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Abstract.  The objective is to determine the mechanical properties of the composites formed in two types, 

theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin 

fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is 

considered during calculation which is based on the equality of the strain energies of the composite and 

effective material under the same loading conditions. The procedure is carried out with volume integrals 

considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been 

calculated exactly for small-particle composites by the same procedure in order to determine of bulk 

modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been 

obtained through a simple approach leading to the practical equation. The results have been compared not 

only with the outcomes in the literature obtained by different method but also with those of finite element 

analysis performed in this study. 
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1. Introduction 
 

Composites are vastly preferred materials in many industrial areas (Guang-hui and Xiao 2015, 

Kim et al. 2015, Simsek 2010) because they are relatively economical and easily producible. In 

general, the particles or fibers are embedded in a matrix material to obtain a composite. The elastic 

constants of the added materials are higher than those of the matrix. A certain composite displays a 

unique mechanical behavior, although it is obtained combining some materials which have 

dissimilar properties for instance (Biswas 2012, Kocak et al. 2013, Handlin 2013). 

In this study, the mechanical properties of the composites, in the types of those mentioned 

above, have been determined analytically. The concentration or in another saying the ratio of the 

volume of the added material to that of the matrix directly related to the strength of the 

composites. Here, the concentration values have been assumed to be so small that the particles or 

fibers don't interact each other. It is assumed that all materials are homogeneous, isotropic and 

linear elastic and the particles or fibers are homogeneously distributed in the matrix. The problems 
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considered here can be simulations of the mechanical behavior of some materials which are used 

in numerous applications during production whose range changes from household goods or toys to 

structural elements or space technology (Basaran et al. 2015). It can be recognized from the 

technical literature that the determination of effective elastic constants of composites has been still 

worked on. For instance, elastic properties of a certain particulate composite which are determined 

experimentally were approximated by some estimated modification to the formulas given by 

Hashin-Shtrikman (Upadhyay et al. 2012). In another study, the formulas derived by approximate 

analytical solutions were checked reducing these formulations to those for two-phase elastic 

composites and comparing with the bounds of Hashin and Shtrikman (Lin et al. 2009). Numerical 

approach was used to predict the elastic property of multiphase composites with random 

microstructure (Wang and Pan 2009). Another study about the prediction of elastic properties of 

composites with complex microstructure is related with the phase-field microelasticity (Ni and 

Chiang 2007). The effective moduli of composites including particle or fiber were studied using 

the strain energy change by extending the replacement method and FEM analysis (Shen and Li 

2003). 

It is obvious that most of the new references use the Hashin’s results to validate the predictions 

or approximations. The bulk and shear moduli of the composites including particles were 

investigated by Hashin, an upper and a lower bounds for these quantities were given using the 

variational methods (Hashin 1962). However, at the end of calculation of the bulk modulus, two 

bounds were found to be the same. For the shear modulus, an approximate statement was also 

obtained between the upper and lower bounds. Hashin and Rosen expressed the upper and lower 

bounds for the shear modulus in the transverse plane of a composite including thin fibers 

depending on a set of equations (Hashin and Rosen 1964). Two bounds for the transverse shear 

modulus were given by Hashin in the case of the concentration is nearly zero (Hashin 1965). 

Christensen and Lo assumed a different model which consists of a single composite sphere in 

an infinite medium whose effective properties are investigated (Christensen and Lo 1979). It was 

considered that the effective homogeneous medium has the same mechanical properties as the 

macroscopic properties of the sphere mentioned above. This model was used not only as the 

spherical model but also as the plane circular model for transversely isotropic composites and gave 

the effective shear moduli for both composites including spherical particles and fibers. A wide 

review on the determination of the effective constants was given by Hashin (1983). 

In this study, the exact expression of the bulk modulus of the composites including micro-

particles assumed as spheres has been analytically calculated without any bounds. The main 

difference of this work is that the strain energies have been calculated by volume integrals. 

Variation of the exact expression of the shear modulus of this type of the composites versus 

concentration has also been plotted. Additionally, the shear modulus in the transverse plane of the 

composites including thin fibers has been calculated using the same method with a simple 

approach. Besides, the finite element analysis has been performed by ABAQUS for comparison. 

Moreover, some other approximate solutions have been compared with the analytical results 

obtained in this study. 

 

 

2. Elastic constants of the composites including microparticles 
 

2.1 Determination of the bulk modulus 
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A spherical body having radius b has been considered as the representative volume element 

(RVE) of this type of the material which includes a spherical particle positioned at the same center 

having radius a. The outer part of the sphere is the matrix. An effective spherical body with radius 

b containing a single material is also considered. The assumption is that the effective material and 

RVE behave alike mechanically. For convenience, the spherical coordinates         have been 

used.  

At first, the strain energy of the single sphere will be calculated under hydrostatic pressure 

stress   . In this problem, only the radial component   
  of the displacement vector exists and the 

non-zero components of the strain tensor are 

* * ,r ruu e  
*

* ,r
rr

u

r






 
*

* * ru

r
                          (1)  

where    is the unit normal vector in the r direction,     (i,j=r, θ, φ) denotes the components of 

the strain tensor, and   indicates the partial derivative. The superscript * is used for the quantities 

which belong to the effective material in whole study. 

Following Hashin (1962), neglecting body forces and solving the equations of the equilibrium, 

  
  has been found as 

*
* *

2r

B
u A r

r
                                  (2)  

where,    and    are the integration constants.    is zero since the solution must be finite at 

   . The boundary condition is expressed as the surface traction vector   is equal to       

on the boundary at    . To write this equation, the stress components have to be written using 

the relation between stress and strain in linear elasticity which is 

* * * * *2ij kk ij ij                                     (3)  

where     indicates the stress components,   and   are Lamé's constants, and     is 

Kronecker's delta. Here, the summation convention on the repeated indices is valid. So, if the Eqs. 

(1)-(3) are used, then the stress and strain components which are different from zero are obtained 

in the term of the constant    in the spherical coordinates as 

* * * *,rr A       * * * * *3 ,rr K A       
* *

* 3 2

3
K

 
            (4) 

where    is defined as the effective bulk modulus. The mentioned boundary condition about the 

surface traction   and stress components have been written and the constant    is obtained from 

this equation as  

* * 0 0
0 * * *3 2 3

r A
K

 
 

 

 
      


T n e                    (5) 

Here,   is the unit outward normal vector of the spherical surface. From this, the components of 

stress and strain are determined for this problem. Finally, the total strain energy    accumulated 

on this body with volume V can be written using the equation below which has to be written in the 

spherical coordinates. 
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* * *1

2
ij ij

V
U dV                                  (6) 

2 sindV r drd d                                (7) 
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Hereafter, the strain energy of the RVE of a composite including a single particle will be 

calculated under hydrostatic pressure stress   . Using the Eq. (2), the displacement field for the 

particle and matrix can be written as 

0 2
,

P
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r
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  a r b                        (9) 

The superscripts P and M denote the quantities which belong to particle and matrix, respectively in 

this article. The coefficient    has been used in these expressions for the convenience of the 

results. At    , the displacement must be finite so that    must be zero. The components of 

the strain and stress can be written separately using Eq. (9) for the particle and matrix. There are 

three unknown constants   ,   and    so three boundary conditions have to be written to 

determine them which are 

0

M

rr     for   ,r b                             

,M P

rr rru u  M P

rr rr    for  r a                          (10) 

If these conditions are written using the obtained stress and displacement components, three 

equations occur. Defining the concentration as       which is indicated by c and the constant D 

as      , the solution of this system is 
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Now, the strain energy accumulated on the whole body can be written in terms of the bulk and 

shear moduli and concentration. To do this, Eq. (6) is used for the two parts of RVE and the 

summation of the results of the total energy. Here, the integrals are evaluated over   and   from  
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Fig. 1 Variation of K
*
 of particle reinforced composite versus c for the first set of materials 

 

 

zero to    and from zero to  , respectively for both of the parts. The radius is changed from zero 

to a for the particle and from a to b for the matrix. Using the stress and strain components and Eqs. 

(11)-(13), the total strain energy is calculated as 

       
2 2

29
1 6 1

2

RVE P P M M MU VcK A VK A c V D c c     
  

          (14) 

where V is the total volume of the sphere having radius b. If the strain energies of the effective 

material and the RVE given in the Eq. (8) and Eq. (14) are equated and resulting expression is 

rearranged for    then the result will be 

       

*

2 2
2

1

9 1 12 1P P M M M

K
cK A c K A c c D


    
  

           (15) 

As the first set of material constants,            GPa,            GPa,    
        GPa and           GPa are selected for comparison with Hashin (1962) and 

variation of    versus concentration for these materials is given in Fig. 1. Here, if one draws the 

same variation using the expressions (35) or (36) in the article of Hashin (1962), then the same 

graph will be obtained exactly because Hashin's bounds coincide and express the exact solution. In 

this study, the calculation has been acquired without defining any bounds and the variation 

mentioned above shows the agreement. 

 

2.2 Determination of the shear modulus 
 

An effective single spherical body having radius b is firstly considered under the state of simple 

shear for the plane stress. Rectangular and spherical coordinates are used in the solution. The 

surface traction defined by the stress tensor   and the unit outward normal vector   is expressed 

as 
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0

0 0

0 0 sin cos sin sin

0 0 sin sin sin cos

0 0 0 cos 0

    

     



     
     

    
     
          

T τ n               (16) 

Spherical harmonic functions have been used to obtain the solution so that the displacement 

vector    has been assumed that it is derived from the gradient of a function  . This   function 

is named as the spherical harmonic function and it has been stated for this problem as 

1 2

nx x r                                  (17) 

where   , (i=1,2,3) indicates the Cartesian coordinates and r is the magnitude of the position 

vector. 

There are three types of solutions related to this function which are 
* 2 *r     u r  

* u  
* r  u                          (18) 

where   is del operator,   is a constant, r is the position vector, and   indicates the vector 

product. 

If the displacement vectors obtained substituting Eq. (17) into each solution given in Eq. (18) 

are used in the equilibrium equation (Achenbach 1973), then two roots are founded for n which are 

zero and -5. So, the field of displacements which provides the boundary condition given in Eq. 

(16) has been written as the combination of the mentioned types of the solutions for two roots as 

* 1* 2* 3* 4* 5* 6*     u u u u u u u                       (19) 

where these    , (i=1,2,3,..,6) have been written in the closed form as 
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6* 1 2
6 5

x x
D

r

  
   

  
u r                           (25) 

Here,   , (i=1,2,3,...,6) are the integration constants. To obtain   
  and   

 , Eqs. (20) and (21) 

have been separately substituted into the equilibrium equations in terms of displacement according 

to the Achenbach (1973) so that these constants have been obtained in terms of the effective 

Lamé’s constants as 
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The solution of the displacement vector written in Eq. (19) is valid everywhere in the sphere so 

that this must be finite at r=0. So 

2 4 6 0D D D                                (27) 

The strain tensor is also a combination of the strain tensors obtained from the different types of 

the displacement solutions. This can be stated as 

                                         (28) 

and the components of these symmetric matrices have been calculated as follows 
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The stress-strain relation given in Eq. (3) has been used to obtain the associated stress 

components. These expressions of the stress components have not been written here but they can 

be obtained simply by constitutive equations Eq. (3) in Cartesian coordinates. Here, the stress 

tensor has been similarly written using Eq. (27) in a combination of the stress tensors    ,    , 

and     obtained from the strain tensors    ,    , and     because the coefficients of    ,    , 

and     were obtained as zero. 

                                         (50) 

Strain energy can be calculated using the integral expression of the strain energy which is 

stated as 
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Before evaluating this integral, the Cartesian coordinates in the stress and strain expressions 

have been transformed to the spherical using following relations 

1 sin cos ,x r    
2 sin sin ,x r    

3 cosx r                (52) 

Using these in the Eqs. (29)-(49) and expressions of stress components, energy has been written 

in terms of the unknown constants evaluating the integral in Eq. (51). 
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The constants   ,   , and    have been calculated from the boundary condition that the 

stress vector at r=b which defines the surface traction on the outer boundary is equal to the surface 

traction obtained in Eq. (16). This equality is expressed as 

      1* 3* 5*

1 3 5 0

sin sin

, , , , , , sin cos

0

D b D b D b

 

        

 
 

    
 
  

T τ τ τ n       (54) 

Although there are three equations in this expression, if the multipliers of the linearly 

independent functions of   and   are equated to zero in all equations, nine equalities are 

obtained. However, these are recurrences of three linearly independent equations. So, the solution 

of the set of these three equations gives the constants as 

1 0,D   0
3 ,

2
D




  

5 0D                            (55) 

Finally, the strain energy of the sphere having radius b under the simple shear has been 

obtained from Eqs. (53) and (55) as 

2
* 30

*3
U b





         (56) 

Henceforth, the strain energy accumulated on a sphere including single spherical particle 

positioned on the same center will be calculated under the state of the simple shear. The radii of 

these spheres are b and a, respectively. The surface traction is the same with the previous problem. 

The spherical harmonic solutions have been used again. So, the displacement vectors for the 

matrix and particle have been written as 

1 2 3 4 5 6M M M M M M M     u u u u u u u  

1 2 3 4 5 6P P P P P P P     u u u u u u u                    (57) 

The expressions of     and     are the same with the expressions given in Eqs. (20)-(25) 
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except the unknown constants. These constants are changed with    and    (i=1,2,....,6) for the 

matrix and the particle, respectively. So, there are twelve unknown constants here. The expressions 

of    and    are the same with those in Eq. (26) for the matrix and particle. Because the 

displacement vector in the particle must be finite at r=0, three of the constants have been obtained 

as 

2 4 6 0A A A                         (58) 

The number of the constants decreases to nine. Indicating the strain tensor as     (i=1,2,...,6) 

for the particle, the components of them can be calculated using the strain-displacement relations. 

The expressions are the same with those in Eqs. (29)-(49) except that the integration and Lamé's 

constants which have been changed with   ,  
  and   , respectively.     can be obtained by 

the same previous procedure with the constants   ,  
  and   . The stress-strain relations are 

used to obtain the stress components of the tensors     and    . 

To write the boundary conditions, the components in Cartesian coordinates are restated in the 

spherical coordinates using the transformation relations given in Eq. (52). For r=a, the 

displacement vectors are equal for the particle and matrix. Besides, surface traction vectors of the 

matrix and particle are the same in the magnitude with opposite sign for r=a and the surface 

traction vector in the matrix is equal to   given in Eq. (54) at r=b. These expressions are given as 

below. 
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( ) ( )P Mr a r a   T T  
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It must be emphasized that the surface normals are given as       and         at r=a 

spherical boundary. Though there are nine equations, if the multipliers of the linearly independent 

functions of   and   are equated in each equality, then twenty-seven equations are obtained. 

However, these are recurrences of nine linearly independent equations which are simplified as 
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From the solution of the first, fourth and seventh of Eq. (61) the results have been obtained as 

5 5 6 0A B B                         (62) 

The number of the remaining constants is six. These constants have not been determined from 

the remaining six equations because the solution of the set of them is analytically difficult but one 

can solve them for a given value of concentration which is equal to     ⁄  and certain values of 

  ,   ,    and   . Instead of that, the total strain energy accumulated on the considered body 

has been written in terms of these constants using the integral expression of the energy written as 
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Here, the terms different from zero are considered only. The first integral in this expression is 

the strain energy of the particle whilst the other is that of the matrix. This has been calculated as 
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This total energy has been equated to the strain energy of the effective body given in Eq. (56). 

The result expression of this equation depends on the unknown constants. The variation of    

versus concentration has been obtained solving the remaining equations in Eqs. (61) for every 1% 

increment in the concentration and is given in Fig. 2 for the first set of materials whose constants' 

values are given in the previous section. There are also Hashin's bounds which have been drawn 

by the data obtained from Fig. 5 in the Hashin’s article (1962). 

 

 

 

Fig. 2 Variation of μ
*
 of particle reinforced composite versus c compared to the Hashin’s bounds 

(1962) for the set of first materials 
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Fig. 3 Variation of μ
*
/μ

M
 of particle reinforced composite versus c compared to Christensen and 

Lo’s curve (1967) for their materials 

 

 

Fig. 4 Variation of effective Poisson’s ratio of particle reinforced composite versus c for the first 

set of materials 

 

 

Another graph for comparison with variation of the ratio of the effective shear modulus to the 

related modulus of the matrix versus concentration from the Ref. (Christensen and Lo 1979) has 

been given in Fig. 3. This variation has been drawn by the data from Fig. 2 in the article by 

Christensen and Lo (1979) and the properties of the material have been selected the same as those 

in that article. 

As a result of determining of the effective moduli, the Poisson's ratio has been calculated 

determining f as   /   as 

* 3 2

6 2

f

f






                           (65) 
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So the variation of the effective Poisson’s ratio versus concentration of the composites 

including particles has been drawn in Fig. 4. 

 
 
3. Shear modulus of the fiber reinforced composite 

 

A single cylindrical body with height h and radius b has been considered as the effective body 

of a composite including long fibers under the state of simple torsion. There is a uniformly 

distributed torsion moment m which is applied to this cylinder at the top and bottom faces in 

respectively    and     direction which is the axis of the body.         is the total 

torsion moment acting on both surfaces. For convenience, the cylindrical coordinates (r,  , z) will 

be used. The components of the symmetric stress tensor in the cylindrical coordinates are zero 

except     and    . Here, all unknowns of the problem are independent of   and displacement 

vector has only    component. 

A differential element in the cylindrical reference system having the height dz, and radius r is 

considered for a constant z coordinate.        and    represent the resulting torsion 

moments at the top and bottom surfaces of this differential element, respectively. Let     denotes 

the shear stress acting on the bottom surface. The resultant of these stresses is    (Fig. 5). If this 

relation is written 

   2

0
( , ) 2 ,

r

z zM r z z d                        (66) 

is obtained (Bulut et al. 2013). After some arrangements, the r derivative of this equation gives 

2

1
( , )

2

z
z

M
r z

r r








                          (67) 

Additionally, the moment equilibrium along the z axis gives 

2

2

1
2 0

2

z
z z z r r

M
M dM M r dz

r z
   




      


             (68) 

 

 

 

Fig. 5 A differential element in the cylindrical reference system having the height dz, and radius r 
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These two shear stress components expressed in Eqs. (67) and (68) can also be written in terms 

of the components of the displacement. To do this, the strain components have been firstly 

expressed in terms of displacement components. Because only    exists, the strains different 

from zero are written as 

1 1

2 2
r r

u u

r r

 

  
 

   
 

                    (69) 

1 1

2 2
z z

u

z



  
 

  
 

                           (70) 

where 𝛾   and 𝛾   denotes the shear strains. 

The associated stress components can be written using Hooke’s Law as 

z

u

z



 





                                (71) 

r

u u

r r

 

 
 

  
 

                             (72) 

If, the expressions of     and     obtained respectively in Eqs. (67), (71), (68), and (72) are 

equated to each other, the equalities 

2

1

2

z
uM

r r z









 
                            (73) 

2

1

2

z
u uM

r z r r

 




 
   

  

                           (74) 

are obtained. Calculating the r derivative of Eq. (73) and the z derivative of Eq. (74), the following 

differential equation is obtained for    eliminating the terms of   . 

2 2

2 2

3
0z z zM M M

r r r z

  
  

  
                       (75) 

The solution of this equation for this problem is 

4

zM Cr B                           (76) 

where C and B are integration constants.    should vanish for r=0. Then, B becomes zero.    

must be equal to    for r=b. Writing this, the other constant is obtained as 

2

0 2
( )z

m
M r b M m b C

b


                         (77) 

So, the shear stresses in Eqs. (67) and (68) are obtained as 

2

2
,z

mr

b
   0r                             (78) 
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The shear strain different from zero is also obtained using Hooke’s Law as 

2

2
z

mr

b



                               (79) 

The total strain energy accumulated on the effective body under simple torsion can be 

calculated using the results given in Eqs. (78) and (79) as 

2
2

2* * *

*0 0
2

1

2

hb

z zhr z

hm
U rdzdrd



 



  

  
                   (80) 

whose quantities are effective. 

To calculate the strain energy of a cylindrical body including a coaxial cylindrical fiber under 

the same state of stress, the total torsion moment is divided into two parts,    and    where M 

and F denote matrix and fiber, respectively. The solution for the single cylindrical body given in 

Eq. (76) can be used. For the fiber, the moment and the non-zero components of the shear stress 

and strain are written as 

4( , ) ,F FM r z C r  
2

( , )
F

F F F

z z

C r
r z   


                 (81) 

Here, r may change from zero to a. For the matrix which has the geometry of a hollow cylinder, 

the moment and the component of stress and strain are 

4( , ) ,M M MM r z C r D   
2

1 2
( , )

2

M M
M M M

z z

M C r
r z

r r
   

 


  


     (82) 

The total torsion moment on the surface due to these shear stresses is calculated as 

 2 2 4 4 4

0 0
0

2 2
a b

F M F M

z z
a

r dr r dr M C a C b a M                  (83) 

Additionally, if the stress expressions of (81) and (82) are substituted into Eq. (71), then 

2
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FF
F F

z
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                      (84) 
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                       (85) 

are obtained. When these equations are integrated over z 

1

2
( )

F
F

F

C r
u z f r


                            (86) 

2

2
( )

M
M

M

C r
u z f r


                             (87) 

are obtained. Here,       and       are functions which depend only on r. The components   
   

and   
  are zero at z=0. This gives 
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1 2( ) ( ) 0f r f r                             (88) 

At r=a, the displacement vectors of the matrix and the fiber must be equal due to continuity. It 

results as 

F F F
F M

M M M

C
C C

C

 

 
                          (89) 

The solution of the set of Eq. (83) and Eq. (89) gives 

 
0

4 4 4

F
F

F M
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                       (90) 
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                       (91) 

The components of the stress and strain tensor can be calculated and the total strain energy is 

calculated as 

 

4 2

4 40

1
2

2

a b
RVE F F M M

z z z z F M Ma

b m h
U h dr dr

a b
   


    

  
   
    
            (92) 

If this energy expression is equated to the effective energy given in Eq. (80), and if the 

resulting equality is rearranged, then the expression of the effective shear modulus are obtained as 

 

4

* 4 4 4

1
F M

b

a b a  


 
                          (93) 

For this problem, concentration c can be stated as     ⁄ . If a in the above equation is changed 

with    , then the effective shear modulus exists as 

 * 2 21F Mc c                                (94) 

The variation of the ratio     ⁄  versus concentration for the fiber reinforced composite has 

been drawn in Fig. 6. In this figure, Hashin's bounds have been obtained using the Eqs. (4.27) and 

(4.28) in the article of (Hashin 1965) and Christensen and Lo’s variation has been drawn by the 

data from Fig. 4 in the article (Christensen and Lo 1979). The material constants of the matrix and 

fibers have been obtained from the latter reference. 

 

 

4. Finite element analysis 
 

Here, two different finite element models are used. The first one is a 16 cm×16 cm cubic matrix 

including uniformly and symmetrically distributed spherical particles with 1 cm radius each (Fig. 

7(a)). The second one is cylindrical body with 2 cm diameter and 7 cm length and it involves 

cylindrical fibers with radius 0.1 cm. The symmetry axes are the same for both the matrix and 

fibers (Fig. 7(b)). These models can be considered as RVEs. A similar analysis acquired by  
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Fig. 6 Variation of μ
*
/μ

M
 of fiber reinforced composite versus c compared to the Hashin's bounds 

(1965) and the curve of Christensen and Lo (1979) for their materials 

 
 

 

Fig. 7(a), (b) The FEA models of the two types of composites 

 

 

Seguardo and Llorca (2002) defining a cubic unit element which includes spherical particles 

distributed into that according to an algorithm. This body has been considered as a linear, elastic 

and isotropic body. Three-dimensional models for three different inclusions; voids, rigid particles, 

and glass particles, were simulated by ANSYS in that study and variations of effective constants 

versus concentration were given graphically. 

In this study, for the first model, one side face of the cube in the xz-plane and for the second 

model one circular face in the xy-plane are fixed. Both models are loaded simple tension in the 

direction being perpendicular to the fixed surfaces. The normal stresses, of which resultants are the 

tension forces, have been considered uniformly distributed at the top surfaces which are the 

opposite surfaces of the fixed ones. The concentrations are 2.5, 3.7, 6.1, 8.3, and 19.6 for the first 
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model and 1.00, 1.25, 2.25, 4.25, and 5.25 for the second one. Two types of material have been 

selected which are linear-elastic, homogeneous and isotropic. For the first FEA model, Hashin’s 

material has been used (Hashin 1962), while for the second model, a different materials set has 

been used which are polyester as the matrix and Kevlar fiber. The elastic constants for the model 

of the fiber reinforced composite are 

1.820ME   GPa, 0.27M   

100.000PE   GPa, 0.33P                         (95) 

To solve these FEA models, ABAQUS has been used. The average number of the mesh 

elements and type of it are 47310 and C3D4 (4-node tetrahedron) for the first model while those 

for the second model are 82524 and C3D8R (8-node linear brick). The stresses and strains have 

been obtained at the nodes in the mid portion of the models. Using them, the associated effective 

moduli have been calculated by elasticity formulas. The results have been discussed in the next 

section. 

 

 

5. Conclusions 
 

Some mechanical properties of two types of composites have been examined. The aim is to 

consider the composite as a unique effective material and to calculate the material constants of it. 

These effective constants heavily depend on those of the particles and matrix. 

The first composite consists of a matrix and spherical particles embedded into that. To 

determine the bulk and shear moduli of this composite, a RVE, which is a sphere of matrix 

involving a spherical particle with the same center, has been considered. Two types of loading on 

this sphere have been examined that the first is hydrostatic pressure while second is simple shear. 

After solving these two problems analytically, the strain energies accumulated in this RVE have 

been calculated performing volume integrals for each loading. Same problems were solved by 

Hashin (1962), but some quantities were calculated by performing two different types of surface 

integrals. After performing these integrals, total strain energy equated to the strain energy which 

belong to the single sphere of the unique material representing composite for each loading. Then 

this equality gives the effective bulk modulus    for the first loading and effective shear modulus 

   for the second one in terms of   ,   ,    and   . 

In the case of hydrostatic pressure problem which is used for the calculation of   , Hashin’s 

two results and the result obtained here are the same (Hashin 1962). This means Hashin's strain 

energy are the same with it calculated here. However, for calculation of shear modulus which 

performed by solving simple shear problem, two values for each concentration value were given 

by Hashin. It is expected that the result which is found here must be between these two values for 

the same concentration. But, the solution presented is nearly under the lower boundary of Hashin. 

It is thought that this difference, which is very small, comes out from rounding errors in Hashin’s 

paper. This fact can be seen if one calculates the shear and bulk moduli in terms of those given by 

Hashin. It is thought that the differences given in Fig. 2 arises due to these rounding errors. 

Solutions in the literature were based on some energy definitions. In this study, it has been 

found on the uniqueness of the energy for a unique problem and it has been calculated performing 

volume integrals. The latter approach is supported by the result of Hashin (1962) which belongs to 

the effective bulk modulus through the coincidence of two boundaries. 
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Fig. 8 Variation of μ
*
 of particle reinforced composite versus c compared to the Hashin’s bounds 

(1962) for the set of first materials in smaller scale than that in Fig. 2 

 

 

Fig. 9 Variation of μ
*
/μ

M
 of particle reinforced composite versus c compared to Christensen and 

Lo’s curve (1979) for their materials for smaller scale than that in Fig. 4 

 

 

The solution for the effective shear modulus of the composites including micro-particles given 

in the article by Christensen and Lo (1979) were expressed by displacement with three integration 

constants   ,   , and    for the equivalent infinite homogeneous medium. The coordinate 

system is not specified clearly in the paper. Moreover, there are some differences in the number of 

equations and unknown constants. The curves of variations given in Fig. 3 are very close to each 

other for low concentrations. 

For low concentrations, whole results given by various authors are almost the same in big scale. 

In fact, the curve of variation of the moduli need not be given in the range of concentration values 

from zero to 1 because after a value of it, inclusions interact each other. Additionally, the aim of 

the production of composites becomes meaningless if the material having high elastic properties 

relative to the other one has bigger concentration than the matrix. Nevertheless, the variations have  
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Fig. 10 The comparison of variation of the modulus of elasticity of particle reinforced composite 

versus c with those obtained from ABAQUS analysis 

 

 

Fig. 11 The comparison of variation of the shear modulus of fiber reinforced composite versus c 

with those obtained from ABAQUS analysis 

 

 

been given in full range in the previous figures due to keeping the tradition of the previous articles. 

Through this fact, the variation of    has been given again in Fig. 8 with smaller scale than that 

used in Fig. 2. The differences around the small concentrations can be seen easily. Fig. 3 has been 

also given in Fig. 9 in a smaller scale. 

The same procedure has been conducted for the second types of composites. Here, RVE has 

cylindrical geometry and includes a cylindrical fiber whose main axis coinciding with that of the 

element. The effective material is also a cylinder having the same radius as that of the RVE. In 

fact, RVE is not an isotropic body. However, there is a transversely isotropy which is in the plane 

of cross-section. Due to the loading which is simple torsion, the stress distribution does not depend 

on the coordinates   and z in the cylindrical coordinates. So the relation between the stress and 

strain can be expressed as in terms of only shear modulus in this plane having isotropy. This  
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Table 1 Results from the analytical solution and FEA for the particulate composite 

c (%)    
          

        

2.5 212.20 211.87 

3.7 213.90 214.28 

6.1 221.20 219.13 

8.3 223.30 223.62 

19.6 245.90 248.07 

 
Table 2 Results from the analytical solution and FEA for the fiber reinforced composite 

c (%)    
        𝜐  

     
          

        

0 1.820 0.270 0.717 0.717 

1 1.833 0.267 0.724 0.720 

1.25 1.836 0.265 0.726 0.722 

2.25 1.848 0.260 0.733 0.735 

4.25 1.851 0.258 0.736 0.783 

5.25 1.904 0.215 0.783 0.818 
 

 

 

Fig. 12 The comparison of the μ
*
/μ

M
 resulted from different analyses for epoxy resin/glass spheres 

(B
M

=4.167 GPa, B
P
=38.890 GPa, μ

M
=1.087 GPa, μ

P
=29.167 GPa) 

 

 

approach has been given by a simple expression for    in terms of    and    and this result 

can be easily used for low concentrations (Fig. 6). 

The results from the FEM analysis have been given in Fig. 10 for the composites having 

particles and in Fig. 11 for those including fibers. In Fig. 10, the effective modulus of elasticity has 

been given calculating from the constants determined and the materials have been selected as the 

first set of materials given in the Sect. 2.1. In the next figure, variations of shear modulus obtained 

from the analytical solution and FEM analysis have been compared. The data provide good 

agreement for low concentrations. This situation can be seen in Table 1 for the particulate  

918



 

 

 

 

 

 

Absolute effective elastic constants of composite materials 

 

Fig. 13 The comparison of the shear moduli of the particle reinforced and fiber reinforced 

composites for the first set of materials 

 

 
composites and in Table 2 for the fiber reinforced composite. FE and A indicate the results from 

finite element analysis and analytical solutions in these tables, respectively. 

In Fig. 12, using epoxy matrix and glass particles which are the same in Fig. 6(b) in the article 

of Seguardo and Llorca (2002), variation of     ⁄  versus concentration has been given. There 

are curves from three-dimensional simulation of Seguardo Llorca (Simulation of SL), Christensen 

and Lo’s Generalized Self consistent solution (GSC) (Christensen and Lo 1979), and Mori-

Tanaka's method (MT) which were applied to the composites by Benveniste (1987). These curves 

have been graphed using data obtained from the mentioned figure in the article of Seguardo and 

Llorca (2002), although the vertical axis was given to be G mistakenly instead of    ⁄  in that 

work. Hashin’s approximation has been drawn in there using Eq. (54) in the article of Hashin 

(1962). Present solution is close to Hashin’s approximation and this approximation was 

recommended for a curve lying between the two bounds of the effective shear modulus. Taking 

into account the factor of safety in design, the lower logical values are more convenient so it can 

be thought that the solution presented here is more effective. 

Lastly, variation of the effective shear modulus of the composites including particles and fibers 

have been compared in Fig. 13 for the first set of materials. In fact, given results in here are valid 

for the values of the lower concentrations and the curves intersect at the concentration value of 

0.53. So, a statement can be said that the composites including particles have high shear modulus 

than that of the composite having fibers for low concentrations. 
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