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Abstract.  Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. 

Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie 

method is commonly used to design deep beams, and this method has been adopted in many building codes 

(ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks 

(ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the 

strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-

strength concrete deep beams from an existing literature database. Seven different input parameters affecting 

the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was 

arranged as an input vector and a corresponding output vector that includes the shear strength of the RC 

deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The 

most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing 

literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC 

deep beams were investigated using the same test data. The study shows that the ANN model provides 

acceptable predictions of the ultimate shear strength of RC deep beams (maximum R
2
≈0.97). Additionally, 

the ANN model is shown to provide more accurate predictions of the shear capacity than all the other 

computed methods in this study. The ACI318-14-STM method was very conservative, as expected. 

Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams 

better than does the strut-and-tie model approaches. 
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1. Introduction 
 

Reinforced concrete (RC) deep beams are structural members that are under the effect of 

disturbed stress trajectories (i.e., D regions). The classical elastic theory of bending is not valid in 

D regions, and the design of the deep beams is intended to consider the shear effect. These 

structural members are used in tall buildings, offshore gravity structures, transfer girders, pile caps, 

folded plates, and foundation walls. The load carrying capacity of a deep beam depends on the 

strength of the compressive strut that joins the loading point and the support reaction point (Eun et 

al. 2006). 
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The ultimate shear strength of deep beams can be determined using various methods. The strut-

and-tie method is commonly used to compute the deep beams, and this method has been adopted 

in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). Also, different shear 

strength prediction methods of RC deep beams were investigated (Mohammadhassani et al. 2015, 

Chetchotisak et al. 2014). The strut-and-tie model is a rational and effective method for solving 

structural members that have statically or geometrically discontinuous regions (i.e., concentrated 

load or corner of frames, corbels, deep beams and openings). The internal forces in discontinuity 

regions can be modeled using a strut-and-tie model consisting of concrete compression struts, steel 

tension ties and joints referred to as nodal zones (MacGregor 1997). This model considers the load 

path in a structure and accepts that RC members carry loads through distributed compression stress 

areas (compression struts) and tension stress areas (tension ties) (Schlaich  et al. 1987). 

Artificial neural networks (ANNs) represent one of the artificial intelligence applications that 

have been implemented by engineers in particular to perform design tasks. ANNs are applied to 

perform many different tasks, including the prediction of function approximation, classification, 

and filtering (Arslan 2010). ANNs have been successfully applied to a number of areas in civil and 

structural engineering applications. In recent literature; structural analysis and design, structural 

dynamics and control, structural damage assessment, the evaluation of earthquake performance of 

reinforced concrete and steel structures are good examples of the application of ANNs in structural 

engineering (Arslan 2009, Arslan et al. 2007, Inel 2007, Chen et al. 1995, Elcordy et al. 1993, 

Lautour and Omenzetter 2009, Akbas 2006, Ozturk 2012, Yavuz et al. 2014). 

In this study, the use of ANN models to predict the shear strength of RC deep beams and to 

evaluate the accuracy of the building code approaches in predicting the shear capacity of RC deep 

beams is performed. In this study, the experimental data for 214 RC deep beams were selected 

from the existing database published by Park and Kuchma (2007). Using their experimental 

results, the back-propagation algorithm was performed for the training on the shear strength of RC 

deep beams. Additionally, the training error, test error, and correlation coefficient (R2), which 

indicate the initial performance evaluation of the back-propagation algorithm, were compared. 

Furthermore, ACI318-14 building code strut-and-tie model (ACI318-14-STM) approaches and 

existing literature (EL) (Park and Kuchma 2007) results were examined by comparing their 

predictions with the data of the experimental studies results. The results obtained by the ANN 

model and strut-and-tie model (STM) approaches were compared with each other. In this study, 

the strut-and-tie design methods in the ACI318-14 code formulas and the ANN results were 

compared and evaluated. In the EL study, a different strut-and-tie model approach was developed 

for calculating the capacity of reinforced concrete deep beams and their effectiveness.   

 

 

2. Determining the shear strength of deep beams 
 

Two calculation methods to determine the shear strength of reinforced concrete deep beams are 

suggested in ACI318-14: Deep beams shall be designed either by considering the nonlinear 

distribution of strain or by chapter 23 of ACI318-14. The shear strength Vn for the deep beam 

should not be greater than Eq. (1). 

dbfV wcn

'10
                                                               

(1) 

In Eq. (1),  is strength reduction factor, fc
’ is the specified concrete compressive strength, bw is  
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(a) Schematic view of strut-and-tie model (b) Extended nodal zone 

Fig. 1 Components of a typical strut-and-tie model of a deep beam (ACI318-14) 

 

 

the beam web width and d is the effective depth. 

Another computational method for deep beams in ACI318-14 is the strut-and-tie model 

(ACI318-14-STM). This model consists of concrete compressive struts and reinforcing bars as 

tension ties and nodal zones. A strut-and-tie model is a system of forces in equilibrium with a 

given set of loads (MacGregor 1997).  

A schematic view of the strut-and-tie model of a deep beam and the extended nodal zone 

showing the effect of the distribution of the forces is shown in Fig. 1. By using ACI318-14-chapter 

23, designers can select the shape and dimensions of the load-resisting strut-and-tie model. 

Generally, more than one strut-and-tie model can be used. It is important to determine optimal load 

path and section types and properties of the strut and tie members in the D regions. If an unsuitable 

strut-and-tie model is selected, significant cracks and the local crushing on the concrete under 

service loads and the inadequate strength to support will occur (Park and Kuchma 2007). 

The shear capacity of the deep beams Vn is determined with Eq. (2) according to the ACI318-

14, chapter 23.  

sswcsn wbfV  sin85.0 '             (2) 

In Eq. (2), s values are 1.0 for struts with uniform cross-sectional area along length, 0.75 or 

0.60 for bottle shaped struts, 0.40 for struts in tension members or the tension zones of members, 

0.60 for other cases and 1.0 for normal weight concrete. Additionally, s values can be 

determined by web reinforcement ratio for a bottle shaped strut (ACI318-14). In this case s=0.75 

for beams with web reinforcement ratio with   003.0sin i

is

si

sb

A
  and otherwise 

 s=0.6                                                                     (3) 

tans=jd/a;   jd=h-c-wt’/2;  )sincos( sbsts lww  
                           

(4) 

In the above equations, fc’ is the specified concrete compressive strength, bw is the beam web 

width, ws is the width of the concrete strut, s is the concrete strut angle, Asi is the area of 
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reinforcement crossing the strut, si is the spacing of the reinforcement crossing the strut, i is the 

angle of the reinforcing bar, jd is the distance between the center of the top and bottom nodes, a is 

the shear span, h is the height of the beam, c is the concrete cover, wt is the depth of the bottom 

node, and lb is the width of the support bearing plates. In this study, simply supported beams have 

been considered. Accordingly, the values in Eq. (3) and (4) were used to calculate the shear 

capacity values Vn.  

These ACI318-14-chapter 23 code formulae showed that the shear strength computed by the 

strut-and-tie models is greatly dependent on the width and inclination of the compressive struts, 

the effective strength of the concrete and the amount of web reinforcement. In addition, the 

effectiveness factor of the concrete in ACI318 is 0.6 or 0.75 depending on the amount of web 

reinforcement and the independent of concrete strength and the shear span-to-overall depth ratio 

(Yang et al. 2008). 

Results similar to the experimental values were obtained by the existing literature (EL) method 

(i.e., strut-and-tie based method) versus the ACI318-05 code. In EL, the proposed approach is a 

compatibility-based strut-and-tie method that considers the effects of compression softening of the 

cracked concrete. The EL-developed model offers a new approach for the use of compatibility-

based strut-and-tie methods (Park and Kuchma 2007). 

 

 

3. Selection of database 
 

In the literature, there are extensive available experimental data on the behavior of the RC deep 

beams. The tests were performed under similar loading types, and the selected parameters in these 

tests were similar. The experimental data considered in this study was obtained from Park and 

Kuchma (2007) and included the test results for 214 RC deep beams. Park and Kuchma (2007) 

present a strut-and-tie-based method for calculating the strength of normal and high strength 

reinforced concrete deep beams. The test specimens were of solid rectangular deep beams. Typical 

loading system and tested deep beams are shown in Fig. 2. This database is sufficiently large to 

enable a fair critique of the code provisions and the validation of the proposed model according to 

Park and Kuchma (2007). The parameters affecting the strength of the RC deep beams were 

considered to be the dimensions of the cross section, the shear span-to-depth ratios (a/d), the 

compressive strength of the concrete, the ratio of longitudinal reinforcement and the ratios of  

  

 

 

Fig. 2 Typical loading system and tested deep beams 
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Table 1 Range of parameters 

Parameters Identification 
Range 

Min Max 

h (mm) overall height of deep beam 254 915 

b (mm) width of deep beam 76 305 

d (mm) effective depth of deep beam 216 801 

a (mm) shear span 125 1250 

a/d aspect ratio 0.27 2.7 

fc’ (MPa) compressive strength of the concrete 13.8 73.6 

 ratio of longitudinal reinforcement 0.52 4.08 

h (%) ratio of horizontal web reinforcement 0 2.45 

v (%) ratio of vertical web reinforcement 0 2.65 

 

 

horizontal and vertical web reinforcements. The deep beams in this literature (Park and Kuchma, 

2007) include concrete compressive strengths ranging from 13.8 MPa to 73.6 MPa, a/d shear span-

to-depth ratios ranging from 0.27 to 2.7, ratios of longitudinal reinforcement ranging from 0.0052 

to 0.0408, ratios of horizontal web reinforcement ranging from 0 to 0.0245, and ratios of vertical 

web reinforcement ranging from 0 to 0.0265. As shown in Table 1, a total of 214 tests satisfy the 

variables mentioned above. 

 

 

4. Fundamental aspects of artificial neural networks 
 

The use of ANNs ensures an alternative approach to predict the shear strength of RC deep 

beams. A multilayer perceptron neural network (MLP NN) is a feed-forward neural network 

model (Yavuz et al. 2014). The MLP model consists of one input layer, one or more hidden 

layer(s), and one output layer (Fu 1994). The structure of the ANNs used in this study is provided 

in Fig. 3. The neurons of a layer are fully connected to the neurons of the neighboring layers with 

weights. The initial values of these weights are randomly assigned as small real values. The 

outputs of the hidden layer and the output layer neurons are calculated with defined transfer 

functions (Yavuz et al. 2014). In this study, the ANN architecture consisted of seven input neurons 

and one output neuron, and a two-layered feed-forward neural network model was used and 

trained with the error back-propagation method. In engineering problems, the number of input and 

output parameters is generally determined by design requirements (Arslan 2010). However, the 

selection of the number of hidden layer neurons is entrusted to the user. There is no general rule 

for selecting the number of neurons in a hidden layer (Arslan 2009, Arslan et al. 2007). The back-

propagation learning algorithm can be used to train the MLP network. Therefore, these weights are 

adjusted for a given set of input-output pairs (Rumelhart et al. 1986). The mean squared error 

(MSE %) can be used to appraise the performance of the ANN model according to number of 

hidden neurons (Eq. (5)). 





n

i

ii YY
n

MSE
1

2' )(
1

          (5) 
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Fig. 3 Architecture of the selected ANN model 

 

 

In this equation, n is the number of samples in the training or testing data. Yi is the desired 

output, and Yi’ is the output of the neural network. In this study, the ANNs were developed using 

the MATLAB software package (MATLAB version 7.10.0 with a neural networks toolbox). The 

input data were normalized in the range of [-1 1], and the output data were normalized in the range 

of [0 1]. Data scaling (normalization) is an important phase for network training. Input and output 

data are normalized before using them in the network. Simple linear normalization functions were 

applied to the data using Eq. (6). 

1
)(

)(
2

minmax

min 





XX

XX
S x  ( for [-1 1] );       

)(

)(

minmax

min

XX

XX
S x




         ( for [0 1] )      (6) 

In this equation, Sx is the normalized value of the variable X, and Xmin and Xmax are the minimum 

and maximum values of the variables, respectively. 

In this study, a hyperbolic tangent sigmoid transfer function was selected on the hidden layer, 

and a sigmoid transfer function was utilized on the output layer. A training function trainGDX was 

used; this function updates weight and bias values according to the gradient descent momentum 

and an adaptive learning rate. The performance of the network was very sensitive to the learning 

rate (lr) and was held constant throughout the training for standard back-propagation. For the 

training process, the maximum training cycles, learning rate (lr), and momentum coefficient (mc) 

selected were 1000, 0.1 and 0.9, respectively. The MSE is used as a performance function to 

evaluate the best number of hidden neurons. The ANN architecture consisted of seven input 

neurons covering the geometrical and material properties of the deep beams and one output neuron 

covering the shear strength (Fig. 3). The number of neurons in the hidden layer was varied from 10 

to 100 to obtain the best result. The total data set contained 214x8 datasets. The data set was 

divided equally into training and testing data sets (107 data sets). The parameter combination that  
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Table 2 The optimum network parameters 

Parameter Value 

Number of training data 107 

Number of testing data 107 

Maximum epoch number 1000 

Learning rate (lr) 0.1 

Momentum coefficient (mc) 0.9 

ANN structure 7:HN:1 

Number of hidden neurons (best) 60 

R2 (training) 0.9855 

R2 (testing) 0.9711 

 

 

Fig. 4 Training and testing errors corresponding to number of hidden layer neurons 

 

 

resulted in the best average of the training and testing performances was selected as the best one 

for the corresponding model. The optimum parameter combination is shown in Table 2. The study 

shows that the ANN model provides reasonable predictions for the shear strength of the RC deep 

beams (R2≈0.97).  

 
 
5. Results and discussion 
 

5.1 The ANN model results 
 

In this study, 7:HN:1 ANN structures were used for the strength for the input values of fc’, b, h, 

a/d, handv as well as for the output values of the strength capacities of the RC deep beams as 

Vn. The performance values of the GDX back-propagation method that are related to the 

determination of the shear strength of the RC deep beams are provided in Table 2. The changes in 

the training and testing errors corresponding to the number of hidden layer neurons are shown in 

Fig.  4.  
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Fig. 5 Performance of the ANN model in estimating the shear strength capacity of the deep beams 

for testing data 

 

 

A general investigation was performed to evaluate success of the ANN model by considering 

Table 2 and Fig. 4. Performance of the ANN model in estimating the shear strength capacity of the 

deep beams for testing data is shown in Fig. 5 in accordance with the correlation coefficient (R2). 

The back-propagation method obtained a 97% averaged accuracy rate (100%-error%) for the test 

phase of the neural network. Also, average values of Vtest/VANN for each of the reference works are 

presented in Table 3. Different architectures of the ANN model have the ability to solve this 

problem. The training time should not be considered as a significant performance property because 

this study is not a “real time” application. The selection of the data used in the training set and 

algorithm directly affected the accuracy and the rate. Therefore, the selection of the most 

appropriate algorithm for each data set is an important factor in the solution of the problem. The 

success of the ANN training algorithm depends on the data set and the structure of the network. 

The selected ANN model presented above is valid only for the ranges of databases provided in the 

Appendix Table. In the study, by selecting a different number of hidden nodes (HN) between 10 

and 100 for the hidden layer, the optimum number of nodes was determined by applying separate 

solutions for each node. Fixing the number of nodes of the hidden layer requires many trials. The 

important factors affecting the success of the application are the number of hidden layer neurons, 

the iteration number, the learning rate, the momentum coefficient parameters and the learning 

algorithm. Each parameter affects the performances during the solution of the problem because of 

their different properties. In this study, the optimum number of hidden layer neuron was 

determined as 60 neurons. 

 

5.2 Building code (ACI318-14-STM) and EL results 
 

To analyze the accuracy of the other two methods for the strength of the RC deep beams, the 

test results provided in the Appendix Table were compared with the results of the other 

conventional (EL) and ACI318-14-STM code approaches. Performances of the ACI318-14-STM 

method and EL in estimating the shear strength capacity of the deep beams for all data are shown  
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Fig. 6 Performance of the ACI318-14-STM method in estimating the shear strength capacity of 

the deep beams for all data 

 

 

Fig. 7 Performance of the EL method estimating the shear strength capacity of the deep beams for all data 

 

 

in Figs. 6-7, respectively. The prediction capability results of the ACI code and EL related to the 

strength of the RC deep beams for the 214 tested specimens are presented in Table 3.  

The minimum, maximum and average values of the selected parameters (fc’, a/d, h and v) for 

the reference studies and the average values of Vn,test/Vn,computed for each of the reference works are 

presented in Table 3. In the specimens that have horizontal and/or vertical web reinforcement 

ratios of less than 0.003, it was shown that the ACI318-14-STM and EL results were closer to the 

experimental shear strengths (Table 3). 

The results closest to the experimental shear strengths were determined for the specimens that 

have high strength concrete and an average concrete compressive strength that is greater than 40  
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Table 3 Minimum, maximum and average values of the selected parameters from the reference studies and 

average values of Vn,test/Vn,comp.  

Reference 

 

Minimum, maximum and average values 

of specimen properties 

Average values of 

Vn,test/Vn,comp. 

fc
’ 

(MPa) 
a/d 

h 

(%) 

v 

(%) 

Vtest/ 

VACISTM-318 

Vtest/ 

VEL 

Vtest/ 

VANN-all data 

Smith and 

Vantsiotis 

(1982) 

Min. 16.1 1.00 0 0 

2.00 1.54 1.01 Max. 22.7 2.08 0.91 1.25 

Ave. 19.7 1.29 0.49 0.49 

Kong et al. (1970) 

Min. 18.6 0.35 0 0 

3.11 1.59 0.97 Max. 24.6 1.18 2.45 2.45 

Ave. 21.1 0.65 0.78 0.78 

Clark (1951) 

Min. 13.8 1.17 0 0.34 

1.65 1.29 1.00 Max. 47.6 2.34 0 1.22 

Ave. 26.2 1.64 0 0.50 

Oh and Shin 

(2001) 

Min. 23.7 0.50 0 0 

1.29 1.28 0.98 Max. 73.6 2.00 0.94 0.37 

Ave. 51.6 1.02 0.39 0.16 

Aguilar et al. 

(2002) 

Min. 28.0 1.14 0 0.10 

1.30 1.38 1.04 Max. 32.0 1.27 0.13 0.31 

Ave. 30.0 1.18 0.13 0.26 

Quintero-Febres et 

al. (2006) 

Min. 22.0 0.81 0 0 

1.40 1.28 1.01 Max. 50.3 1.57 0.15 0.67 

Ave. 34.9 1.15 0.06 0.17 

Tan et al. 

(1995) 

Min. 41.1 0.27 0 0.48 

1.39 1.38 1.02 Max. 57.3 2.70 0 0.48 

Ave. 49.3 0.99 0 0.48 

Anderson and 

Ramirez (1989) 

Min. 27.5 2.15 0 2.65 

1.48 1.57 0.98 Max. 42.7 2.15 0 2.65 

Ave. 33.8 2.15 0 2.65 

 

 

MPa in the Oh and Shin (2001) studies and the Tan et al. (1995) studies. As shown in Table 3, 

Vn,test/Vn,comp. values increased greatly for the studies containing a low average concrete 

compressive strength. Vn,test/Vn,comp. values were close to the experimental results for the specimens 

that have an average a/d ratio that is approximately 1. 

 

5.3 Comparison of the ANN model, strut-and-tie model equations and existing 
literature 
 

The predictions of the shear capacities of the RC deep beams for the proposed ANN model and 

the predictions of the ACI318-14-STM model as explained in Section 2 were compared with the 

compiled experimental database in the Appendix Table.  Comparable figures of the target values, 
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obtained neural networks, building code and existing literature outputs are shown in Figs.  5-7. In 

these figures, a comparison of the experimental values and the estimated shear strength is plotted. 

According to the results shown in Figs. 5-7, the algorithm produced better estimates than the other 

conventional (EL) and ACI318-14-STM code approaches in accordance with the correlation 

coefficient (R2). Because the proposed ANN model estimated the shear capacities of the RC deep 

beams with an approximately 97% accuracy, the results obtained through the proposed ANN 

model and the EL results were very close. Additionally, due to several assumptions made for the 

simplification of the conventional approaches, the estimation capacities of the conventional 

approaches were lower than those obtained by the ANN approach. When more comprehensive 

analysis assumptions are made in the conventional approach, better estimations become possible 

but may increase the complexity of the analysis, whereas the ANN approach can lead to reliable 

results without excessive complexity.  

In this study, the root mean squared error (RMSE), mean absolute error (MAE) and mean 

absolute percentage error (MAPE) performance parameters were then used to appraise the 

performance of the methods. The RMSE, MAE and MAPE performance parameters were 

computed by Eqs. (7), (8) and (9), respectively. 

     




n

i

ii YY
n

RMSE
1

2' )(
1

 (7) 

     




n

i

ii YY
n

MAE
1

'1
 (8)

 

     







n

i i

ii

Y

YY

n
MAPE

1

'
1

 (9)

 

In the above equations, n is the number of samples in the training or testing data; Yi is the 

desired output (measured values); and Yi’ is the estimated output of the neural networks and other 

methods (simulated values of the ANN, EL and ACI318-14-STM code approach). The 

performance parameters for the applied methods are given in Table 4. From Table 4, the ANN 

model displayed the best performance when analyzing the R2, MSE, MAE and MAPE parameters. 

A comparison of the ANN results derived from the GDX algorithm approach with the 

aforementioned code approaches derived from ACI318-STM that provides very high correlation 

 

 
Table 4 Performance results of the prediction methods 

 
R2 RMSE MAPE MAE 

ANN-train 0.985 23.136 0.071 16.952 

ANN-test* 0.971 35.250 0.082 24.336 

ACI318-STM* 0.862 128.057 0.380 105.090 

EL* 0.918 112.007 0.273 82.914 

ACI318-STM-all data 0.833 126.679 0.385 105.367 

EL-all data 0.916 108.015 0.275 82.082 

Note: *Performance values were computed for the test stage results of the model. 
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Fig. 8 Effect of the parameter fc
’ on the shear strength of the RC deep beams 

 

 

coefficients (R2) for the training and testing data was performed. In this study, the shear span-to-

depth ratio (a/d), the compressive strength of concrete (fc’), the horizontal shear reinforcement 

ratio h and the vertical shear reinforcement ratio v were selected as the effective parameters on 

the shear strength of the deep beams to compare the aforementioned methods with each other. 

Figs. 8-11 show the errors that are induced by the discrepancy of the fc
’, a/d, h=Ah/b.sh 

andv=Av/b.sv parameters between the test-ANN model, the test-EL and the test-ACI-STM. In 

these figures, test stage values were considered for ANN results. The wide ranges of parameters 

are effective on the strength behavior of the RC deep beams. Therefore, all the parameters selected 

should be considered. The effect of the concrete compressive strength on the shear strength of the 

deep beams is shown in Fig. 8. The closest results were obtained for deep beams having 40 MPa 

and higher strength concrete. a/d is the shear span-to-effective-depth ratio, which plays an 

important role in the failure type and the cracking pattern for the deep beams. Its effect on beam 

behavior is shown in Fig. 9. h and v are the ratio of the horizontal and vertical web 

reinforcement, and their effects on the shear strength are shown in Figs. 10-11, respectively. In this 

study, the limit values were determined to understand the effects of the parameters clearly.  

The selected limit values were 40 MPa for the concrete compressive strength fc
’, 2 for the 

aspect ratio (a/d), and 0.003 for the horizontal (h) and vertical (v) web reinforcement ratio. The 

average ratios of the experimental shear strengths to the computed shear strengths according to the 

aforementioned methods (Vntest/Vncomp.) are provided in Table 5 and considered the specified limit 

values in point of the fc’, a/d, h, v parameters for the specimens. 
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Fig. 9 Effect of the parameter a/d on the shear strength of the RC deep beams 

 
Table 5 Vn,test/Vn,comp. ratios 

Method 
fc’ (MPa) a/d h v 

  40 > 40   2 > 2   0.003 > 0.003   0.003 > 0.003 

ANN-test data 1.01 0.99 1.01 0.93 0.97 1.00 0.99 1.00 

ACI318-STM 2.03 1.26 1.77 1.59 1.64 1.82 1.65 1.82 

EL 1.45 1.33 1.39 1.53 1.34 1.43 1.36 1.44 

 

 

When considering the ratios in Table 5, strength values closer to those of the test results were 

obtained for the test specimens with high strength concrete (fc’>40 MPa) when using the EL and 

ACI318-14-STM method. However, a  1% difference from test results was obtained by the ANN 

model for all concrete compressive strength values. As a result of the general comparison, strength 

values very close to the experimental results were obtained by the ANN model for all selected 

parameters. Hence, the results obtained from the EL and ACI318-14-STM methods are very close 

to each other for high-strength concrete, according to the average ratios. When examining the 

average ratios at the upper and lower boundary of the limit values for each method, 2%, 12% and 

77% differences were obtained for the ANN, EL and ACI318-14-STM methods, respectively (Fig. 

8).  

When examining the a/d aspect ratios, the most convenient values with test results were 

obtained by the ANN model. Additionally, a greater average ratio difference was computed for 

a/d>2 according to the ANN model. When comparing the methods on their own, the ANN model 
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Fig. 10 Effect of the parameter h on the shear strength of the RC deep beams 

 

 
and the EL method provide improved results in the a/d<2 specimens. At the same time, fewer 

differences in the average ratio were determined in the a/d>2 specimens according to the ACI318-

STM method. According to these results, the ANN model and the EL method provide a lower 

error rate for deep beams that have very small aspect ratios. The shear effect is very important in 

deep beams that have small aspect ratios. The shear force is transferred by the concrete strut to the 

supports directly by reducing the a/d ratio. When examining the average ratios at the upper and 

lower boundary of the limit values for each method, 8%, 14% and 18% differences were obtained 

for the ANN, EL and ACI318-14-STM methods, respectively (Fig. 9).  

In this study, 0.003 was considered as the limit value of the horizontal and vertical web 

reinforcement ratio according to the strut-and-tie model approach in ACI318-14-chapter 23. 

Approximately the same average Vn,test/Vn,estimated ratios had been obtained at the upper and lower 

boundary of the limit values for all calculation methods. When comparing the methods on their 

own, horizontal web reinforcement ratio with  3%, 9% and 18% differences were obtained for the 

ANN, EL and ACI318-14-STM methods, respectively (Fig. 10). Vertical web reinforcement ratios 

with 1%, 8% and 17% differences were obtained for the ANN, EL and ACI318-14-STM methods, 

respectively (Fig. 11).   

When examining the results in general, the closest results were obtained from the ANN model. 

The similar average values were obtained for the ANN, ACI318-14-STM and EL methods for the 

selected upper and lower limit values of the horizontal and vertical web reinforcement ratios. 
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Fig. 11 Effect of the parameter v on the shear strength of the RC deep beams 

 

 

6. Conclusions 
 

In this paper, an ANN model was developed for the estimation of the shear capacities of the RC 

deep beams. In this study, to analyze the performance of the proposed ANN model, 214 different 

RC deep beam tests were collected from the literature, and the testing and training of the ANN 

model were performed. Next, the success of the proposed ANN method compared to the 

conventional code approaches was investigated. The following conclusions may be drawn based 

on the results presented: 

• The results obtained from the testing/training data set of the proposed ANN model were 

satisfactory (the accuracy rate was calculated as 97%). Furthermore, the ANN model showed a 

slight improvement in performance compared with the EL approach. 

• In the present study, the data sets used were similar to the data sets used by Park and Kuchma 

(2007), and an ANN model was developed. In the abovementioned study (Park and Kuchma, 

2007), a strut-and-tie based method was presented for calculating the strength of the reinforced 

concrete deep beams. This method was compared with the strut-and-tie provisions in the 

ACI318 code. Therefore, the accuracy rate obtained is different from that of the above study. 

• In the ANN approach, the selected algorithm and the data set used in the training stage 

directly affects the accuracy and speed of the test results. The selection of the appropriate 

algorithm for the data set is as significant a parameter as the optimum hidden nodes, the 

iteration number, the learning rate, the momentum constant and the error tolerance. 
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• The performance of the developed ANN model was limited to the range of the input data used 

in the training and testing processes, but the model can easily be developed with additional new 

sets of data. The developed ANN model should be used to predict the shear strength of the deep 

beams within the range of different parameters in the database. 

• All selected parameters affect the shear strength capacity of the RC deep beams. However, the 

current building code mentioned in the text is quite limited in predicting the shear strength of 

an RC deep beam because several parameters are ignored, such as the longitudinal 

reinforcement bar ratio (ρ). 

• The test results are greater than the values obtained from the ACI318-14-STM and EL 

methods. The test results were 1.76 times the values for the ACI318-14-STM method and 1.41 

times those for the EL method as average values (for all database tests), which is expected 

because the codes are very conservative. In particular, the shear strength values of the deep 

beams obtained from the ACI318-14-STM method were very different from the experimental 

strengths, as clearly demonstrated by the average ratios. The test results were 0.99 times the 

values for the ANN method as average values (for testing data). 

• Generally, the ACI318-14-STM and EL results were smaller than the experimental shear 

strengths except for the ANN model. This scenario showed that the ACI318-14-STM method is 

more conservative, as expected and the building code is limited in predicting the shear strength 

of an RC deep beam. Moreover, several parameters that affect shear strength are ignored in the 

current codes.  

• In all RMSE, MAE and MAPE performance parameters, the best values were obtained in  

ANN  model. Although  R2 values which obtained from ACI318-14-STM code and EL were 

highest values, in other performance parameters the obtained values were not satisfied the R2 

values. 
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Notations 
 
a/d : aspect ratio 

Asi  : area of reinforcement crossing the strut 

bw  : beam web width  

c  : concrete cover 
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d  : effective depth 

fc
’  : specified concrete compressive strength 

h  : height of beam 

jd  : distance between the centre of top and bottom nodes 

lb  : width of loading plates 

si  : spacing of reinforcement crossing the strut 

ws : width of concrete strut 

wt  : depth of bottom node 

Vn  : Shear strength 

s  : effectiveness factor of concrete 

 ratio of longitudinal reinforcement 

h : ratio of horizontal web reinforcement 

v : ratio of vertical web reinforcement 

i : angle between reinforcing bar j and the axis of beam 

s  : concrete strut angle 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

674



 

 

 

 

 

 

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches 

Appendix  
 
Appendix Table Geometrical and mechanical characteristics of the RC deep beams (Park and Kuchma 2007) 

Reference Specimen no fc’ (MPa) b (mm) h (mm) d (mm) a (mm) a/d ρ ρh ρv 

Smith and 

Vantsiotis 

(1982) 

0A0-44 20.5 102 356 305 305 1.00 1.94 0 0 

0A0-48 20.9 102 356 305 305 1.00 1.94 0 0 

1A1-10 18.7 102 356 305 305 1.00 1.94 0.23 0.28 

1A3-11 18 102 356 305 305 1.00 1.94 0.45 0.28 

1A4-12 16.1 102 356 305 305 1.00 1.94 0.68 0.28 

1A4-51 20.5 102 356 305 305 1.00 1.94 0.68 0.28 

1A6-37 21.1 102 356 305 305 1.00 1.94 0.91 0.28 

2A1-38 21.7 102 356 305 305 1.00 1.94 0.23 0.63 

2A3-39 19.8 102 356 305 305 1.00 1.94 0.45 0.63 

2A4-40 20.3 102 356 305 305 1.00 1.94 0.68 0.63 

2A6-41 19.1 102 356 305 305 1.00 1.94 0.91 0.63 

3A1-42 18.4 102 356 305 305 1.00 1.94 0.23 1.25 

3A3-43 19.2 102 356 305 305 1.00 1.94 0.45 1.25 

3A4-45 20.8 102 356 305 305 1.00 1.94 0.68 1.25 

3A6-46 19.9 102 356 305 305 1.00 1.94 0.91 1.25 

0B0-49 21.7 102 356 305 368 1.21 1.94 0 0 

1B1-01 22.1 102 356 305 368 1.21 1.94 0.23 0.24 

1B3-29 20.1 102 356 305 368 1.21 1.94 0.45 0.24 

1B4-30 20.8 102 356 305 368 1.21 1.94 0.68 0.24 

1B6-31 19.5 102 356 305 368 1.21 1.94 0.91 0.24 

2B1-05 19.2 102 356 305 368 1.21 1.94 0.23 0.42 

2B3-06 19 102 356 305 368 1.21 1.94 0.45 0.42 

2B4-07 17.5 102 356 305 368 1.21 1.94 0.68 0.42 

2B4-52 21.8 102 356 305 368 1.21 1.94 0.68 0.42 

2B6-32 19.8 102 356 305 368 1.21 1.94 0.91 0.42 

3B1-08 16.2 102 356 305 368 1.21 1.94 0.23 0.63 

3B1-36 20.4 102 356 305 368 1.21 1.94 0.23 0.77 

3B3-33 19 102 356 305 368 1.21 1.94 0.45 0.77 

3B4-34 19.2 102 356 305 368 1.21 1.94 0.68 0.77 

3B6-35 20.6 102 356 305 368 1.21 1.94 0.91 0.77 

4B1-09 17.1 102 356 305 368 1.21 1.94 0.23 1.25 

0C0-50 20.7 102 356 305 457 1.50 1.94 0 0 

1C1-14 19.2 102 356 305 457 1.50 1.94 0.23 0.18 

1C3-02 21.9 102 356 305 457 1.50 1.94 0.45 0.18 

1C4-15 22.7 102 356 305 457 1.50 1.94 0.68 0.18 

1C6-16 21.8 102 356 305 457 1.50 1.94 0.91 0.18 

2C1-17 19.9 102 356 305 457 1.50 1.94 0.23 0.31 
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Appendix Table Continued 

Reference Specimen no fc’ (MPa) b (mm) h (mm) d (mm) a (mm) a/d ρ ρh ρv 

Smith and 

Vantsiotis 

(1982) 

2C3-03 19.2 102 356 305 457 1.50 1.94 0.45 0.31 

2C3-27 19.3 102 356 305 457 1.50 1.94 0.45 0.31 

2C4-18 20.4 102 356 305 457 1.50 1.94 0.68 0.31 

2C6-19 20.8 102 356 305 457 1.50 1.94 0.91 0.31 

3C1-20 21 102 356 305 457 1.50 1.94 0.23 0.56 

3C3-21 16.5 102 356 305 457 1.50 1.94 0.45 0.56 

3C4-22 18.3 102 356 305 457 1.50 1.94 0.68 0.56 

3C6-23 19 102 356 305 457 1.50 1.94 0.91 0.56 

4C1-24 19.6 102 356 305 457 1.50 1.94 0.23 0.77 

4C3-04 18.5 102 356 305 457 1.50 1.94 0.45 0.63 

4C3-28 19.2 102 356 305 457 1.50 1.94 0.45 0.77 

4C4-25 18.5 102 356 305 457 1.50 1.94 0.68 0.77 

4C6-26 21.2 102 356 305 457 1.50 1.94 0.91 0.77 

0D0-47 19.5 102 356 305 635 2.08 1.94 0 0 

4D1-13 16.1 102 356 305 635 2.08 1.94 0.23 0.42 

Kong et al. 

(1970) 

1-30 21.5 76 762 724 254 0.35 0.52 0 2.45 

1-25 24.6 76 635 597 254 0.43 0.62 0 2.45 

1-20 21.2 76 508 470 254 0.54 0.79 0 2.45 

1-15 21.2 76 381 343 254 0.74 1.09 0 2.45 

1-10 21.7 76 254 216 254 1.18 1.73 0 2.45 

2-30 19.2 76 762 724 254 0.35 0.52 0 0.86 

2-25 18.6 76 635 597 254 0.43 0.62 0 0.86 

2-20 19.9 76 508 470 254 0.54 0.79 0 0.86 

2-15 22.8 76 381 343 254 0.74 1.09 0 0.86 

2-10 20.1 76 254 216 254 1.18 1.73 0 0.86 

3-30 22.6 76 762 724 254 0.35 0.52 2.45 0 

3-25 21 76 635 597 254 0.43 0.62 2.45 0 

3-20 19.2 76 508 470 254 0.54 0.79 2.45 0 

3-15 21.9 76 381 343 254 0.74 1.09 2.45 0 

3-10 22.6 76 254 216 254 1.18 1.73 2.45 0 

4-30 22 76 762 724 254 0.35 0.52 0.86 0 

4-25 21 76 635 597 254 0.43 0.62 0.86 0 

4-20 20.1 76 508 470 254 0.54 0.79 0.86 0 

4-15 22 76 381 343 254 0.74 1.09 0.86 0 

4-10 22.6 76 254 216 254 1.18 1.73 0.86 0 

5-30 18.6 76 762 724 254 0.35 0.52 0.61 0.61 

5-25 19.2 76 635 597 254 0.43 0.62 0.61 0.61 

5-20 20.1 76 508 470 254 0.54 0.79 0.61 0.61 

5-15 21.9 76 381 343 254 0.74 1.09 0.61 0.61 

5-10 22.6 76 254 216 254 1.18 1.73 0.61 0.61 
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Appendix Table Continued 

Reference Specimen no fc’ (MPa) b (mm) h (mm) d (mm) a (mm) a/d ρ ρh ρv 

Clark 

(1951) 

A1-1 24.6 203 457 390 914 2.34 3.1 0 0.38 

A1-2 23.6 203 457 390 914 2.34 3.1 0 0.38 

A1-3 23.4 203 457 390 914 2.34 3.1 0 0.38 

A1-4 24.8 203 457 390 914 2.34 3.1 0 0.38 

B1-1 23.4 203 457 390 762 1.95 3.1 0 0.37 

B1-2 25.4 203 457 390 762 1.95 3.1 0 0.37 

B1-3 23.7 203 457 390 762 1.95 3.1 0 0.37 

B1-4 23.3 203 457 390 762 1.95 3.1 0 0.37 

B1-5 24.6 203 457 390 762 1.95 3.1 0 0.37 

B2-1 23.2 203 457 390 762 1.95 3.1 0 0.73 

B2-2 26.3 203 457 390 762 1.95 3.1 0 0.73 

B2-3 24.9 203 457 390 762 1.95 3.1 0 0.73 

B6-1 42.1 203 457 390 762 1.95 3.1 0 0.37 

C1-1 25.6 203 457 390 610 1.56 2.07 0 0.34 

C1-2 26.3 203 457 390 610 1.56 2.07 0 0.34 

C1-3 24 203 457 390 610 1.56 2.07 0 0.34 

C1-4 29 203 457 390 610 1.56 2.07 0 0.34 

C2-1 23.6 203 457 390 610 1.56 2.07 0 0.69 

C2-2 25 203 457 390 610 1.56 2.07 0 0.69 

C2-3 24.1 203 457 390 610 1.56 2.07 0 0.69 

C2-4 27 203 457 390 610 1.56 2.07 0 0.69 

C3-1 14.1 203 457 390 610 1.56 2.07 0 0.34 

C3-2 13.8 203 457 390 610 1.56 2.07 0 0.34 

C3-3 13.9 203 457 390 610 1.56 2.07 0 0.34 

C4-1 24.5 203 457 390 610 1.56 3.1 0 0.34 

C6-2 45.2 203 457 390 610 1.56 3.1 0 0.34 

C6-3 44.7 203 457 390 610 1.56 3.1 0 0.34 

C6-4 47.6 203 457 390 610 1.56 3.1 0 0.34 

D1-1 26.2 203 457 390 457 1.17 1.63 0 0.46 

D1-2 26.1 203 457 390 457 1.17 1.63 0 0.46 

D1-3 24.5 203 457 390 457 1.17 1.63 0 0.46 

Clark 

(1951) 

D2-1 24 203 457 390 457 1.17 1.63 0 0.61 

D2-2 25.9 203 457 390 457 1.17 1.63 0 0.61 

D2-3 24.8 203 457 390 457 1.17 1.63 0 0.61 

D2-4 24.5 203 457 390 457 1.17 1.63 0 0.61 

D3-1 28.2 203 457 390 457 1.17 2.44 0 0.92 

D4-1 23.1 203 457 390 457 1.17 1.63 0 1.22 
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Appendix Table Continued 

Reference Specimen no fc’ (MPa) b (mm) h (mm) d (mm) a (mm) a/d ρ ρh ρv 

Oh and Shin 

(2001) 

N4200 23.7 130 560 500 425 0.85 1.56 0 0 

N42A2 23.7 130 560 500 425 0.85 1.56 0.43 0.12 

N42B2 23.7 130 560 500 425 0.85 1.56 0.43 0.22 

N42C2 23.7 130 560 500 425 0.85 1.56 0.43 0.34 

H4100 49.1 130 560 500 250 0.50 1.56 0 0 

H41A2(1) 49.1 130 560 500 250 0.50 1.56 0.43 0.12 

H41B2 49.1 130 560 500 250 0.50 1.56 0.43 0.22 

H41C2 49.1 130 560 500 250 0.50 1.56 0.43 0.34 

H4200 49.1 130 560 500 425 0.85 1.56 0 0 

H42A2(1) 49.1 130 560 500 425 0.85 1.56 0.43 0.12 

H42B2(1) 49.1 130 560 500 425 0.85 1.56 0.43 0.22 

H42C2(1) 49.1 130 560 500 425 0.85 1.56 0.43 0.34 

H4300 49.1 130 560 500 625 1.25 1.56 0 0 

H43A2(1) 49.1 130 560 500 625 1.25 1.56 0.43 0.12 

H43B2 49.1 130 560 500 625 1.25 1.56 0.43 0.22 

H43C2 49.1 130 560 500 625 1.25 1.56 0.43 0.34 

H4500 49.1 130 560 500 1000 2.00 1.56 0 0 

H45A2 49.1 130 560 500 1000 2.00 1.56 0.43 0.12 

H45B2 49.1 130 560 500 1000 2.00 1.56 0.43 0.22 

H45C2 49.1 130 560 500 1000 2.00 1.56 0.43 0.34 

H41A0 50.7 120 560 500 250 0.50 1.29 0 0.13 

H41A1 50.7 120 560 500 250 0.50 1.29 0.23 0.13 

H41A2(2) 50.7 120 560 500 250 0.50 1.29 0.47 0.13 

H41A3 50.7 120 560 500 250 0.50 1.29 0.94 0.13 

H42A2(2) 50.7 120 560 500 425 0.85 1.29 0.47 0.13 

H42B2(2) 50.7 120 560 500 425 0.85 1.29 0.47 0.24 

H42C2(2) 50.7 120 560 500 425 0.85 1.29 0.47 0.37 

H43A0 50.7 120 560 500 625 1.25 1.29 0 0.13 

H43A1 50.7 120 560 500 625 1.25 1.29 0.23 0.13 

H43A2(2) 50.7 120 560 500 625 1.25 1.29 0.47 0.13 

H43A3 50.7 120 560 500 625 1.25 1.29 0.94 0.13 

H45A2(2) 50.7 120 560 500 1000 2.00 1.29 0.46 0.13 

U41A0 73.6 120 560 500 250 0.50 1.29 0 0.13 

U41A1 73.6 120 560 500 250 0.50 1.29 0.23 0.13 

U41A2 73.6 120 560 500 250 0.50 1.29 0.47 0.13 

U41A3 73.6 120 560 500 250 0.50 1.29 0.94 0.13 

U42A2 73.6 120 560 500 425 0.85 1.29 0.47 0.13 

U42B2 73.6 120 560 500 425 0.85 1.29 0.47 0.24 

U42C2 73.6 120 560 500 425 0.85 1.29 0.47 0.37 
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Appendix Table Continued 

Reference Specimen no fc’ (MPa) b (mm) h (mm) d (mm) a (mm) a/d ρ ρh ρv 

Oh and Shin 

(2001) 

U43A0 73.6 120 560 500 625 1.25 1.29 0 0.13 

U43A1 73.6 120 560 500 625 1.25 1.29 0.23 0.13 

U43A2 73.6 120 560 500 625 1.25 1.29 0.47 0.13 

U43A3 73.6 120 560 500 625 1.25 1.29 0.94 0.13 

U45A2 73.6 120 560 500 1000 2.00 1.29 0.47 0.13 

N33A2 23.7 130 560 500 625 1.25 1.56 0.43 0.12 

N43A2 23.7 130 560 500 625 1.25 1.56 0.43 0.12 

N53A2 23.7 130 560 500 625 1.25 1.56 0.43 0.12 

H31A2 49.1 130 560 500 250 0.50 1.56 0.43 0.12 

H32A2 49.1 130 560 500 425 0.85 1.56 0.43 0.12 

H33A2 49.1 130 560 500 625 1.25 1.56 0.43 0.12 

Oh and Shin 

(2001) 

H51A2 49.1 130 560 500 250 0.50 1.56 0.43 0.12 

H52A2 49.1 130 560 500 425 0.85 1.56 0.43 0.12 

H53A2 49.1 130 560 500 625 1.25 1.56 0.43 0.12 

Aguilar et 

al. (2002) 

ACI-I 32 305 915 791 915 1.16 1.27 0.35 0.31 

STM-I 32 305 915 718 915 1.27 1.4 0.13 0.31 

STM-H 28 305 915 801 915 1.14 1.25 0.06 0.31 

STM-M 28 305 915 801 915 1.14 1.25 0 0.1 

Quintero-

Febres et al. 

(2006) 

A1 22 150 460 370 525 1.42 2.79 0.1 0.28 

A2 22 150 460 370 525 1.42 2.79 0.1 0.28 

A3 22 150 460 370 525 1.42 2.79 0 0 

A4 22 150 460 370 525 1.42 2.79 0 0 

B1 32.4 150 460 375 334 0.89 2.04 0.1 0.23 

B2 32.4 150 460 375 334 0.89 2.04 0.1 0.23 

B3 32.4 150 460 375 304 0.81 2.04 0 0 

B4 32.4 150 460 375 304 0.81 2.04 0 0 

HA1 50.3 100 460 380 597 1.57 4.08 0.15 0.38 

HA3 50.3 100 460 380 543 1.43 4.08 0 0 

HB1 50.3 100 460 380 342 0.90 4.08 0.15 0.67 

HB3 50.3 100 460 380 312 0.82 4.08 0 0 

Tan et al. 

(1995) 

A-0.27-2.15 58.8 110 500 463 125 0.27 1.23 0 0.48 

A-0.27-3.23 51.6 110 500 463 125 0.27 1.23 0 0.48 

A-0.27-4.30 53.9 110 500 463 125 0.27 1.23 0 0.48 

A-0.27-5.38 57.3 110 500 463 125 0.27 1.23 0 0.48 

B-0.54-2.15 56 110 500 463 250 0.54 1.23 0 0.48 

B-0.54-3.23 45.7 110 500 463 250 0.54 1.23 0 0.48 

B-0.54-4.30 53.9 110 500 463 250 0.54 1.23 0 0.48 

B-0.54-5.38 53 110 500 463 250 0.54 1.23 0 0.48 

C-0.81-2.15 51.2 110 500 463 375 0.81 1.23 0 0.48 
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Appendix Table Continued 

Reference Specimen no fc’ (MPa) b (mm) h (mm) d (mm) a (mm) a/d ρ ρh ρv 

Tan et al. 

(1995) 

C-0.81-3.23 44 110 500 463 375 0.81 1.23 0 0.48 

D-1.08-2.15 48.2 110 500 463 500 1.08 1.23 0 0.48 

D-1.08-3.23 44.1 110 500 463 500 1.08 1.23 0 0.48 

D-1.08-4.30 46.8 110 500 463 500 1.08 1.23 0 0.48 

D-1.08-5.38 48 110 500 463 500 1.08 1.23 0 0.48 

E-1.62-3.23 50.6 110 500 463 750 1.62 1.23 0 0.48 

E-1.62-4.30 44.6 110 500 463 750 1.62 1.23 0 0.48 

E-1.62-5.38 45.3 110 500 463 750 1.62 1.23 0 0.48 

F-2.16-4.30 41.1 110 500 463 1000 2.16 1.23 0 0.48 

G-2.70-5.38 42.8 110 500 463 1250 2.70 1.23 0 0.48 

Anderson 

and Ramirez 

(1989) 

1 39 203 508 425 914 2.15 2.67 0 2.65 

2 41.4 203 508 425 914 2.15 2.67 0 2.65 

3 42.7 203 508 425 914 2.15 2.67 0 2.65 

4 27.5 203 508 425 914 2.15 2.67 0 2.65 

5 28.7 203 508 425 914 2.15 2.67 0 2.65 

6 29.4 203 508 425 914 2.15 2.67 0 2.65 

7 32.1 203 508 425 914 2.15 2.67 0 2.65 

8 33.9 203 508 425 914 2.15 2.67 0 2.65 

9 34.4 203 508 425 914 2.15 2.67 0 2.65 

10 31 203 508 425 914 2.15 2.67 0 2.65 

11 32.3 203 508 425 914 2.15 2.67 0 2.65 

12 33.2 203 508 425 914 2.15 2.67 0 2.65 
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