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Abstract.  Consistent finite strain Plate constitutive relations are derived based on a hyperelastic 

formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a 

static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, 

represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has 

been expressed in term of a deformation tensor associated with the deformation and stretches of an 

embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and 

transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under 

uni-axial compression force are presented. 
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1. Introduction 
 

The Classical thin plate theory has been widely employed in predicting stresses and strains and 

for estimating the buckling load in problems involving thin plates with reasonable results. Yet, due 

to several shortcomings specifically the neglect of shear deformations, it is not suitable for the 

investigation of buckling of thick plate where stress can vary through the thickness of the plate. 

Effort has been made to develop refined theories which could overcome the limitations of the 

classical plate theory and led to the development of shear deformation theories which include the 

effect of shear deformations. 

Reissner (1945) developed his two dimensional plate theory based on an assumed stress field. It 

was the first plate theory to include the effect of transverse shear and for the first time the correct 

number of boundary conditions was satisfied. Mindlin (1951) developed a two dimensional plate 

theory, which included the effect of transverse shear, based on an assumed displacement field.  

Since the development of Mindlin’s plate theory, many shear deformation theories were 

developed which usually, assume a displacement field in the form of power series in the thickness 

coordinate. Reddy and Chao (1981) introduced a non-linear first order shear deformation theory. 

They adopted the displacement field in Mindlin’s plate theory using non-linear strain-displacement 

relationships (Von Karman strain displacement equations). Ziegler (1983) pioneered the 
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investigation of plate buckling employing a Mindlin type plate theory, which included the effect of 

transverse and in-plane shear deformations, based on linear elastic analysis. Reddy (1984) 

improved his first order plate theory by upgrading it into a third order theory. Di Sciuva (1986) 

assumed a displacement model which accounts for linear distribution of the in-plane displacements 

across the plate thickness and allows the surface conditions of the transverse shear stresses to be 

satisfied. Based on such a displacement field, he developed a linear theory for statics of thick 

multilayered anisotropic plates. Stein (1986) formulated a two-dimensional non-linear plate theory 

including shear deformations effect. The assumed displacement field is a trigonometric series 

representation of the displacements through the thickness. Murty and Vellaichamy (1988) 

formulated a two dimensional higher order shear deformation theory based on a displacement field 

where cubic variation of in-plane displacements and parabolic variation of the transverse 

displacement across the thickness is assumed. Reddy (1990) revised his earlier work in Reddy 

(1984) and derived a third order deformation theory with taking account to the stretching of 

transverse normal in the displacement field. Matsunaga (1992) assumed a displacement field in the 

form of power series in the thickness coordinate in deriving a two dimensional plate theory. 

Shariat and Eslami (2007) employed a third order theory in buckling analysis of rectangular thick 

functionally graded plates. Vijayakumar (2011) modified the classical plate theory by solving the 

boundary condition paradox. He derived a sixth-order partial differential equation which satisfies 

all the plate boundary conditions. He considered the in plane displacement as linearly distributed 

across plate thickness and modified them through additional gradients of an auxiliary harmonic 

function. Mantari et al. (2012) derived a two-dimensional higher order shear deformation theory 

for sandwich and composite laminated plates. In their theory the displacements of the middle 

surface are expanded as a combination of exponential and trigonometric functions of the thickness 

coordinate. Thai and Kim (2012) assumed a displacement field, which yields parabolic variation of 

transverse shear stress through the thickness, in the formulation of a two dimensional higher order 

shear deformation theory. Using a linear strain-displacement relations (small deformations) and 

through the principle of minimum total potential energy they derived the governing equations.  

Many nonlinear stability analyses of plates are available in the literature, based on higher order 

shear deformation theories, yet they did not use the appropriate constitutive relations that account 

for large deformations. Since buckling problem in general is nonlinear, the plate theories which 

employ linear strain-displacement relations will give neither accurate buckling load nor the correct 

mode shape into which a structural element buckles.  

A plate theory which accounts for large deformations and predicts accurate stresses, 

deformations and buckling loads should be derived from a consistent finite strain hyperelastic 

formulation, and the correct buckling formula which includes shear and axial deformation should 

be closely linked with the correct finite strain constitutive relationship and hence the correct 

expression for the strain energy density.  

Linear elastic analysis assumes small deformations and linear relationship between stress and 

strain (Hook’s law). Hyperelastic material modelling assumes that material behaviour can be 

described by mean of a strain energy density function, from which the constitutive equations can 

be derived. In other words, a material is hyperelastic when there exists a potential function called 

the strain energy density function, whose derivative with respect to a strain component, determines 

the corresponding stress component. Reddy (2007). 

In this paper, a strain energy density for isotropic hyperelastic materials under finite strain 

proposed by Attard and Hunt (2004) is used to derive the constitutive relationships for plates 

which include effect of transverse and in-plane shear deformations and a detailed hyperelastic  
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Fig. 1 Rotation tensor R 

 

 
 

Fig. 2 Rotation of the tangent base vectors 

 

 

formulation for thick plate buckling. The equations derived are then compared with equations in 

the literature.The symbolic manipulator Maple is used for the detailed mathematical derivations. 

 

 

2. Derivation of constitutive relationship 
 

Consider a rectangular plate having thickness t and side lengths a and b. The plate is assumed 

to be initially unstressed i.e., the initial curvature and stretches are assumed to be zero. It is further 

assumed that the plate is made of homogeneous isotropic perfectly elastic material. The plate is 

referred to rectangular Cartesian coordinates x, y, z where x and y lie in the middle plane of the 

plate.  

In the following derivation, a bold lower case symbol such as u represents a vector.  

 

2.1 Rotation of tangent base vectors 
 
A rotation tensor R (Fig. 1), rotates a given vector v about an axis parallel to a normalized axis 

vector u (u×u=1) through an angle 0≤ω≤2π (see Attard and Kim 2010). The angle is defined as 

positive using the right hand screw rule where the thumb of the right hand is extended in the 

direction of the axis vector u and the closing fingers define a positive rotation. The rotation vector 

R is given by 

v u 

O 

R

v 
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cos + (1 cos ) + sin     R I u u u
                                          (1) 

Where, I is the identity tensor. 

Consider a differential plate element embedded in the plate and located at the mid-surface of 

the plate. The plate element can be resolved into its component with respect to the Cartesian 

reference frame. The component can be considered as tangent base vectors i1, (z), i2, (y) and i3, (x) 

with its origin at the mid-plane of a thick plate. Assume that during the deformation, the tangent 

base vectors are rotated by different angles and assume that the rotation order is as follow (Fig. 2) 

First consider a rotation of ϕ about the unit vector i1 in the 1,z axis, such that: 

1 1 1cos + (1 cos ) + sin      R I i i i
                                         

(2) 

Applying this rotation to i2 and i3 about i1, i2 
becomes b̂  and i3 

becomes ĥ  

2 2 3
ˆ cos sin    b R i i i                                                    (3) 

3 2 3
ˆ sin cos     h R i i i                                                  (4) 

Then consider a rotation of θ about b̂  

bbbIR ˆsinˆˆ)cos1(cos                                                 (5) 

Applying this rotation to ĥ  and 1i , ĥ  becomes t̂  and 1i becomes n̂  

1sinĥcosˆˆ ihRt                                                          (6) 

1 1
ˆˆ sin cos     n R i h i

                                                  
(7) 

Finally, rotate n̂  and b̂  about t̂  with an angel of ψ, so that n̂  becomes 1n̂
 
and b̂  becomes ˆ

yn  

 tttIR ˆsinˆˆ)cos1(cos                                              (8) 

bnnRn ˆsinˆcosˆˆ
1                                                        (9) 

bnbRn ˆcosˆsinˆˆ  y                                                  (10) 

The three vectors 1n̂ , 1
ˆ늿, and yn t n form a moving orthonormal triad. To add the effect of shear  

deformations, Timoshenko’s beam theory concept will be adopted. Four shear angles αo, φo, ω2 

and ω3 will be added to account for two transverse and two in-plane shear deformations.   

To represent the transverse shear deformation in yz plane (perpendicular to x axis), rotate t̂  

about ˆ
yn   with an angle φo , then to represent the in-plane shear deformation in the direction of y-

axis, rotate t̂  additionally about 1n̂  with an angle 3  so that t̂  becomes 3n̂  

 yoyyooo
nnnIR ˆsinˆˆ)cos1(cos                                        (11) 

  131133
ˆsinˆˆ)cos1(cos(

3
nnn)IR                                      (12) 
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Applying the above rotations, t̂  becomes 3n̂  

33 3
ˆˆ

  n R R t                                                            (13) 

)ˆcossinˆsinˆcos(cosˆ
31333 yooo nntn    

ynnt ˆˆˆ
3213133                                                           (14) 

Similarly, to represent the transverse shear deformation in xz plane (perpendicular to y axis),  

rotate ˆ
yn  about t̂   with an angle αo , then to represent the in-plane shear deformation in the 

direction of x-axis, rotate ˆ
yn  additionally about 1n̂  with an angle 2  so that ˆ

yn  becomes 2n̂  

 tttIR ˆsinˆˆ)cos1(cos oooo
                                       (15) 

 ttnIR ˆsinˆˆ)cos1(cos 122 oo
                                      (16) 

yo
nRRn ˆˆ

222                                                         (17) 

tnnn ˆcossinˆsinˆcos(cosˆ
21222 ooyo    

tnn ˆˆˆ
2312122   y                                                      (18) 

Where, λ2
 
and λ3

 
represent the stretches in the y and x axis, respectively.  

The terms γ22 
and γ33 represent the axial stretch component in the normal directions, while γ31, 

γ32, γ21 and γ23 are measures of the transverse and in-plane shear deformation components taken in 

the tangent base vector directions, in the deformed state, in yz and xz planes, respectively. 

Where 

33 3 3 32 3 3 31 3cos cos sin cos sin                         (19) 

22 2 2 23 2 2 21 2cos cos sin cos sin                        (20) 

We can write the triad 1n̂ ,
 1
ˆ늿, and yn t n in terms of i1, i2, and i3  

1 1 2 3
ˆ cos cos (cos sin sin sin cos ) (sin sin cos cos sin )               n i i i

   
(21) 

ˆ ( sin cos ) +(cos cos sin sin sin ) +(sin sin cos +cos sin )y              1 2 3n i i i
  

(22) 

1 2 3
ˆ (sin ) (cos sin ) +(cos cos )     t i i i                                      (23) 

 

 2.2 Curvature and torsion 
 
The deformation curvatures and torsions about the unit normal of the deformed cross section 

can be defined as 

22,1
ˆˆ  ynn                                                                (24) 
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11,2 2
ˆˆ  n t

                                                               
(25) 

1,3 3
ˆˆ  n t

                                                              
(26) 

33,1
ˆˆ  ynn                                                               (27) 

,3 32
ˆˆ

y  n t
                                                             

(28) 

,2 23
ˆ ˆ

y  t n
                                                             

(29) 

Where, κ2 is the curvature along y-axis, κ3 
is the curvature along x-axis, τ2 

is the torsion along y- 

axis, τ3 is the torsion along x-axis, κ23 and κ32 are the in-plane curvatures. 11,2n̂  represents the 

derivative of 11n̂ with respect to axis 2 (y axis) and so forth. 

Now consider two curvature vectors Ka, Kb 
as follow 

tnn ˆˆˆ
2212   yaK                                                        (30) 

tnn ˆˆˆ
3313   ybK                                                        (31) 

Therefore we have 

yntn ˆˆˆ
221  aK                                                         (32) 

yntn ˆˆˆ
331  bK                                                          (33) 

21
ˆ)ˆ  ynna(K                                                           (34) 

21
ˆ)ˆ  tna(K                                                            (35) 

 31
ˆ)ˆ  tnb(K                                                            (36) 

31
ˆ)ˆ  ynnb(K                                                          (37) 

Therefore 

yntnn ˆˆˆˆ
2212,1   aK                                                    (38) 

yntnn ˆˆˆˆ
3313,1   bK                                                    (39) 

Let’s now denote the stretched form of the vectors 1 2 3
ˆ ˆ ˆ,  and n n n  by 1 2 3

ˆ ˆ ˆ,  and g g g
 

Where 

11 1
ˆ ˆg n

                                                                
(40) 

122222222
ˆsinˆcossin)ˆˆ(ˆcoscosˆ ntntng ooyyo z    

121232222
ˆˆ)ˆˆ(ˆ ntntn   yy z                                           (41) 
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133333333
ˆsinˆcossin)ˆˆ(ˆcoscosˆ nnnttg oyoyo z    

131323333
ˆˆ)ˆˆ(ˆ nnntt   yyz                                               (42) 

From Eqs. (21)-(23) and Eqs. (24)-(29), following relationships can be obtained for the 

curvatures and torsions: 

2 sin
y y

 
 

 
 
                                                          

(43) 

2 cos cos sin
y y

 
   

 
  

                                                 

(44) 

3 cos cos sin
x x

 
   

 
  

                                                 
(45) 

3 sin
x x

 
 

 
 
                                                           

(46) 

32 sin( ) cos( )cos( )
x x

 
   

 
 

                                              
(47) 

23 sin( ) cos( )cos( )
y y

 
   

 
 

                                              

(48) 

 

 

2.3 Deformation tensor F* 
 
Define a deformation tensor F* associated with the deformation and stretches of the tangent 

base vectors.  From Eqs. (40)-(42), we can obtain a matrix form of F* as follow 

21 31

*

22 2 3 32

2 23 33 3

1

0

0

z z

z z

 

   

   

 
 

  
 
   

F

                                               

(49) 

 
2.4 Stresses and forces 
 
A physical Lagrangian stress system is defined with respect to the directions of a moving 

orthonormal triad frame. The transformation between the second Piola Kirchhoff stress tensor II 

components and the Lagrangian physical stresses S can be established using vector transformation. 

The transformation between the second Piola Kirchhoff stress tensor and Lagrangian stresses is 

nn nt nb

tn tt tb

bn bt bb

S S S

S S S

S S S

 
 

   
 
 

*T
S ΠF

                                                  

(50) 
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The normal stresses Snn are taken normal to the cross-sectional plane while the tangential shear 

stresses Snt & S
nb

 are taken within the cross-sectional plane. The stress tensor S is not symmetric 

but needs to satisfy the following symmetry condition 

T * * T
S F SF                                                             (51)

 
The Green deformation tensor C and the Jacobian or volume invariant J can then be expressed 

in terms of the deformation tensor, that is 

 *T *
C F F  

  2 2

22 33 32 23 3 23 2 32 22 3 33 2 2 3 2 3detJ z z z z z z                       *
F

       
(52) 

The strain energy density function U for a compressible isotropic neo-Hookean material (see 

Attard and Hunt 2004) is given by 

    
2

1 1
2 2

2ln lnU G tr J J    C I                                      (53) 

Here, tr symbolizes the trace of a tensor and C is the right Cauchy-Green deformation tensor. 

The constitutive relationship for a hyperelastic material can be established for the second Piola 

Kirchhoff stress tensor II by (see Attard and Hunt 2004)  

2 lnh h

U
G p p G J


     



-1
Π I C

C
                               (54) 

Where, 
 2 1

E
G





 is the shear modulus, 

 
2

1 2

G


 


 is the Lamé constant, E is the elastic 

modulus and υ is the Poisson’s ratio. In the above equation, ph represents a hydrostatic stress. 

Incorporating Eq. (54) and Eq. (50), the constitutive relationship for the physical Lagrangian stress 

is then 

   1

h hG p G p

G J

    

   

*T *T -1 *T *T *-1

*T *-1 *-1

S ΠF F C F F F

F F F
                              (55) 

Incorporating the constitutive relations given in Eq. (55), using Eq. (52), expanding to second 

order in terms of the deformations, we can write the constitutive relations as 

11

22 33 2 3( 2) ( )S z         
                                            

(56) 

 
22

22 2 3 33( 1 ) ( 1)S E z z         
                                         

(57) 

33

33 3 2 22( 1 ) ( 1)S E z z         
                                         

(58) 

23 32

2 3 32 23.( )S S G z z       
                                            

(59) 

21

21  S G
                                                               

(60) 

31

31  S G
                                                                

(61) 
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12

21 3 21 2 21 22 21 33 21 21 2 21 22 21 2 31 31 23 (2 ) (2 )S z z G z z                             (62) 

13

31 22 21 32 21 3 31 2  .( . )S G z z          
                                     

(63) 

Where 

(1 )
2

(1 2 )(1 )

E
E G



 


  

                                                  

(64) 

By integrating the stresses we obtain the normal forces per meter, and in turn we can obtain the 

bending moments and shears per meter of the plate 

2
22 22

22 33

2

[(1 )( 1) ( 1)]
(1 )(1 2 )

t

t

Et
N S dz    

 

     
 

                       

(65) 

32
22 22

2 3

2

[ (1 ) ]
12(1 )(1 2 )

t

t

Et
M zS dz    

 

   
 

                              

(66) 

2
33 33

33 22

2

[(1 )( 1) ( 1)]
(1 )(1 2 )

t

t

Et
N S dz    

 

     
 

                        

(67) 

32
33 33

3 2

2

[ (1 ) ]
12(1 )(1 2 )

t

t

Et
M zS dz    

 

   
 

                                

(68) 

2
11 11

22 33

2

( 2)
(1 )(1 2 )

t

t

E t
N S dz


 

 

   
                                      (69) 

32
11 11

2 3

2

( )
12(1 )(1 2 )

t

t

E t
M zS dz


 

 

  
                                       (70) 

2
32 23 23

23 32

2

( )
2(1 )

t

t

Et
N N S dz  



   
                                     (71) 

32
23 32 23

2 3

2

( )
24(1 )

t

t

Et
M M zS dz  



   
                                     (72) 
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2
21 21

21

2

=  =
2(1 )

t

t

Et
Q S dz 

 
                                                   

(73) 

2
21 21

2

0

t

t

M zS dz


 
                                                        

(74) 

2
31 31

31

2

2(1 )

t

t

Et
Q S dz 



 


                                                 

(75) 

2
31 31

2

0

t

t

M zS dz


 
                                                       

(76) 

2
12 12

22 21 33 21 21 31 23 31 23

2

( 2 2 2 )
2(1 )(-1 2 )

t

t

Et
Q S dz         

 

     
 

         

(77) 

32
12 12

21 2 3 31 2

2

[ ( 2 ) (1 2 )]
24(1 )( 1 2 )

t

t

Et
M S zdz      

 

    
  

               

(78) 

2
13 13

31 22 21 32

2

( )
2(1 )

t

t

E t
Q S dz    



  


                                        

(79) 

32
13 13

31 2 21 3

2

( )
24(1 )

t

t

Et
M S zdz    



  


                                      

(80) 

 
 

3. Equilibrium equations under finite strain 
 

An element of the plate, in the deformed state, under the effect of internal forces is shown in 

Fig. 3. The internal forces and moments are shown in vector form. The forces Ni and moments Mi 

are forces and moments per unit of undeformed length respectively.  

The equilibrium equations in vectorial form are 

3,3 2,2N + N = 0
                                                             

(81) 
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Fig. 3 Plate element in the deformed state 

 

 

0ˆˆ
22332,23,3  NnNnMM                                             (82) 

Each of the two vector equilibrium equations is equivalent to three scalar component equations. 

The component representation for the forces and moments along the orthogonal triad tangent base  

vectors in the deformed state,
 1n̂ ,

 
ˆˆ and

y
n t̂늿, and

1 y
n n t , can be obtained using the following relationships 

ij iN Q i jN t n
                                                         

(83) 

ijM i jM n t( )
                                                          

(84) 

In Eqs. (83)-(84), the subscripts i and j can be 2 and 3 only and the summation convention is 

invoked. Where, Nij represents an axial force, Qij represents a shear force and Mij represents a 

moment. 

tj represents the tangential base vectors ˆˆ and
y

n t  while n represents the normal base vector 

ˆ
1

n . 

From Eq. (83) we can get 

1y ntnN ˆˆˆ 212322
2 QNN                                                     (85) 

 1y ntnN ˆˆˆ 313332
3 QNN                                                     (86) 

Taking the derivative of Eq. (85) with respect to y-axis (axis 2) and the derivative of Eq. (86) 

with respect to x-axis (axis 3) we get the following two equations 

1,21,2y,2y2,2 nnttnnN ˆˆˆˆˆˆ 2121
2,

2323
2,

2222
2, QQNNNN                            (87) 

1,31,3y,3y3,3 nnttnnN ˆˆˆˆˆˆ 3131
3,

3333
3,

3232
3, QQNNNN                           (88) 

Substituting Eqs. (84)-(88) in to Eq. (81) to get 

0ˆˆˆˆˆˆˆˆˆˆˆˆ 2121
2,

2323
2,

2222
2,

3131
3,

3333
3,

3232
3,  1,21,2y,2y1,31,3y,3y nnttnnnnttnn QQNNNNQQNNNN

 (89) 

 

N3 

M3 M2 
N2 

 

 

x,3 
y,2 

z,1 
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Previously, we derived the following relationships (Eqs. (38)-(39)) 

yntn ˆˆˆ
222,1                                                              (90) 

yntn ˆˆˆ
333,1                                                              (91) 

In a similar way the following relationships can be obtained 

13323,
ˆˆˆ nnt   y                                                          (92) 

13323,
ˆˆˆ ntn  y                                                           (93) 

12232,
ˆˆˆ nnt   y                                                         (94) 

12322,
ˆˆˆ ntn  y                                                          (95) 

Substituting Eqs. (90)-(95) in to Eq. (89) to get 

y11y1y ntnnntntn ˆˆˆˆˆˆˆˆˆ
3

31
3

3131
,33

33
32

3333
,33

32
32

3232
3, τQQQNNNτNNN  

 

0ˆˆˆˆˆˆˆˆˆˆ
2

21
2

2121
,22

23
23

23
23

2323
,22

22
23

2222
2,  y11yy1y ntnnnntntn  QQQNNNNNNN  

(96) 

Putting all terms, in t̂  direction, equal to zero the first force equilibrium equation will be 

obtained 

33 23 32 22 31 21

,3 ,2 32 23 3 2 0N N N N Q Q        
                                 

(97) 

Similarly the terms in the ˆ
yn and 1n̂  directions will yield the following two equilibrium 

equations 

32 22 33 23 31 21

,3 ,2 32 23 3 2 0N N N N Q Q        
                                

(98) 

31 21 33 22 32 23

,3 ,2 3 2 3 2 0Q Q N N N N                                          (99) 

To derive the moment equilibrium equations, Eq. (84) will be put in component form 

)ˆˆ()ˆˆ( 1
23

1
22

2 tnnnM y  MM                                             (100) 

)ˆˆ()ˆˆ( 1
33

1
32

3 tnnnM y  MM                                              (101) 

Taking the derivative of Eq. (100) with respect to y-axis (axis 2) and the derivative of Eq. (101) 

with respect to x-axis (axis 3) we get the following two equations 

2,1
23

1
23
2,2,1

22
1

22
2,2,2 )ˆˆ()ˆˆ()ˆˆ()ˆˆ( tntnnnnnM  MMMM yy  

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 1
23

2,1
23

1
23
2,1

22
2,1

22
1

22
2, ,2y,2 tntntnnnnnnn  MMMMMM yy  (102) 
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3,1
33

1
33
3,3,1

32
1

32
3,3,3 )ˆˆ()ˆˆ()ˆˆ()ˆˆ( tntnnnnnM  MMMM yy  

 )ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 1
33

3,1
33

1
33
3,1

32
3,1

32
1

32
3, ,3y,3 tntntnnnnnnn  MMMMMM yy  (103) 

Substituting Eqs. (90)-(95) into Eqs. (102)-(103) we get 

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 123
23

2
23

1
23
,2123

23
2

22
1

22
2,2,2 yyyy MMMMMM nntntntnntnnM  

(104) 

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 132
33

3
33

1
33
,3132

32
3

32
1

32
3,3,3 yyyy MMMMMM nntntntnntnnM    

(105) 

The component of 2n̂ and 3n̂  were previously obtained to be 

tnnn ˆˆˆˆ
23121222   y                                                      (106) 

yy nnnn ˆˆˆˆ
32131333                                                    (107) 

Substituting Eqs. (85)-(86) and Eqs. (104)-(107) into Eq. (82) to get and simplifying to get 

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 132
33

3
33

1
33
3,132

32
3

32
1

32
3, yyyy MMMMMM nntntntnntnn    

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 123
23

2
23

1
23
2,123

22
2

22
1

22
2, yyyy MMMMMM nntntntnntnn    

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 132
31

32
32

131
33

131
32

133
31

33
32

nntntnnnntnt  yyyy QNNNQN 

)ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ()ˆˆ( 121
23

23
32

121
22

123
21

122
21

22
23

tnntnnntnntn   NNNQQN yyyy

 (108) 

To satisfy equilibrium condition, all the moments in the direction of vectors y1 nn ˆˆ  , tn1 ˆ  and 
ˆˆ

y n t  must vanish and so yielding the following three equilibrium equations 

32 22 33 23 21 31 32 22

,3 ,2 32 23 22 32 31 21 0M M M M Q Q N N            = 
               

(109) 

23 33 32 22 31 21 33 23

,2 ,3 32 23 33 23 31 21 0M M M M Q Q N N            = 
               

(110) 

32 33 22 23 33 22 32 23

3 3 2 2 32 23 33 22 0M M M M N N N N            + = 
            

(111) 

Eqs. (97)-(99) and (109)-(111) are the six plate equilibrium equations in finite strain.  

The above equilibrium equations are consistent with those derived by Reissner (see Fung (1974) P. 

41) and by Taber (1988), individually, in their two-dimensional shell theories, after converting 

them into plate equations. 

 

 

4. Solved example 
 

Consider a rectangular plate with two simply supported edges parallel to y-axis and free edges 

on the two edges parallel to x-axis with length a, width b and thickness t subjected to a uniformly 

distributed axial force along x axis (Fig. 4). 
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Fig. 4 Plate under uniaxial compression force 

 

 

It is assumed that the plate has no out-of-plane deformations prior to buckling, i.e., the plate is 

flat. The buckling load can be established by looking at the equilibrium equations under small 

perturbations or variations about the initial loaded state. The variation symbol δ will be used to 

indicate small perturbations. 

A term with the superscript  represents a quantity in the initial conditions.  

The boundary conditions are: 

At  x=0 , x=a 

w =0, M33=0,  M32=0   or  3 30 , 0 , 0w      

where w is the transverse deflection. Since we have axial force along x-axis direction only, it can 

be considered as a plane stress condition, hence we have the following conditions (see Ziegler 

1983) 

22 23 21 22 23 32

21 23 2 2

0 , 0 , 0 , 0 , 0, 0

0 , 0 , 0, 0

N N Q M M M

   

     

   
 

And because the applied load is uniformly distributed, the in-plane curvatures will vanish: 

23 320 , 0    

Additionally, we have the following initial values equal to zero: 

31Q = 0, 31 = 0, 3 = 0, 2 = 0,  3 = 0 ,  32 0N   

Incorporating the above conditions the six buckling equations will be reduced to the following 

two equations  

31
33 3 0

Q
N

x





 

                                                        
(112) 

33

33 31 31 33    0
M

N Q
x


  


  

                                               
(113) 

Substituting the force-displacement relationships in the above two equations and further 

simplifying to get 

 

x,3 
 

y,2 
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31
33 3 0C N

x


 


 

                                                   
(114) 

2

3 31
33 33 3 332

2 1 ( )
( )    0

1
D N N

x x

  
 



  
  

                                
(115) 

Where, β is the shear correction factor to account for the non-linear distribution of transverse 

shear deformation. 

The above two equations can be merged into one equation. Substituting  33
33 1

N

E A
    to get 

2 2 2

3 33 33
33 32

2 1 ( ) ( ) ( )
( ) ( )    0

1

N N
D N

x C E A

 


 

 
   

 
                          

(116) 

Solving the above quadratic equation for the buckling load ( 33N  ) will yield two values, the 

one which satisfy is 

2 2 2 2 2 2 2 2 2 2

33

( 1) ( 1)(8 8 4 41

2 ( 1)( )

CEAa CEA CDm AE Dm Aa CE CDm EADm Aa CE
N

a EA C

            

 

       


 
(117) 

Where, m is the number of half waves in the x-axis direction, A is the cross-sectional area of the 

plate (A=bt). 

Substituting C=Gt, and 
3

6(1 2 )

Gt
D





 where 

2(1 )

E
G




  

is the shear moduli, and m=1 into 

the above equation to get: 

2 2 2

33

2
(1 )[ (1 ) ( )]

3

2 (1 )( )

AE AE a t EA Gt
Gt EA

N
EA Gt a EA Gt

     


  

 
    

  
   

 
   

The above equation gives the buckling load per unit width of the plate. 

Ziegler (1983) in his two dimensional plate theory, for a similar case, obtained the following 

formula for the buckling load:   

Where Peul  is the well-known Euler column buckling load. 

 

Attard and Hunt (2008) obtained the following column buckling formula:  

24
1 1 (1 )

2(1 )

eul
Attard

EA n P E
P

E EA G

G

 
    

 
  

    

Fig. 5 shows a comparison of the results, for a steel plate having thickness =0.1 m, (such a plate 

can be a sheet pile or can be found in ship hulls) obtained using the buckling formula derived in 

the current theory and the above formulas. It reveals very limited difference which is due to  

2(1 )
1 eul eul

Ziegler eul

P P
P P

E t G t





 
   
 
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Fig. 5 Buckling Load for a simply supported plate under uni-axial compression with various plate lengths   

E=200 Gpa, Thickness=0.1 m, Width=1 m, Poisson ratio=0.3, β=0.83 

 

 

Fig. 6 Buckling Load for a simply supported plate under uni-axial compression with various plate thickness. 

E=200 Gpa, Length=2 m, Width=1 m, Poisson ratio=0.3, β=0.83 

 

 

limited effect of transverse shear in a column like plate under uni-axial load. It is obvious that as 

the length is increased the difference disappear which is due to superiority of bending 

deformations on shear deformations.  

Fig. 6 shows that as the thickness is increased, the effect of transverse shear on the buckling  
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Fig. 7 Percentage difference between Ziegler 

buckling load and buckling load from the current 

theory with varying plate thickness 

Fig. 8 Percentage difference between Ziegler buckling 

load and buckling load from the current theory with 

varying plate length 

 

 

Fig. 9 Effect of plate width on the buckling load 

 

 

load is quite obvious. 

Figs. 7-8 show the difference between the results obtained from Ziegler’s plate theory, where 

linear elastic analysis was employed including effect of transverse and in-plane shear 

deformations, and results predicted from the current theory. It shows that as the thickness 

increases, the erroneous results predicted by the linear elastic analysis. 

Fig. 9 shows that if a plate strip is buckled individually or as a part of a very wide plate, the 

buckling load per unit width is slightly different. 

 

 

5. Conclusions 
 

A two-dimensional nonlinear plate theory has been formulated. The deformation across the 

thickness coordinate is neglected hence no plate thickness changes during deformation will occur. 

A deformation tensor which accounts for rotations and stretches has been derived. A hyperelastic 

strain energy density function for isotropic compressible neo-Hooken material has been employed 

to derive the constitutive equations which include the effect of transverse and in-plane shear 

deformations. The equilibrium equations have been derived following the equilibrium approach. 
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Buckling formulation for a simply supported rectangular plate under uni-axial compression force 

has been introduced. The results reveal that effect of shear is distinct as the thickness is increased. 

Hence, the current theory will give much better results when estimating the buckling load in thick 

plates. 
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