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Abstract.  In this paper, we investigated the propagation of surface waves in a nonhomogeneous rotating 

fibre-reinforced viscoelastic anisotropic media of higher order of nth order including time rate of strain. The 

general surface wave speed is derived to study the effect of rotation on surface waves. Particular cases for 

Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general 

in the sense that some earlier published results are obtained from our result as special cases. Also results for 

homogeneous media can be deduced from this investigation. For order zero our results are well agreed to 

fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well 

known isotropic medium. It is also observed that, surface waves cannot propagate in a fast rotating medium. 

Comparison was made with the results obtained in the presence and absence of rotation and parameters for 

fibre-reinforced of the material medium Numerical results are given and illustrated graphically. The results 

indicate that the effect of rotation and parameters for fibre-reinforced of the material are very pronounced. 
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1. Introduction 
 

The dynamical problem of propagation of surface waves in a homogeneous and non- 

homogeneous elastic and thermoplastic media are of considerable importance in earthquake, 

engineering and seismology on account of the occurrence of non-homogeneities in the earth's 

crust, as the earth is made up of different layers. Surface waves have been well recognized in the 

study of earthquake, seismology, geophysics and geodynamics. A good amount of literature for 

surface waves is available (Bullen 1965, Ewing and Jardetzkyin 1957, Rayleigh 1885, Stoneley 

1924). Acharya and Singupta (1978), Pal and Sengupta (1987) studied surface waves under 

influence of varies parameters. These waves usually have greater amplitudes as compared with 

body waves and travel more slowly than body waves. There are many types of surface waves but 
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we only discussed Stoneley, Love and Rayleigh waves.  In earthquake the movement is due to the 

surface waves. These are also used for detecting cracks and other defects in materials. Lord 

Rayleigh (1885) was the first to observe such kind of waves in 1885. That‟s why we called it 

Rayleigh waves. Sengupta and Nath (2001) investigated surface waves in fibre-reinforced 

anisotropic elastic media, but their decomposition of displacement vector was not correct that‟s 

why some errors are found in their investigations. 

The idea of continuous self-reinforcement at every point of an elastic solid was introduced by 

Belfield et al. (1983). The superiority of fibre-reinforced composite materials over other structural 

materials attracted many authors to study different types of problems in this field. Fibre-reinforced 

composite structures are used due to their low weight and high strength. Two important 

components, namely concrete and steel of a reinforced medium are bound together as a single unit 

so that there can be no relative displacement between them i.e., they act together as a single 

anisotropic unit. The artificial structures on the surface of the earth are excited during an 

earthquake, which give rise to violent vibrations in some cases (Acharya and Roy 2009, Acharya 

and Roy 2009). Engineers and architects are in search of such reinforced elastic materials for the 

structures that resist the oscillatory vibration. The propagation of waves depends upon the ground 

vibration and the physical properties of the material structure. Schoenberg and Censor (1973) 

introduced the idea of elastic waves in rotating media. Surface wave propagation in fiber 

reinforced media was discussed by various authors (Sapan et al. 2011, Singh 2006, Kakar et al. 

2013, Abd-Alla et al. 2013, Chattopadhyay et al. 2002, Singh and Singh 2004). Abd-Alla et al. 

(Abd-Alla et al. 2013, Abd-Alla et al. 2012, Abd-Alla et al. 2015, Abo-Dahab et al. 2015, 

Abd-Alla et al. 2015) discussed various surface wave propagation in non-homogeneous isotropic 

media. The extensive literature on the topic is now available and we can only mention a few recent 

interesting investigations in (Ait Yahia et al. 2015, Bourada et al. 2015, Belabed et al. 2014, 

Hebali et al. 2014, Mahi et al. 2015, Bennoun et al. 2016, Belabed et al. 2014, Hebali et al. 2014, 

Abo-Dahab et al. 2016, Abd-Alla et al. 2012, Abd-Alla et al. 2011, Abd-Alla et al. 2010, 

Abd-Alla et al. 1996, Abd-Alla et al. 2004). 

The aim of this paper is to investigate the propagation of surface waves in a rotating 

nonhomogeneous fibre-reinforced viscoelastic anisotropic media of higher order. The general 

surface wave speed is derived to study the effect of rotation on surface waves. Particular cases for 

Stonely, Love and Rayleigh waves are discussed. The results obtained in this investigation are 

more general in the sense that some earlier published results are obtained from our result as special 

cases. For order zero our results are well agreed to fibre-reinforced materials. It is also observed 

that the corresponding classical results follow from this analysis, in viscoelastic media of order 

zero, by neglecting reinforced parameters and rotational effects. Results for homogeneous media 

can be deduced from this investigation. Numerical results are given and illustrated graphically.  

 

 

2. Formulation of the problem 
 

Medium is consisting of two non-homogeneous anisotropic fibre-reinforced semi-infinite 

elastic solid media M1 and M2 with different elastic and reinforcement parameters. The 

non-homogeneity of the material is depending on the space variable. It is assumed that 

non-homogeneity grows or decays slowly. Its rate of growth or decay is proportional to its value at 

that point, i.e., 
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;
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dx


  where λ is an elastic parameter. 

This implies 

2

,
d

m
dx


  

where m is a constant, which is positive for inhomogeneity growth and negative for decay. 

Above equation implies 

2mx

oe   

For m=0, λ= λ0, Thus for m=0, the medium is homogeneous. 

The two media are perfectly welded in contact at a plane interface. Let us take orthogonal 

Cartesian axes Ox1x2x3 
with the origin at O. Ox2 

is pointing vertically upwards into the medium    

M(x2>0). Each of the media M1 (x2>0) and M2 (x2<0) separated at x2=0. Both media are rotating 

about an axis. 

It is assumed that the waves travel in the positive direction of the x1-axis and at any instant, all 

particles have equal displacements in any direction parallel to Ox3. In view of those assumptions, 

the propagation of waves will be independent of x3. 

The propagation equations of small elastic disturbances are as follows (Schoenberg and Censor 

1973). 
2

, { 2 }ij j i j j i i ijk j ku u u u        , where εijk
 

is the Levi-Civita tensor, τij are 

components of stress, ρ
 
is the mass density and ui 

is the displacement vector. Upper suffix dot 

shows the time derivative with respect to time and comma followed by index shows the partial 

derivative with respect to coordinate. It is assumed that the body is rotating about z-axis with an 

angular frequency Ω i.e., Ω =Ω(0,0,1)
 

In component form, the equation of motion becomes 
 

2

11,1 12,2 13,3 1 1 2

2

21,1 22,2 23,3 2 2 1

31,1 32,2 33,3 3

{ 2 },

{ 2 },

.

u u u

u u u

u

   

   

   

     


      


   

                   (2.1) 

The general equation for a fibre-reinforced linearly elastic anisotropic media w.r.t. a direction  

1 2 3( , , )a a a a is as under Sengupta and Nath (2001), Acharya and Roy (2009), Kakar et al. 

(2013).  

)2 ( 2( )( ) ( ),
T L Tij kk ij ij k m km ij kk i j i k kj j k ki k m km i jD D D a a a a D D a a a a D a a a a                    

 

Strain tensor is 1
, ,2

( )ij i j j iu u   and Dλ, DμT are elastic parameters. Dα, Dβ
 
and (D )

L T

D    

are reinforced anisotropic viscoelastic parameters of higher order, s. 

In the present problem we consider exponentially decaying non-homogeneous material. Hence 

density, elastic module and elastic parameters may be taken in the following form. 

2

0
xm

e


   

183



 

 

 

 

 

 

S.M. Abo-Dahab, A.M. Abd-Alla and Aftab Khan 

2 2
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2 2

T k

k k

mx mx

k TD e D e
t t

       
    
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0,1,2... .k s  

An Einstein summation convention for repeated indices is used.
 

By choosing the fibre direction as (1,0,0)a  , the components of stress becomes as follows 

11 11 22 33

22 11 22 33

33 11 22 33
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12 12

23 23

(D 2 4 2 ) (D ) (D ) ,

(D ) (D 2 ) ,

(D ) (D 2 ) ,

2 ,

2 ,

2 .

L T

T

T

L

L

T

D D D D D D
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 
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    







 

By using strain tensor, the above equations and taking all derivatives w.r.t. x3 
zero. 

The Eq. (2.1) of motion takes the following form 

 

1,11 2,21 1,22

2

1,2 2,1 1 1 2

(D 2 4 2 ) (D )

{ 2 },

LL T L

T

m

D D D D u D D u D u

D u u u u u

        

 

       

    
 

(2.2a) 

 

 
1,12 2,11 2,22 1,1

2

2,2 2 2 1

(D ) ( 2 )

2 { 2 },

T

T

D D u D u D D u m D D u

m D D u u u u

       

  

      

     
    (2.2b) 

T T3,11 3,22 3,2 3D D D ,
L

u u m u u     
                  

(2.2c) 

Similarly, we can get similar relations in medium M2 
with ρ, Dα, Dλ, ,

L

D
T

D and Dβ
 
are 

replaced by ρ′, Dα′, Dλ′, ,
L

D
T

D and Dβ′. 

 
 
3. Solution of the problem 
 

We seek harmonic solutions in the form 

)},(exp{)(ˆ),(ˆ),(ˆ,, 1232221321 ctxixuxuxuuuu    
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Thus, coupled Eqs. (2.2a), (2.2b) of motion becomes 

      

   
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        
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 
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where, 
2

d
D

dx
  

Similarly, we can get similar relations in M2. Above equations can be written as follows 

,0ˆ)2(ˆ)( 2221
223

3
2

2
2

1  ucmDiucDmD  
 

,0ˆ)2)((ˆ)( 11222
222

1
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4
2

4  ucmDiucDmD  
 

and uncoupled equation becomes 

 2 2 2

5 5 1 3
ˆ( ) 0D m D c u    

 

where

 1

2

3

4 5
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( 2 4 2 )( ) ,
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k
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k
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k
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 

   
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    

 

   
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The uncoupled equation has the following solution  

 1 2 2 2 1( )

3 1 ,
x x i x ct

u Ee E e e
      

   

where η1 and η2 are roots of the equation 2 2 2

5 5 1( ) 0m c       . 

 2
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1,2

5

41

2

c
m m




 
   
 
 

 

For positive real root η1, it is necessary that 2 2

5 10 4 4c m    and in the homogeneous 

medium 2

10  c  otherwise transverse component does not exist. For boundedness 

 1 2

3 1( ) ,
x exu Ee i xp ct  

   

The above set of coupled equations can be written as 
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From abvove set of equations, we have 
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4 1 2 2 2 1
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For homogeneous medium, m=0, this implies C1=C3=0 and C2, C4 must be positive for real
 

positive roots. Here C2, C4 must be positive impose a necessary and sufficient condition upon the 

frequency of rotation of the medium through which a surface wave cannot propagate in a fast 

rotating medium. i.e., 

2

3

2 


 , 

Let αi, i=1,2,…4 be four positive real roots of Eq. (3.2), then solution by normal mode method 

has the following form
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
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2 1

1

ˆ  ,n

n

xnu M e





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where, Mn, M1n are some parameters depending on c and ω. 

By using Eqs. (3.1), we get the following relations, 

1 1n n nM H M
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Hence we obtain the expressions of the displacement components and stresses as follows  
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Similar expressions can be obtained for second mediun and present them with dashes as 

follows 

 2

4

1 1

1

 ( ) ,
n

xn
n exu M e i x cp t







  

 

 2

4

2 1 1

1

 ( ) ,n

n

xn
n expu H M e i x ct







   

 

 1 2

3 1( ) ,
x expu Fe i x ct  

  
 

   2

4

12 1 1 1

1

( ) ,n n n

n

xni H M e ex i cp x t


   



       

 

   2

4

22 2 1 4 1 1

1

( ) ( ) ,n n n

n

xni eH M e i x ctxp


   



         

 

 2

23 5 1( ) .
xF e i x cexp t  

    
 

In order to determine the secular equations, we have the following boundary conditions. 

 
 
4. Boundary conditions 
 

1) The displacement components and their rate of change w.r.t. x2, between the mediums is 

continuous, i.e., 

1 1 2 2 3 3, , ,u u u u u u    
1,2 1,2 ,u u

 2,2 2,2u u , 3,2 3,2u u  on 2 0x  , for all 1x and t. 
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2) Stress and their deritive w.r.t x2 are continuous, i.e., 

12 12   , 22 22   , 23 23   , 12,2 12,2   , 22,2 22,2   , 23,2 23,2   on 2 0x  , for all
 
x1 

and t. 

Boundary conditions imply the following equations 

1 2 3 4 1 2 3 4

11 1 12 2 13 3 14 4 11 1 12 2 13 3 14 4

1 1 2 2 3 3 4 4 1 1 2 2 3 4 4

1 11 1 2 12 2 3 13 3 4 14 4 1 11 1 2 12 2 3 13 4

M M M M M M M M

H M H M H M H M H M H M H M H M

E F

M M M M M M M M

H M H M H M H M H M H M H M H

       

       

         

             



             

                 14 4

1 1

M

E F 









 
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From the above set of equations, the four equations containing E and F implies that E=F=0. 

From remaining eight equations, for non-trivial solution we have  

 det 0, 1,2,...,8.ija i j                          (4.2) 

where  

11 12 13 14 15 16 17 18

21 11 22 12 23 13 24 14 25 11 26 12 27 13 28 14

31 1 32 2 33 3 34 4 35 1 36 2 37 3 38 4

41 1 11 4

1, 1, 1, 1, 1, 1, 1, 1,

, , , , , , , ,

, , , , , , , ,

,

a a a a a a a a

a H a H a H a H a H a H a H a H

a a a a a a a a

a H a

       



           

              

              

 2 2 12 43 3 13 44 4 14

45 1 11 46 2 12 47 3 13 48 4 14

, , ,

, , , ,

H a H a H

a H a H a H a H

  

   

  

              

 

   5 1 1 5 1 1, 1,2,..., 4; , 5,6,...,8.p p p q q qa i H p a i H q               

   6 2 1 4 1 6 2 1 4 1( ) , 1,2,..., 4; ( ) , 5,6,...,8.p p p q q qa i H p a i H q                 
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   7 1 1 7 1 1, 1,2,..., 4; , 5,6,...,8p p p p q q q qa i H p a i H q                . 

   6 2 1 4 1 6 2 1 4 1( ) , 1,2,..., 4; ( ) , 5,6,...,8.p p p p q q q qa i H p a i H q                    

 
 
5 Particular cases 
     

5.1 Stoneley waves 
 
It is also a surface wave and may be considered as the generalized form of Rayleigh waves 

propagating at the common boundary of M and M1. Hence, the wave velocity Eq. (34.2) for 

general surface waves may also be considered for the Stoneley waves in a fibre-reinforced elastic 

media along the common boundary. Since the wave velocity Eq. (34.2) for Stoneley waves under 

the present circumstances does not contain  explicitely, such types of waves are not dispersive 

like the classical one. Eq. (34.2) is the secular equation for Stonely waves. If rotational effects and 

fiber-reinforced parameters are ignored, then for k=0, in homogeneous media, the results are same 

as Stoneley (1924). 

 

5.2 Love waves 
 

To investigate the rotational effects on Love waves in a fibre reinforced viscoelastic media of 

higher order, we replace the medium M1 by an infinitely extended horizontal plate of finite 

thickness d and bounded by two horizontal plane surfaces x2=0 and x2=d. Medium M is semi 

infinite as in the general case.  

The boundary conditions of Love wave are as follows 

The displacement component u3 
and τ12 between the mediums is continuous, i.e., 

3 3u u
   

and     
23 23  

 
on 

2 0x 
 

23  = 0     on      
2x d ,            for all x1 

and t, 

where 

1 2 1( )

3 ,
x i x ct

u Ee e
   


 

1 2 1 1 2 1( ) ( )
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x i x ct x i x ct

u E e e F e e
             
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For non trivial solution implies 

     
1 1

1 1 1
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This gives the wave velocity of Love waves propagating in a fiber-reinforced viscoelastic 

medium of higher order. For k=0, the results are exactly same as in literature. It is interesting to 

note that rotation and non-homogeneity does not affect the velocity of Love waves. 

 

5.3 Rayleigh waves 
 

Rayleigh wave is a special case of the above general surface wave. In this case we consider a 

model where the medium M2 is replaced by vacuum. Since the boundary x2=0 is adjacent to 

vacuum. It is free from surface traction. So the stress boundary condition in this case may be 

expressed as 

12 0   ,  22 0  ,
 12,2 0  , 22,2 0  ,

 23 0  and 23,2 0  on 2 0x  , for all 1x
 
and t 

Thus above set of equations reduces to 

11 12 13 14

1 2 3 4

1 11 2 12 3 13 4 14

1 1 1 1

0 .
H H H H

H H H H

   

   



 

Which is secular equation for Rayleigh wave. 

 
 
6. Numerical results and discussion 

 

The following values of elastic constants are considered Chattopadhyay et al. (2002), Singh 

(2006), for mediums M and M1 respectively. 

,1090.220,1028.1

1066.5,1046.2,1065.5,/2660
2929

29292103









NmxNmx

NmxNmxNmxmkG
LT





 

210210

2102102103

1090.220,1028.1

1066.5,1046.2,1065.5,/7800








NmxNmx

NmxNmxNmxmkG
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0 0 0293 , 0.1, 0.2T K      
Taking into consideration, the numerical technique outlined above was used to obtain secular 

equation, surface wave velocity and attenuation coefficients under the effects of rotation and 

inhomogeneity in two models considering the real part indicates to the surface wave velocity, but 

the imaginary part indicates to the attenuation coefficient. For the sake of brevity, some 

computational results are being presented here. The variations are shown in Figs. 1-3 respectively. 

Figs. (1a-1i) Show that the variation of the magnitude of the frequency equation |Δ|, Stoneley 

wave velocity Re(|Δ|) and attenuation coefficient Im(|Δ|) with respect to frequency ω for different 

values of inhomogeneity m, rotation Ω and higher order k of nth order including time rate of strain. 

The magnitude of the frequency equation decreases and increases with increasing of frequency and 

it vanish at ω=0.4 when effect of inhomogeneity, while it increases in the interval [0,0.4] with 

increasing of inhomogeneity and it decreases in the interval [0.4,1] with increasing of 

inhomogeneity, as well the magnitude of the frequency equation increases with increasing of 
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frequency and rotation, while it decreases with increasing of higher order k of nth order including 

time rate of strain, the Stoneley wave velocity decreases and increases with increasing of 

frequency and it vanish at ω=0.4,0.6 when effect of inhomogeneity, while it increases in the 

interval [0,0.4] and in the interval [0.6,1] with increasing of inhomogeneity, as well  the Stoneley 

wave velocity increases and decreases with increasing of frequency, while it increases with 

increasing of rotation, as well it increases with increasing of higher order k of nth order including 

time rate of strain and the attenuation coefficient decreases and increases with increasing of 

frequency and it vanish at ω=0.3, 0.4, 0.7 when effect of inhomogeneity, while it increases in the 

interval [0,0.2] and in the interval [0.7,1] with increasing of inhomogeneity, as well the attenuation 

coefficient decreases with increasing of frequency and rotation, as well it increases with increasing 

of higher order k of nth order including time rate of strain. However from the Stoneley wave 

velocity the combined effectof rotation and fibre reinforcing has a significant role to play on the 

Stoneley wave velocity 

Figs. (2a-2i) Show that the variation of the magnitude of the frequency equation |Δ|, Love wave 

velocity Re(|Δ|) and attenuation coefficient Im(|Δ|) with respect to frequency ω for different values 

of inhomogeneity m, thickness d and higher order k of nth order including time rate of strain. The 

magnitude of the frequency equation decreases with increasing of frequency, while it increases and 

decreases with increasing of frequency when effect of higher order, as well the magnitude of the 

frequency equation increases with increasing of inhomogeneity, while it decreases with increasing 

of higher order k of nth order including time rate of strain and thickness, the Love wave velocity 

increases with increasing of frequency, while it decreases and increases with increasing of 

frequency when effect of higher order, as well the Love wave velocity decreases with increasing of 

inhomogeneity, while it increases with increasing of thickness and higher order and the attenuation 

coefficient decreases with increasing of frequency, while it decreases and increases with increasing 

of frequency when effect of higher order, as well the attenuation coefficient increases with 

increasing of inhomogeneity and higher order, while it decreases with increasing of thickness. The 

physical fact which emerges out of the above analysis is that fibre-reinforcement plays a vital role 

in the Love wave velocity where as the presence of rotation can not influence the same. Moreover 

the thickness of the fibre-reinforced layer has a pronounced effect on the Love wave velocity. 

Figs. (3a-3l) Show that the variation of the magnitude of the frequency equation |Δ|, Rayleigh 

wave velocity Re(|Δ|) and attenuation coefficient Im(|Δ|) with respect to frequency ω for different 

values of inhomogeneity m, rotation Ω and higher order k of nth order including time rate of strain. 

The magnitude of the frequency equation decreases and increases with increasing of frequency 

when effect of inhomogeneity, while it increases in the interval [0,0.4] with increasing of 

inhomogeneity and it decreases in the interval [0.4,1] with increasing of inhomogeneity, as well 

the magnitude of the frequency equation increases with increasing of frequency and rotation, while 

it increases with increasing of frequency and there is no effect of higher order k of nth order 

including time rate of strain, the Rayleigh wave velocity decreases and increases with increasing of 

frequency, while it increases with increasing of inhomogeneity, as well the Rayleigh wave velocity 

increases and decreases with increasing of frequency, while it increases with increasing of rotation, 

as well it decreases with increasing of higher order k of nth order including time rate of strain and 

the attenuation coefficient decreases with increasing of frequency, while it increases with 

increasing of inhomogeneity, as well the attenuation coefficient decreases with increasing of 

frequency and rotation, as well it decreases with increasing of frequency and there is no effect of 

higher order k of nth order including time rate of strain. The above discussion expresses the 

physical fact, in general, that the rotation as well as fibre-reinforcement which are generally  
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Fig. 1 Variation of |Δ|, velocity (Re(|Δ|)) and attenuation coefficient (Im(|Δ|)) for Stoneley waves with 

respect to c with the variation of Ω and k 
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Fig. 2 Variation of |Δ|, velocity (Re(|Δ|)) and attenuation coefficient (Im(|Δ|)) for Love waves with respect 

to ω with the variation of m, d and k 
 

193



 

 

 

 

 

 

S.M. Abo-Dahab, A.M. Abd-Alla and Aftab Khan 

 

 

 

Fig. 3 Variation of |Δ|, velocity (Re(|Δ|)) and attenuation coefficient (Im(|Δ|)) for Rayleigh waves with 

respect to ω with variation of m, Ω and k 

 

 

neglected in corresponding classical problems, influences the Rayleigh wave velocity to a 

considerable extent. 
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7. Conclusions 
 

1. The surface waves in non-homogeneous, anisotropic, fibre-reinforced  viscoelastic solid 

media under the rotation and higher order k of nth order including time rate of strain are 

investigated. It is observed that viscoelastic surface waves are affected by rotation, 

inhomogeneity, frequency and the time rate of strain parameters. These parameters influence on 

the wave velocity to an extent depending on the corresponding constants characterizing and 

viscoelasticity of the material. So the results of this analysis become useful in circumstances 

where these effects cannot be neglected. These velocities depend upon the fibre-reinforced 

parameters „a‟ confirming that these waves are affected by the rotation of the media. 

2. Love waves in non-homogeneous media; these are only affected by viscosity, rotation, 

frequency, higher order k of net order, including time rate of strain,  frequency and thickness 

of the medium. In the absence of all fields, the dispersion equation is in complete agreement 

with the corresponding classical result. 

3. Rayleigh waves in non-homogeneous, general viscoelastic solid medium of higher order, 

including time rate of change of strain, we find that the wave velocity equation, proves that 

there is a dispersion of waves due to the presence of rotation, frequency, inhomogeneity and 

viscosity. The results are in complete agreement with the corresponding classical results in the 

absence of all fields. 

4. The wave velocity equation of Stoneley waves is very similar to the corresponding problem 

in the classical theory of elasticity. The dispersion of waves is due to the presence of rotation, 

phase velocity, frequency and viscosity of the solid. Also, wave velocity equation of this 

generalized type of surface waves is in complete agreement with the corresponding classical 

result in the absence of all fields. 

5. The result provides a motivation to investigate fibre-reinforced viscoelastic anisotropic 

media of higher order as a new class of applicable fibre-reinforced viscoelastic media . The 

results presented in this paper should prove useful for researchers in material science, designers 

of new materials, physicists as well as for those working on the development of 

fibre-reinforced elasticity and in practical situations as in geophysics, optics, acoustics, 

geomagnetic and oil prospecting etc . The used methods in the present article is applicable to a 

wide range of problems in thermodynamics and thermoelasticity. 

6. The rotation plays a significant role in the distribution of all the physical quantities. The 

parameters of all the physical quantities vary (increase or decrease) as rotation increases.. 

7. All the physical quantities satisfy the boundary conditions. 

8. If we neglect the effect of rotation then our results coincide with Abd-Alla et al. (2015), 

Finally, if the rotation and fibre-reinforced are neglected , the relevant results obtained are 

deduced to the results obtained by Sengupta and Nat (2001). It is observed that in a fast rotating 

medium the surface wave cannot propagate. 
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