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Abstract.  In this research, an approximate analytical solution has been presented for nonlinear problems of 

vibratory systems in mechanical engineering. The new method is called Variational Approach (VA) which 

is applied in two different high nonlinear cases. It has been shown that the presented approach leads us to an 

accurate approximate analytical solution. The results of variational approach are compared with numerical 

solutions. The full procedure of the numerical solution is also presented. The results are shown that the 

variatioanl approach can be an efficient and practical mathematical tool in field of nonlinear vibration. 
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1. Introduction 
 

It is very difficult to find an exact solution for nonlinear differential problems, therefore it is 

some new semi-analytical methods have been proposed recently and the results are verified with 

numerical solutions. Sadighi and Ganji (2007) studied the application of the Adomian 

decomposition method (ADM) to prepare an analytical solution for solutions of linear and 

nonlinear Schrödinger equations. The presented method does not need any small parameters and 

avoid linearization and physically unrealistic assumptions. Chen et al. (2009) considered 

differential transformation method to solve free vibration of the fifth-order nonlinear problems. 

Runge-kutta algorithm was used to obtain the numerical solution of the problem. The DTM solves 

the problems with a process of inverse Transformation. Barania et al. (2010) studied the heat 

diffusion and heat transfer equation with a powerful analytical method called homotopy analysis 

method (HAM). HAM has an auxiliary parameter h, which controls the convergence region of 

solution series. Cai and Liu (2011) solved nonlinear equations via He’s frequency formulation. 

Ganji et al. (2007) applied the variational iteration method (VIM) for the equations of Generalized 

Hirota-Satsuma coupled KdV equation, Kawahara equation and FKdV equations. Other related 

paper are available in which they have applied standard methods for solving nonlinear partial 

differential equations suh as: Homotopy perturbation method (Bayat et al. 2013a, 2014a), 

                                                           
Corresponding author, Researcher, E-mail: mbayat14@yahoo.com 



 

 

 

 

 

 

Seyyed A. Edalati, Mahmoud Bayat, Iman Pakar and Mahdi Bayat 

Hamiltonian approach (He 2010, Xu 2010, Bayat et al. 2014b, c, d, e, f, 2013b, Bayat and Pakar 

2013c), Energy balance method (Jamshidi et al. 2010, Bayat et al. 2014g, Mehdipour 2010), 

Variational iteration method (Dehghan 2010), Amplitude frequency formulation (He 2008), Max-

Min approach (Shen et al. 2009, Zeng et al. 2009), Variational approach (He 2007, Bayat and 

Pakar 2012a, Bayat et al. 2012b, Bayat and Pakar 2013a, Bayat et al. 2013b, Shahidi et al. 2011, 

Pakar and Bayat 2013), and the other analytical and numerical (Bayat and Abdollahzade 2011, 

Pakar et al. 2014a, b, 2011, Xu 2009, Alicia et al. 2010, Bor-Lih et al. 2009, Wu 2011, Odibat et 

al. 2008, Zhifeng et al. 2013, Rajasekaran 2013, Akgoz 2013, Akgoz and Civalek 2011, Atmane et 

al. 2011, Cunedioglu and Beylergil 2014, Radomirovic et al. 2015, Filobello-Nino et al. 2015, Xu 

et al. 2015). 

Among of the mentioned papers and approaches, the Variational Approach (VA) is considered 

to solve the nonlinear vibration equations in this paper. 

The paper has been collocated as follows:  

In section 2, the basic idea of the He’s Variational approach is introduced in detail. Section 3, 

contains the full procedure of the Runge- Kutta algorithm. Section 4 is the application of the 

variational approach in two different cases for high nonlinear vibratory systems. The validation of 

the approach and also the discussion on the nonlinear parameters of the systems and the 

comparison with the numerical results are studied in section 5. Finally, it has been demonstrated 

that the variational approach can be a precise cyclic solution for nonlinear systems. 

 

 

2. Basic concept of variational approach  
 

He suggested a variational approach which is different from the known variational methods in 

open literature (He 2007). Hereby we give a brief introduction of the method 

          ( ) 0u f u   (1) 

Its variational principle can be easily established utilizing the semi-inverse method 
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Where T is period of the nonlinear oscillator, F f
u
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. Assume that its solution can be 

expressed as 

          ( ) cos( )u t A t  (3) 

Where A and ω are the amplitude and frequency of the oscillator, respectively. Substituting Eq. 

(3) into Eq. (2) results in 
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Applying the Ritz method, He require 
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But with a careful inspection, for most cases He fined that 
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Thus, He modify conditions Eq. (5) and Eq. (6) into a simpler form 

            
0

J







 (8) 

From which the relationship between the amplitude and frequency of the oscillator can be 

obtained. 

 

 

3. Basic concept of Runge-Kutta  
 

For the numerical approach to verify the analytic solution, the fourth RK (Runge-Kutta) 

method has been used. This iterative algorithm is written in the form of the following formulae for 

the second-order differential equation 
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Where, Δt is the increment of the time and h1, h2, h3, and h4 are determined from the following 

formulae 
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The numerical solution starts from the boundary at the initial time, where the first value of the 

displacement function and its first-order derivative are determined from initial condition. Then, 

with a small time increment Δt, the displacement function and its first-order derivative at the new 

position can be obtained using Eq. (9). This process continues to the end of the time limit. 
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4. Application 
 

In this section, two well-known problems are studied to show the accuracy of the variational 

approach method. The application of the method are presented in detail for these problems. 

 
4.1 Example 1 

 
First example is equation Helmholtz-Duffing oscillator. This is the euqation of the systems 

include shallow arches, ship roll dynamics, some electrical circuits, microperforated panel 

absorber and heavy symmetric gyroscope. The conservative governing equation of the systm is 

presented as follow 

            
2 3(1 ) 0,u u u u       (11) 

with initial conditions 

         (0) , (0) 0u A u   (12) 

where σ is an asymmetric parameter representing the extend of asymmetry and an over dot denotes 

differentiation with respect to t. When σ=1, Eq. (11) is a classical Duffing oscillator. Eq. (11) 

becomes a Helmholtz oscillator with a single-well potential when σ=0. 

Its variational formulation can be readily obtained Eq. (11) as follows 
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Choosing the trial function u(t)=A cos(ωt) into Eq.(13) we obtain 
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The stationary condition with respect to A leads to 
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Solving Eq. (16), according to ω, we have 
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Then we have 
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According to u(t)=A cos(ωt) and (18), we can obtain the following approximate solution 
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4.2 Example 2 
 

Second example is the governing equation of a mass connected with a spring. The motion of 

the system is nonlinear. Fig. 1 is the scheme of the motion of the systems and the governing 

equation of it is as follow 
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with initial conditions 
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Its variational formulation can be readily obtained Eq. (20) as follows 
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Choosing the trial function u(t)=A cos(ωt) into Eq. (22) we obtain 

         

     2 2 2 2 2 3 3

1 2
/4

0
4 4

3

1 1 1
sin cos cos

2 2 3
( )

1
cos ( )

4

T
J A t k A t k A t

J A dt

k A t

   



 
  

  
  
 

  (23) 

The stationary condition with respect to A leads to 
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Fig. 1 The mass-nonlinear spring systems 
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Or 
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Solving Eq. (25), according to ω, we have 
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Then we have 
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According to θ(t)=A cos(ωt) and (27), we can obtain the following approximate solution 
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5. Results and discussions 
 

In this section, a detailed comparsion have been done on the results of variational approach and 

Runge-Kutta algorithm for two examples. Table 1 shows the effects of the two importanat 

parameters in the Helhomz equation (A and σ ). Differant valeus are studeid and it has been shown 

the maximum relative error is less than two percrnt in high values of amplitudes. The motion of 

the syetem is shown in Fig. 2. It has a periodic motion for differet paramerets. Fig. 3 is the effect 

of asymmetric parameter (σ) and amplitude (A) on nonlinear frequency of the system. By 

 

 
Table 1 Comparison of nonlinear frequency of approximate solution (VA) with numerical solution (RKM) 

corresponding to various parameters of system (example 1) 

A σ VA RKM Error % 

0.1 0.9 1.0076 1.0136 0.59045 

0.2 0.8 1.0286 1.032157 0.34887 

0.5 0.5 1.1428 1.152238 0.82721 

0.8 0.1 1.2881 1.300277 0.94677 

0.9 0.3 1.3103 1.326653 1.24435 

1 0.7 1.3340 1.342864 0.6619 

1.2 0.6 1.4337 1.448624 1.04238 

1.5 0.8 1.6139 1.624878 0.68068 

1.8 1 1.8520 1.867256 0.82237 

2 0.9 1.9672 1.99263 1.29413 
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(a) (b) 

Fig. 2 (Ex1) Comparison of analytical solution of u(t) based on time with the RKM solution (a) A=0.2, 

σ=0.8
 
(b) A=0.2, σ=0.6 

 

  

Fig. 3 (Ex1) Effect of asymmetric parameter (σ) and amplitude (A) on nonlinear frequency 

 

 

increasing the amplitude the frequency of the system will increase and by increasing the parameter 

(σ) the frequency will decrease. In Table 2, it shows the comparison of nonlinear frequency of 

approximate solution (VA) with numerical solution (RKM) corresponding to various parameters  
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Table 2 Comparison of nonlinear frequency of approximate solution (VA) with numerical solution (RKM) 

corresponding to various parameters of system (example 2)  

A J k1 k2 k3 VA RKM Error % 

π/12 2 10 20 10 2.7348 2.7422 0.26889 

π/12 1 20 10 10 4.7683 4.7751 0.14426 

π/6 5 30 10 20 2.7769 2.7891 0.43864 

π/6 2.5 50 30 20 5.1941 5.2210 0.51841 

π/4 1 10 50 5 6.7562 6.7952 0.57714 

π/4 3 20 30 50 4.5874 4.6325 0.98318 

π/3 4 10 20 30 3.6212 3.6922 1.96229 

π/3 2.5 30 20 10 4.7330 4.7936 1.28195 

π/2 1.5 30 30 20 8.4463 8.5736 1.50723 

π/2 1 20 20 5 7.4779 7.5561 1.04541 

 

  

(a) (b) 

Fig. 4 (Ex2) Comparison of analytical solution of θ(t)
 
based on time with the RKM solution (a) A=π/6, 

J=5, k1=30, k2=10, k3=20 (b) A=π/3, J=2.5, k1=30, k2=20, k3=10 

 

 
of system (example 2). The maximum relative error for different valeus of stiffness is about two 

percent. It has been shown a good agrrement with numerical solutions. The motion of the syetm 

are shown for two different caes in Fig. 4. The direct effects of the k1, k2 and k3 
and the amplitude 

on the frequcny of the system is shown in Figs. 5 and 6. The results of the variational approach are 

in high accuaret . 
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Fig. 5 (Ex2) Effect of spring (k1) and (k2) on nonlinear frequency 

 

  

Fig. 6 (Ex2) Effect of spring (k1, k2 and k3) and amplitude (A) on nonlinear frequency 

 

 

6. Conclusions 
 

In this paper, a new application of the variational approach was preseted. Two different high 

nonlinear problems were studied and solved via variational approach. The results of the presented 

approach were compared to numerical solution using Runge-Kutta algorithm. For the both cases 

the maximum error is less than two percent. Variational approach is an easy method to apply and 

can be easily extend to conservative nonlinear equations. The first itreation of the approach 

prepares a high accurate approximation. 
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