. 2) 
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The stress-strain relation for a single orthotropic lamina in a shell is 
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where ijQ  is the reduced transformed stiffness (Qatu 1999, Asadi et al. 2012). The force and 

moment resultants are obtained by integrating the stresses over the shell thickness. The normal and 

shear force resultants are presented in Qatu (1999), Asadi et al. (2012) (Fig. 4) 
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The bending and twisting moment resultants as well as higher-order shear resultant terms are 

expressed as 
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Fig. 4 Force resultants and moments 
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where Psθ and Pθs are higher-order shear terms; they need the state only if the radius of twist 

curvature exists. In this paper similar to (Qatu 1999, Asadi et al. 2012), exact stress resultants are 

obtained when the term is included and the integration is precisely carried out. The constitutive 

equations relate internal stress resultants and internal couples with generalized strain components 

on the middle surface 
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Aij is extensional stiffness, Dij is bending stiffness and Bij is bending-extensional coupling 

stiffness are defined as 
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where Ki and Kj in the above equations are shear correction coefficients, typical taken at 5/6 (Qatu 

1999). 

 

2.4 Linear elastic and geometric stiffness matrices  
 

To investigate the linear elastic stiffness matrix, the internal virtual work is calculated by using 

Eq. (12) 
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By integration Eq. (12) on thickness, the virtual work is 
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Also, the equation can be rewritten as below based on Eq. (13) 

}ˆ]{[})ˆ{(int  e
Tl KW                              (14) 
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where, Ke is linear elastic stiffness matrix, ̂  is displacements and rotations vector of shell and 
ˆ  is virtual displacements and rotations. In order to calculate the geometric stiffness matrix or 

initial stress, firstly, a static analysis is done for the pre-buckling state. Then, in-plane stresses 

including o

ssN , o

sN  , o

sN  and oN  are calculated. Finally, virtual work created by membrane 

forces, is introduced to investigate nonlinear virtual work as following 

nl o nl o nl o nl o nl

int ss ss s s s s

s

W  (N N N N Rd ds)     



                        (15) 

Substituting nonlinear strains calculated by using the Eq. (6) to Eq. (15), geometric stiffness 

matrix KG can be extracted by Eq. (16) 

}ˆ]{[})ˆ{(int  G
Tnl KW                             (16) 

It should be mentioned that linear elastic stiffness matrix as well as geometric stiffness matrix 

have some harmonic dependent terms which have been utilized in displacement and rotation 

expansions. Also, because of using close shell assumption, integration is considered in the 

circumferential direction and based on different harmonic assumption.  

 

2.5 Stiffness of pressure (uniform follower force) 
 

As it was discussed before, in this article, the first-order shear deformation assumption plays a 

significant role in order to calculate the pressure stiffness. In the previous investigations, loads 

were subjected to the neutral axis in both thick and thin shells. Schweizerhof and Ramm (1984) 

categorized the follower forces in two groups: Body attached and Space attached. In the case of 

space attached, both their magnitude and direction change relative to the structural deformation. 

Whereas, only direction of body attached forces alter when the structural deformations occur. In 

 

 

 

Fig. 5 Follower pressure acting on shell 
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Buckling of thick deep laminated composite shell of revolution under follower forces 

this study, body attached assumption has been considered. It should also be mentioned that all the 

strain are in infinitesimal strain zone. Therefore, all the relations regarding the stiffness of pressure 

can be written for neutral axis as well as external fiber of the shell as presented in Fig. 5. 

Fig. 6 reveals that if R  is defined as the vector of an arbitrary shell point, which the point can 

located on neutral axis (z=0) or on external fiber of the shell (z=h/2), and U  is the displacement 

vector of the supposed point, then after the deformations, the displacement vector ( *R ) can be 

calculated by using the Eq. (17). 

*R R U                                  (17) 

 This equation can be redefined by considering the first-order shear theory and shell degrees of 

freedom as below (Fig. 2) 
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Virtual work caused by follower pressure can be calculated by the Eq. (19). 
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                               (19) 

where *dS is deformed elemental area, 
*

n is normal vector to the deformed area, lP  is follower 

force and U  is virtual displacement vector which can be estimated by Eq. (20): 
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          (20) 

where n
 and n, t  are the unit vectors of circumferential, normal and meridional directions, 

respectively. Utilizing the vector analysis for calculating the elemental area and the normal vector 

of deformed structure, the following relation can be written 

* *
* * R R

dS n d ds
s

 
 

 
                            (21) 

The reader can refer to appendix A to acquire more information regarding calculation of the 

elemental area and the normal vector of deformed structure. By using the Eq. (19) and the 

determinant expansion stated in the first appendix, external virtual expansion caused by the 

dependent- displacement lateral pressure the Eq. (21) is written where Fu, Fv, Fw, Fβθ and Fβs are 

work counterpart of virtual displacements, u, v, w, βθ and βs, respectively (presented in appendix 

B). 
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It should be mentioned that the reader can utilize the potential operator to separate the 
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symmetric parts of stiffness matrix which are caused by pressure from the non-symmetric parts. 

Firstly, the second-order and upper-order terms are eliminated since they have no effective role in 

constant pressure stiffness matrix. Next, performing integration by parts on some terms of Eq. (22) 

and using first variation operator to separate the potential function in the shell domain from the 

virtual work of boundaries (Eq. (23)). 
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       (23) 

The external virtual work of uniform follower pressure on shell of revolution consists of two 

different parts (Eq. (23)): the first part includes several specific form potential functions. This part 

of external virtual work leads to symmetric pressure stiffness matrix. On the other hand, the 

second part is concerned about boundary conditions of shell ends. In other words, if shell is not 

sufficiently restrained in one of its end, pressure stiffness becomes non-symmetric. When the 

pressure stiffness matrix is symmetric, it is called conservative system but if the pressure stiffness 

matrix is un-symmetric, it is known as non-conservative system. In the case of conservative 

system, static criteria (divergence) can be used which finally produces symmetric global stiffness 

matrix. Non-conservativeness of loads can cause the system to be divided into purely and hybrid 

non-conservative. The first group only fails by flutter; consequently, the kinetic criteria, which 

connect computing buckling loads to vibration equation of structure, govern. In the hybrid case, 

both criteria, static or kinetic can dominate the problem (Argyris and Symeonidis 1981). In 

commercial programs such as Abaqus, pressure stiffness matrix is stored symmetrically (Goyal 

and Kapania 2008, ABAQUS/standard user’s manual 1998). In all cases of this article, the static 

analysis (or divergence criterion) has been utilized in order to calculate the buckling load. 

 
2.6 Eigenvalue problem 

 
The pre-buckling stresses are determined by performing a primary static analysis for the 

structure under the given loading. The buckling load parameter λcr is defined as the ratio of the 

actual buckling load to the applied forces in the points where buckling occurs, is obtained by 

solving the eigenvalue problem as below. The buckling load parameter for the externally 

pressurized case can be obtained by solving the modified eigenvalue problem )Cagdas and Adali 

2011( 

 e cr Gdet K K 0                               (24) 

The buckling parameter for follower pressure obtained by solving the modified eigenvalue 

problem 

 e cr G pdet K K K 0   
 

                         (25) 

where Ke is the global linear stiffness matrix, KG is the global geometric stiffness matrix, KP is the 

global pressure stiffness and λcr is the lowest eigenvalue of the buckling load parameter. The 
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corresponding buckling pressure is equal               

cr crP *P                                  (26) 

 

 

3. Numerical results and discussion 
 

3.1 Comparison results 
 

In this example, the result of analysis is carried out for cylindrical shells with two fixed ends 

under a uniform pressure. Therefore, different properties such as shell thickness effects on 

buckling load, effects of length to radius ratio by considering the presence and absence of pressure 

stiffness (PS) on buckling load, and lay-ups ([90/90/90]s, [0/90/0]s) have been compared with other 

research results. The radius of the cylinder is 190.5 mm. The material properties also considered as 

follows: 

11 22 12 13

23 12 13 23

E 206.844 GPa      E 18.6159 GPa   G G 4.482 GPa 

G = 2.55107GPa    υ = 0.21     0.25

   

   
 

In this study, the difference of buckling loads, with the presence and absence of pressure 

stiffness, is calculated by Eq. (27) 

cr(without  PS) cr(with  PS)

cr(with  PS)

q q
(%) *100

q


                         (27) 

     

                         
Table 1 Critical values of pressure (MPa) for clamped cylindrical shell and for various  length to radius 

ratio (L/R) and thickness (h) 

h L/R n 

Cagdas 

and Adali (2011) 

without PS 

Cagdas 

and Adali 

(2011) with PS 

Cagdas and Adali 

(2011) μ(%) 

Current study 

without PS 

Current study 

with PS 
μ(%) 

[90/90/90]s 

6.35 1 5 18.5 18 3.1 18.4 17.5 5.4 

6.35 2 3 11.1 10 10.5 11 9.89 10.9 

6.35 5 3 5.99 5.39 11.2 5.98 5.35 11.7 

12.7 1 4 92.3 88.7 4.1 91.3 86.5 5.6 

12.7 2 3 52.6 48.2 9 52 46.9 10.8 

12.7 5 2 28.3 22.2 27.3 27.09 21.6 29.4 

[0/90/0]s 

6.35 1 6 14.88 14.52 2.5 14.88 14.48 2.7 

6.35 2 4 6.175 5.820 6.1 6.163 5.796 6.3 

6.35 5 3 2.794 2.496 12.0 2.790 2.487 12.2 

12.7 1 5 88.22 86.35 2.2 88.25 85.67 3.0 

12.7 2 4 34.72 32.92 5.5 34.66 32.58 6.4 

12.7 5 3 16.29 14.65 11.2 16.27 14.50 12.2 
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Fig. 6 Three dimensional mesh of cylindrical shell 

 

 

According to Table 1, the calculated buckling loads for two states have been obtained which are 

in accordance with the results of Cagdas and Adali (2011). The minor differences of estimated 

buckling load under follower pressure between these studies are mainly due to different shell 

theories taken into account in the analyses. Gadgdas and Adali (2011) Extracted the relation for 

pressure stiffness according Koiter’s (1967) assumption that is more useful for thin shell instability 

while in this study the assumptions used to derive the pressure stiffness, dose not restricted to thin 

or thick shells. 

 

3.2 Comparison results 
 

In this section, the accuracy of presented theory has been investigated. Hence, the results of this 

study have been compared with the results concluded by Asadi et al. (2012), Asadi and Qatu 

(2012) and Asadi and Qatu (2013) who used three dimensional elasticity and first order shear 

deformation shell theory by Qatu (FSDTQ) in order to execute static analysis of thick-deep 

laminated cylindrical shells. In this study, the mentioned element has been utilized to calculate the 

buckling pressure. In addition, the results were achieved for two-ply anti-symmetric [90/0] shells 

and by considering different thickness ratios (a/h) and depth ratios (a/R). Fig. 6 illustrates the mesh 

pattern of a typical cylindrical shell simulated by FEM which has used 3D elements. 

It should be mentioned that in this example, the properties of material has been considered as 

follows: 

11 22 12 22 23 22 12 13 12E /E 25      G /E 0.5   G /E 0.2 G G   0.25       

Table 2 represents dimensionless displacement, force and moment resultants at the center of 

shells, buckling pressure with different thickness ratios; moreover, a/h=10 and 20 describe 

moderately thick and thin shells, respectively. It also shows that results for three different depth 

ratios in which a/R=0.5, 1, and 2 representing shallow, deep, and very deep shells, respectively. 

Dimensionless transverse displacement, moment, force resultants and buckling pressure can be 

calculated by Eq. (28) 

3 3 4

22w 10 E h w / qa  
3 2M 10 M / qa  
3 3N 10 N / qa  
3 3

22P P R / E h  

(28) 
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Table 2 Comparison of dimensionless displacements, moments, force resultants and buckling pressure as in 

Eq. (28) of [0/90] cylindrical shells  

a/h a/R  w  M  N  P  

10 

0.5 

FSDQT 11.636 52.822 1083.4 — 

3D 11.612 53.689 1084.7 0.3428 

Present study 11.852 55.291 1110.5 0.3482 

1 

FSDQT 5.6735 31.043 1067 — 

3D 5.6746 31.638 1070.5 0.3165 

Present study 5.8434 32.386 1090.6 0.3229 

2 

FSDQT 1.7089 12.899 658.02 — 

3D 1.7106 13.25 661.99 0.2865 

Present study 1.7501 13.484 670.39 0.2934 

20 

0.5 

FSDQT 17.188 63.16 394.21 — 

3D 17.009 64.496 393.25 0.3621 

Present study 17.248 66.544 403.77 0.3699 

1 

FSDQT 12.751 52.616 594.33 — 

3D 12.679 54.318 595.02 0.3309 

Present study 12.93 55.603 611.27 0.3378 

2 

FSDQT 5.9488 30.132 568.08 — 

3D 5.9629 31.668 574.34 0.3110 

Present study 6.056 32.357 586.8 0.3168 

 

 

According to Table 2, it can be concluded that the considered assumptions in this study are 

reasonable so that the maximum that have used three dimensional elements are estimated as: 

2.975% for the displacement, 2.675% and 3.176% for force and moment, and 2.4% for buckling 

load relative differences of the current results and those of other researches of cylindrical shell 

under lateral pressure. 

 

3.3 Buckling analysis of laminated cylindrical shell under follower pressure acting on 
neutral fiber and external fiber 

 

In this section, the effect of follower forces is studied by considering the presence and absence 

of loading on neutral axis. Therefore, the buckling of cylindrical composite shells with simply 

supported ends under lateral pressure has been calculated. In addition, three different lengths to 

radius ratios which are 1, 2, 5 as well as different thicknesses being equal to 6.35, 12.7, 19.05, 

25.4, 31.75, 38.1 mm have been considered. The maximum L/h utilized in the current analysis is 5. 

For larger ratios the suitable analysis can be a 3D analysis and using solid element or using HSDT 

shell theory for very deep shell such as the theory presented in Yaghoubshahi et al. (2011). Table 3 

and Table 4 represent the results of analyses for lay-ups ([90/90/90/]s, [0/90/0]s). These tables give 

the calculated buckling pressure for the load is subjected to external fiber of the shell and the 

buckling pressure for the state when loading is subjected to neutral axial. The material in this 

example is Graphite/epoxy which its properties have been considered as follows: 

11 22 12 13

23 12 13 23

E 130 GPa      E 7 GPa   G G 6 GPa 

G =4.2GPa    υ =0.28     0.4

   

   
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Table 3 Comparison of buckling pressure (MPa) of [90]6 cylindrical shells for z=0 and z=h/2 

h (mm) L/R 
Non-Follower 

(z=0) 

Follower 

(z=0) 

Follower 

(z=h/2) 
n (circum. wave No.) 

6.35 1 7.065 6.891 6.809 6 

6.35 2 3.935 3.785 3.768 5 

6.35 5 2.064 1.840 1.839 3 

12.7 1 43.051 41.544 40.192 5 

12.7 2 20.634 19.441 19.135 4 

12.7 5 10.593 9.445 9.421 3 

19.05 1 127.650 122.960 115.480 5 

19.05 2 58.119 52.410 50.791 3 

19.05 5 31.022 27.672 27.481 3 

25.4 1 273.400 262.780 242.730 5 

25.4 2 111.740 100.810 97.579 3 

25.4 5 62.377 47.550 47.196 2 

31.75 1 480.740 460.980 418.520 5 

31.75 2 189.050 170.610 163.830 3 

31.75 5 98.577 75.214 74.481 2 

38.1 1 741.830 709.700 642.770 5 

38.1 2 290.700 262.360 250.880 3 

38.1 5 146.510 111.900 110.620 2 

             
Table 4 Comparison of buckling pressure (MPa) of [0/90/0/]s cylindrical shells for z=0 and z=h/2 

h (mm) L/R 
Non-Follower 

(z=0) 

Follower 

(z=0) 

Follower 

(z=h/2) 
n (circum. wave No.) 

6.35 1 11.716 11.530 11.476 6 

6.35 2 5.451 5.252 5.243 5 

6.35 5 2.216 1.981 1.978 3 

12.7 1 65.270 64.026 63.359 5 

12.7 2 31.323 29.711 29.586 4 

12.7 5 12.059 10.761 10.743 3 

19.05 1 170.830 167.140 164.040 5 

19.05 2 81.583 77.342 76.968 3 

19.05 5 35.331 31.511 31.427 3 

25.4 1 324.580 317.200 311.040 5 

25.4 2 160.110 151.750 150.860 3 

25.4 5 75.706 66.230 65.902 2 

31.75 1 521.120 508.650 498.150 5 

31.75 2 264.120 250.310 247.400 3 

31.75 5 128.710 101.990 101.310 2 

38.1 1 748.680 731.590 715.240 5 

38.1 2 388.610 368.270 363.420 3 

38.1 5 186.450 147.620 146.350 2 
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Buckling of thick deep laminated composite shell of revolution under follower forces 

 

 

Fig. 7 difference of buckling pressure due to applying load on neutral axis and external fiber of 

[90/90/90/]s cylindrical shells 

 

 

Fig. 8 difference of buckling pressure due to applying load on neutral axis and external fiber of 

[0/90/0]s cylindrical shells 

 

 

By considering the presented results, since it has been assumed that the loading is non-follower 

forces in the thick cylindrical shells, the calculated buckling load increases rather than the state 

which the forces are dependent on deformation. Therefore, the comparison of the results reveals 

that for both follower and non-follower states, the difference between calculated buckling loads 

depends on different factors such as shell geometry so that if the thickness or length to radius ratio 

increases, the differences escalate. On the other hand, as it has been mentioned in this article, 

another assumption has been made in which the loads are subjected to neutral axis and external 

fiber of shell. Therefore, the results demonstrate that when a follower force is subjected to external 
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fiber, the buckling load decreases in comparison with the state that the load is subjected to neutral 

axis. As a result, the assumptions of non-follower pressure and loading on neutral fiber can lead to 

inaccurate results. Fig. 7 and Fig. 8 illustrate the relative differences of loading on neutral axis and 

external fiber for different thicknesses and layers. 

Regarding the Figs. 7 and 8, the reader can conclude that when the shell thickness increases, 

the effect of loading on outer fiber is intensified and this outcome is true for thick shells. 

Consequently, the effect of loading on outer fiber decreases, if the length to radius ratio increases. 

This happens can be created by reducing displacements along the shells when the mentioned ratio 

increases.  

In later problems (sections 3.4, 3.5 and 3.6), it is assumed that the loads which depend on 

deformation are subjected to outer shell fiber. 

 

3.4 Buckling analysis of laminated cylindrical shell under hydrostatic follower pressure 
 
In this case study, the effect of pressure stiffness (PS) on buckling load for composite 

cylindrical shells will be studied. Hence, a shell, with simply supported ends, is subjected to 

hydrostatic pressure. The radius of cylindrical shell equals to 100 millimeter (R=100 mm) and the 

studied thicknesses for two different states are 1.5 and 2 mm. It should be mentioned that the 

length to radius ratio has been considered 4 and 6. The regarded layers follow [θ/−θ /θ]s rules in 

which 0≤θ≤90. To create hydrostatic pressure in this example, the axial and lateral loadings are 

subjected to the shell, simultaneously. Therefore, it is assumed that the shell is under the liquid by 

considering a deep depth. The lateral pressure is a ratio of axial pressure which can be calculated 

by using Eq. (29).  

2
q P

R
                                  (29) 

The mechanical properties of material have been considered as follows: 

11 22 12 13

23 12 13 23

E 130 GPa      E 7 GPa   G G 6 GPa 

G =4.2GPa    υ =0.28     0.4

   

   
 

The results are presented in Tables 5(a)-(d).  

 

 
Table 5(a) buckling pressure (MPa) of cylindrical under hydrostatic pressure for h=1.5 mm, L/R=4 

Lay-up Without (PS) with (PS) μ 

[0]6 28.842 26.323 9.57 

[10/-10/10]s 34.765 31.741 9.53 

[20/-20/20]s 50.27 45.634 10.16 

[30/-30/30]s 71.369 64.125 11.30 

[40/-40/40]s 98.939 88.665 11.59 

[50/-50/50]s 133.75 111.16 20.32 

[60/-60/60]s 138.07 108.81 26.89 

[70/-70/70]s 139.06 110.45 25.90 

[80/-80/80]s 140.36 111.55 25.83 

[90/-90/90]s 140.42 111.31 26.15 

78



 

 

 

 

 

 

Buckling of thick deep laminated composite shell of revolution under follower forces 

Table 5(b) buckling pressure (MPa) of cylindrical under hydrostatic pressure for h=1.5 mm, L/R=6 

Lay-up Without (PS) with (PS) μ 

[0]6 21.516 19.589 9.84 

[10/-10/10]s 24.575 22.351 9.95 

[20/-20/20]s 33.904 30.688 10.48 

[30/-30/30]s 51.371 46.108 11.41 

[40/-40/40]s 68.291 52.594 29.85 

[50/-50/50]s 79.709 61.861 28.85 

[60/-60/60]s 95.578 74.767 27.83 

[70/-70/70]s 110.98 87.299 27.13 

[80/-80/80]s 121.98 96.196 26.80 

[90/-90/90]s 126.02 99.413 26.76 

 
Table 5(c) buckling pressure (MPa) of cylindrical under hydrostatic pressure for h=2 mm, L/R=4 

Lay-up Without (PS) with (PS) μ 

[0]6 60.510 55.591 8.85 

[10/-10/10]s 71.345 65.580 8.79 

[20/-20/20]s 101.070 92.384 9.40 

[30/-30/30]s 144.460 130.630 10.59 

[40/-40/40]s 201.680 181.690 11.00 

[50/-50/50]s 259.310 217.530 19.21 

[60/-60/60]s 264.210 208.550 26.69 

[70/-70/70]s 273.290 219.090 24.74 

[80/-80/80]s 279.340 224.870 24.22 

[90/-90/90]s 280.960 223.610 25.65 

 
Table 5(d) buckling pressure (MPa) of cylindrical under hydrostatic pressure for h=2 mm, L/R=6 

Lay-up Without (PS) with (PS) μ 

[0]6 47.216 43.184 9.34 

[10/-10/10]s 53.341 48.927 9.02 

[20/-20/20]s 72.917 66.544 9.58 

[30/-30/30]s 110.240 99.134 11.20 

[40/-40/40]s 132.950 103.390 28.59 

[50/-50/50]s 163.220 127.710 27.81 

[60/-60/60]s 198.890 156.600 27.01 

[70/-70/70]s 230.970 182.620 26.48 

[80/-80/80]s 252.920 200.380 26.22 

[90/-90/90]s 260.900 206.780 26.17 

 

 

According to Tables 5(a)-(d), it is clear that the maximum effect of follower force on the 

calculated buckling load for hydrostatic pressure is approximately 30% and this means that if the 

pressure stiffness matrix (deformation-dependent pressure effect) is neglected, the shell resistance 

79



 

 

 

 

 

 

Majid Khayat, Davood Poorveis, Shapour Moradi and Mona Hemmati 

to buckling pressure could be overestimated up to thirty percent. It is also concluded that in the 

thick shells, the influence of pressure stiffness on buckling load increases when the length to 

radius ratio increases. On the other hand, this value decreases when the shell thickness increases. 

By considering the data, the μ=9.53% when h=1.5 mm, L/R=4 and θ=10 while for h= 2 mm, same 

L/R and θ=10, the value of μ decreases. In addition, another point is that the differences in 

calculated buckling loads caused by pressure stiffness effects are so that if the lay-up angle 

increases, then the μ increases as well. 

 

3.5 Buckling analysis of laminated conical shell  
 
In this example, the buckling load in truncated conical shells under the displacement-dependent 

hydrostatic pressure is investigated. Therefore, lay-ups ([60/−60/60]s, [45/−45/45]s) and Kevlar/ 

Epoxy material have been utilized. The conical shells have simply supported ends in the cone's end 

which is subjected to axial forces. The geometric properties of the shell have been illustrated in Fig 

9. In addition, the mechanical properties of the material are considered as follows: 

11 22 12 13 23 12 13 23

Top

E 80 GPa      E 6 GPa   G G 2 GPa G =1.5GPa    υ =0.34     0.5

R 100mm

       


 

The results are presented in Tables 6 and 7. 

By considering the calculated results, for follower and non-follower forces, the calculated 

buckling load increases under hydrostatic pressure if the apex cone angle augments. Accordingly, 

in such case, the effect of pressure stiffness (μ) on buckling load increases for thick frustum shells 

if the apex cone angle or the thickness become larger. Whereas, for a constant apex cone angle and 

thickness, by increasing the length to radius ratio, the pressure stiffness decreases. 

 

3.6 Buckling analysis of laminated shell of revolution 
 
In this section, using the meridional equations, the buckling load is studied for rotating shells. 

These shells can be categorized into three different groups: firstly, the shells with positive 

Gaussian curvature in which two centers of curvature locate in one side such as Spherical, and 

 

 

 

Fig. 9 geometry of conical shell 
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Buckling of thick deep laminated composite shell of revolution under follower forces 

Table 6 buckling pressure of conical shell (MPa) of [60/−60/60]s 

h L/R Non-Follower Follower μ Non-Follower Follower μ Non-Follower Follower μ 

γ 30 45 60 

15 

2 25.789 24.629 4.71 39.952 38.029 5.06 57.880 55.043 5.15 

5 3.835 3.724 2.99 7.528 7.262 3.65 13.429 12.677 5.93 

10 0.854 0.839 1.78 1.803 1.763 2.30 3.552 3.423 3.78 

20 

2 54.672 51.908 5.32 77.422 73.362 5.53 106.960 101.190 5.70 

5 7.760 7.490 3.61 14.924 14.191 5.17 26.169 24.620 6.29 

10 1.738 1.702 2.09 3.621 3.510 3.18 7.237 6.885 5.11 

30 

2 151.110 140.800 7.32 182.630 168.390 8.46 232.730 214.150 8.68 

5 20.369 19.318 5.44 38.305 36.093 6.13 65.277 61.115 6.81 

10 4.713 4.569 3.16 9.743 9.300 4.76 18.704 17.640 6.03 

 
Table 7 buckling pressure of conical shell (MPa) of [45/−45/45]s 

h L/R Non-Follower Follower μ Non-Follower Follower μ Non-Follower Follower μ 

γ
 

30 45 60 

15 

2 22.762 21.781 4.50 40.179 37.912 5.98 62.745 58.741 6.82 

5 4.310 4.187 2.92 8.994 8.622 4.32 16.454 15.558 5.76 

10 1.027 1.010 1.72 2.239 2.179 2.78 4.583 4.380 4.63 

20 

2 44.447 41.980 5.88 73.892 69.331 6.58 111.970 104.490 7.16 

5 8.429 8.149 3.45 17.177 16.353 5.04 31.641 29.811 6.14 

10 2.047 2.006 2.00 4.441 4.309 3.06 9.014 8.552 5.41 

30 

2 107.520 99.794 7.74 161.730 149.070 8.49 229.620 211.290 8.68 

5 21.709 20.597 5.40 42.175 39.822 5.91 75.804 70.201 7.98 

10 5.340 5.182 3.05 11.533 11.020 4.66 22.946 21.679 5.84 

 

 

Parabolic shells. Secondly, negative Gaussian curvature shells which the both center of curvature 

are not located in the same side such as hyperbola shells. Finally, Zero Gaussian curvature shells 

which one of the curvature equals to zero such as cylindrical and conical shells. A catenary shell 

which its generator equation can be defined by Eq. (30) is illustrated in Fig. 10 (Tornabene 2011). 

2 bR R
Z d(cosh( ) 1)

d


                             (30) 

where d is the curvature radius in the apex of catenary curve. First and second curvature radii are 

also calculated by Eq. (31).  

1 b

2 2

R darcsin h(tan ) R

d
R

cos

  




                           (31) 

Parametric meridional equation of cycloid curve is represented in Eq. (32). (Fig. 11) 

c

c b

Z r (1 cos 2 )

R r (2 sin 2 ) R

  

   
                           (32) 
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Fig. 11 cycloid shell geometry: (a) meridional section; (b) circumferential section 

 

 

Fig. 12 parabolic shell geometry: (a) meridional section; (b) circumferential section 

 

 

In this equation, rc is the radius of the circle which have created cycloid curve. The radius of 

curvature in both circumferential and meridional directions is calculated by the Eq. (33). 

1 c

c b

2

R 4r cos

r (2 sin 2 ) R
R

sin

 

  




                             (33) 

The meridional equation of parabolic curve is presented in Eq. (34): (Fig. 12) 

2

b(R R ) kZ 0                                   (34) 
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Buckling of thick deep laminated composite shell of revolution under follower forces 

 

Fig. 13 elliptic shell geometry: (a) meridional section; (b) circumferential section 

 

 

where in this equation,  
2 2a b

k
b


  represents the characteristic parameter of parabolic curve.  

The radii of curvature of parabolic shell are defined as 

1 2

b

2

k
R

2cos

Rk
R

2cos sin




 
 

                             (35) 

The meridional section of elliptical shell can be defined as below: (Fig. 13) 

2 2 2 2

b(R R ) k (b Z) a                              (36) 

where a,b and k=a/b are the semimajor and semiminor axes of the elliptic curve and their ratio, 

respectively. The first and second radii of curvature are calculated by utilizing the Eq. (37) 

1
2 2 2 2

b

2
2 2

ak
R

cos (1 k tan )

Rak
R

sincos 1 k tan


  

 
  

                        (37) 

In this example, the geometric characteristics of shells are evaluated by considering an 

assumption that contends the lateral areas caused by different meridional curves are identical. In 

this problem, the lateral area and thickness are 60000 π mm
2
 and 15 mm, respectively. Eq. (38) 

presents a formulation to calculate the lateral area 

2

1

1 2A 2 R R sin d





                                 (38) 
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Table 8 Geometry of shell  

Geometric properties Geometry of shell 

L=300 R=100 Cylindrical 

R=173.205 Spherical 

Rbot=200 Rtop=0 L=300 Conical 

a=190.5 b=139.35 Elliptic 

a=225.892 d=100 Parabolic 

z=300 d=134.868 Catenary 

τc=64.40215 Cycloid 

 
Table 9 buckling of shells of revolution (MPa)  

Geometry 
[0/90/0]s [−45/45/−45]s [−45/45/−45]2 

Non-Follower follower μ Non-Follower follower μ Non-Follower follower μ 

Cylindrical 69.262 52.640 31.577 58.273 43.596 33.666 55.657 41.924 32.756 

Spherical 278.050 234.120 18.764 221.63 186.1905 19.034 202.99 171.248 18.536 

Conical 85.934 71.235 20.635 119.41 97.58749 22.362 113.42 93.194 21.703 

Elliptic 153.060 131.209 16.654 120.42 102.5803 17.391 109.91 93.938 17.003 

Parabolic 115.460 99.147 16.453 92.726 79.22523 17.041 85.108 72.953 16.662 

Cycloid 144.460 126.981 13.765 113.96 98.90816 15.218 104.17 90.733 14.81 

Catenary 72.952 63.616 14.675 82.006 70.52824 16.274 76.773 66.607 15.262 

 

 
The Geometric properties of different shells with same volume are presented in Table 8. 

The mechanical properties of the material are considered as below: 

11 22 12 13 23 12E 149.66 GPa      E 9.93GPa   G G G  4.48162 GPa    0.28        

Table 9 represents the calculated buckling loads for 7 different rotating shells and 2 symmetric 

lay-ups [0/90/0]s, [−45/45/−45]s and a non-symmetric lay-up [−45/45/−45]2. The boundary 

conditions of the shells are free supported in one end and fixed in another one. These shells are 

subjected to lateral uniform pressure.  

By considering Table 9 it can be concluded that the procedure for the thick shells with positive 

and zero curvatures and identical lateral surfaces, the spherical and cylindrical shells have the most 

and the least buckling loads, respectively. Moreover, the pressure stiffness (μ) plays an important 

role in buckling load of shells. In the considered shells, the pressure stiffness leads to reduce the 

buckling pressure for cylindrical, conical, spherical, elliptical, catenary, and cycloid shell, 

respectively. To explain this phenomenon, it can be mentioned that the maximum displacement in 

circumferential direction occurs in cylindrical shells. In other words, when circumferential 

displacement increases, then normal angle of shell, before and after the deformation, augments. 

Consequently, owing to the same direction of pressure and normal vectors of shell, before and after 

deformation, the subjected pressure possess more effects on buckling load with respect to the case 

when the pressure is not dependent on deformations. 
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Buckling of thick deep laminated composite shell of revolution under follower forces 

4. Conclusions 
 

This work is devoted to the buckling behavior of laminated composite deep as well as thick 

shells of revolution under follower forces which remain normal to the shell. In order to obtain the 

results, the shell is divided into several closed strips being aligned with their nodal lines in the 

circumferential direction. The governing equations are derived based on first-order shear 

deformation theory which accounts for through thickness shear flexibility. Displacements and 

rotations in the shell middle surface are approximated by combining polynomial functions in the 

meridional direction and truncated Fourier series using appropriate number of harmonic terms in 

the circumferential direction. The load stiffness matrix is derived for each strip and assembled to 

form global load stiffness matrix of the shell, which may be un-symmetric. Upon forming linear 

elastic stiffness matrix also called constitutive stiffness matrix, geometric stiffness matrix, load 

stiffness matrix, the required elements for the second step analysis, which is an eigenvalue 

problem are provided. The numerical results support the following conclusions: 

• All of the assumptions in this paper result in a reasonable accuracy for different shells, 

loading, materials in presence or absence of the pressure stiffness effect. 

• The results for laminated shells of revolution show, when the pressure stiffness effect is 

included, this effect can result in reduction of the critical load as calculated without this effect. 

Therefore, it is considered that the assumption of loads which remain constant direction during 

deformations can lead to inaccurate results. 

• Follower forces which are subjected to external fiber of thick shell can result in reduction in 

calculated buckling load. This effect can be intensified by increasing the thickness of the shell. 

• If the thickness of thick shell increases, the effect of live pressure in calculated buckling load 

increases. In addition, the value increases with the length to radius ratio.  

• The pressure stiffness effect which is related to the apex angle of conical shells under 

hydrostatic pressure is such that if the apex angle and thickness increases, pressure stiffness 

effect on buckling load augments as well. 

• For the thick shells with positive and zero curvatures and identical lateral surfaces, the 

spherical and cylindrical shells have the most and the least buckling loads, respectively. In the 

considered loads, the pressure stiffness lead to reduce the buckling pressure for cylindrical, 

conical, spherical, elliptical, catenary, and cycloid shell, respectively. 
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Appendix A 
 

As stated in the paper context, the elemental area of the shell deformed surface ( *dS ) multiplied 

by the normal vector ( *n ) can be defined by the following vector product 
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The expansion of Eq. (A1) can be defined by the following determinant 
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Appendix B
 

 

The expanded forms of Fu, Fv, Fw, Fβs and Fβθ defined in the Eq. (22) are as follows 
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