
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 57, No. 4 (2016) 603-616 

DOI: http://dx.doi.org/10.12989/sem.2016.57.4.603                                                                                       603 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Examination of non-homogeneity and lamination scheme 
effects on deflections and stresses 

of laminated composite plates 
 

Zihni Zerina, Ferruh Turan

 and Muhammed Fatih Başoğlub 

 
Department of Civil Engineering, Ondokuz Mayıs University, 55139 Atakum, Samsun, Turkey 

 
(Received June 7, 2015, Revised December 24, 2015, Accepted December 31, 2015) 

 
Abstract.  In this study, a convenient formulation for the bending of laminated composite plates that hold 

non-homogeneous properties is examined. The constitutive equations of first order shear deformation plate 

theory are obtained using Hamilton Principle. The effect of non-homogeneity, lamination schemes and 

aspect ratio on the deflections and stresses is analysed. It is understood from the study that economical and 

optimum designs for laminated composite plates can be achieved by changing lamination scheme and by 

considering non-homogeneity response of composite plate. 
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1. Introduction 
 

When historical development of the usage of material is investigated, usually three main stages 

stand out. First one is that the materials obtained from nature were used without changing their 

properties according to peoples usage aims. Second one, the materials were improved by utilizing 

some methods to facilitate human life. The last one, people have begun to produce composites 

using some different materials obtained from nature depending on the specific scientific and 

technological developments. This stage corresponds to the industrial revolution. After that time, 

usage of machinery has facilitated composite material production (Reddy 2004). 

Composite materials have been used commonly after developments of material technology for 

last century. While the usage of composite materials was limited and only in some specific fields 

in the past, nowadays they are used in huge number of diverse industries such as air craft industry, 

defense industry and especially structural strengthening applications. The usage of composite 

materials have been expanded significantly due to their light-weight, high stiffness and high 

strength compared to classical structural materials (Patel 2014, Sadoune et al. 2014). 

In literature there are numerous number of theories related to laminated composite analysis. 
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Equivalent Single-Layer (ESL) Theory is one of the most important of those and it is divided into 

two subgroups as Classical Laminated Plate Theory (CLPT) and Shear Deformation Theory 

(SDT). The classical laminated plate theory is an extension of the classical plate theory based on 

Kirchhoff plate theory which neglects the shear deformation through the thickness of laminate. 

Kinematic approaches for FSDT are an extension of the CLPT by including linear transverse 

shear deformation occured through plate thickness. However, the classical elasticity theory 

represents that transverse shear stress is distributed parabolically through the plate thickness. 

Because of that, FSDT requires a shear correction factor (K) to compensate the difference between 

this parabolic shear stress distribution and assumed constant stress distribution. The shear 

correction factor depends on geometrical parameters, boundary and loading conditions.  

Materials are generally considered as homogeneous and isotropic in classical elasticity theory 

because of simplicity in calculation. On the contrary, material anisotropic properties should be 

included to be able to obtain more accurate and sensitive analysis results. 

As is known, there are two material constants in an isotropic body, modulus of elasticity and 

poisson's ratio. However, number of elastic constants increase in an anisotropic body. In such a 

body should be analysed by utilizing anisotropic elasticity theory in order to determine stress and 

strain (Khoroshun et al. 1988, Kolpakov 1999, Lal 2007, Leknitskii and Fern 1963, Lomakin 

1976). 

The linear elasticity theory of non-homogeneous materials is based on Hooke Law, and 

material elastic properties differ functionally through the thickness of plate. This is more realistic 

in terms of mathematical and physical modeling. In this case, the physical characteristic of the 

material changes point to point continually and it becomes the continuous function of the point 

coordinates (Beena and Parvathy 2014, Delale and Erdogan 1983, Erdogan et al. 1991, Fares and 

Zenkour 1999, Hashin and Shtrikman 1962, He et al. 2013, He et al. 2012, Kant and Swaminathan 

2002, Khoroshun et al. 1988, Kolpakov 1999, Lal 2007, Leknitskii and Fern 1963, Lomakin 1976, 

Schmitz and Horst 2014, Sofiyev and Kuruoglu 2014, Sofiyev et al. 2008, Stürzenbecher and 

Hofstetter 2011, Zenkour and Fares 1999). 

Due to the fact that the analyses of non-homogeneous anisotropic structural element includes 

both in-plane and out-plane deformation effects, so the solution of non-homogeneous laminates 

becomes more complicated. 

A new simple first order shear deformation theory almost the same as CLPT was derived in 

terms of parameters such as equation of motion and boudary conditions (Thai and Choi 2013a). 

Lots of theories acceptable for homogeneous laminated plates were modified into the behaviours 

of buckling and free vibration of non-homogeneous rectangle plates. The effects of non-

homogeneity and thickness ratio on natural vibration and critical buckling load were determined. 

In this study, it is expressed that CLPT is not convenient method to investigate the structural 

behaviours of non-homogeneous plates (Fares and Zenkour 1999). Higher order shear 

deforrmation theory has been modified into a simple C
0
 finite element formulation, a method 

which shear correction factor is unnecessary anymore has been developed and assumes that 

transverse shear deformation was changed parabolically through the laminate thickness (Goswami 

2006). The non-homogeneity effects on free vibration of non-homogeneous isotropic circular 

plates of non-linear thickness were analysed. The non-homogeneity was related to variation of 

Young's modulus and density of plate material (Gupta et al. 2006). The non-homogeneity 

behaviours of non-homogeneous rectangle plates were pointed out by means of small parameter 

method, and the effects of non-homogeneity and material anisotropy on deflection and stress 
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values were evaluated (Zenkour and Fares 1999). The free vibration analysis of variable thickness 

non-homogeneous orthotropic rectangle plates and Winkler type elastic foundation was considered 

according to CLPT and it was assumed that elasticity modulus and density of non-homogeneous 

plate varied as exponential function (Lal 2007). It was supposed that elasticity modulus differed 

through the thickness as a power, sigmoid and exponential functions, and poisson ratio was 

constant through the thickness. The plate was analysed under different loading conditions using 

CLPT (Beena and Parvathy 2014).  

 
 
2. Mathematical model 
 

Consider a fiber-reinforced rectangular laminated plate of aspect ratio a/b and total thickness h 

consisted of N orthotropic non-homogeneous layers with orientation angle θ1, θ2,..., θN. The 

coordinate system is assumed that the middle plane of the plate overlaps xy plane, and z axis is 

perpendicular to the middle plane. The top surface of the plate (z=-h/2) is subjected to a transverse 

distribution load q(x,y). 

In FSDT, transverse normals do not remain perpendicular to the midplane after deformation, 

the third principle of Kirchhoff Hypothesis, is neglected and this results in including additional 

transverse shear strains in the theory. A point in an element on x, y and z coordinates in 

undeformed condition is transferred to the x+u, y+v and z+w coordinates after deformation occurs. 

Displacement components for FSDT can be expressed as (Pagano 1970, Pagano and Hatfield 

1972, Phan and Reddy 1985, Reddy 1984, Reddy 2004, Reissner 1975, Thai and Choi 2013a, 

2013b, Yin et al. 2014, Zenkour and Fares 1999) 
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where (u0, v0, w) are the displacement functions of the plate’s midplane, and ϕx and ϕy are the 

slopes in the xz and yz planes by reason of bending only.  

The strains related to the displacements (1) can be presented as (Thai and Choi 2013a, 2013b, 

Yin et al. 2014, Zenkour and Fares 1999)   
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The material elastic properties of the non-homogeneous laminates can be expressed as 
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where (k)E01 , (k)E02 , (k)G012 , (k)G013 and (k)G023 are the material elastic properties of homogeneous 

orthotropic laminates. N is total laminate number, μ is a parameter that represents the variation of 

elasticity modulus through the plate thickness (non-homogeneous coefficient) and f
(k)

(z) is the 

continuous functions which express the variation of the elastic properties (Lal 2007, Schmitz and 

Horst 2014, Sofiyev and Kuruoglu 2014, Sofiyev et al. 2008). 

In the first order shear deformation theory (FSDT), stress-strain expressions of kth non-

homogeneous laminate can be given as (Aydogdu 2009, Phan and Reddy 1985, Reddy 1984, 

Reddy 2004, Reissner 1975) 
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where ijQ  are the transformed material properties expressed as (Fares 1999, Reddy 2004, Zenkour 

and Fares 1999) 
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in which θ is the angle between global x-axis and local x-axis of each laminate. The material 

properties of the laminate )(k
ijQ are given by 
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where (k)E01  and (k)E02  are modulus of elasticity of homogeneous case in 1 and 2 material-principal 

directions, respectively; (k)G012 , (k)G013 and (k)G023 are shear modulus of homogeneous case in the 1-2,   

1-3 and 2-3 surfaces, respectively and vij are Poisson’s ratio. 

 

 

3. Equations of motion 
 

Hamilton principle is utilized to obtain equations of motion for FSDT 
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T
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where δU, δV, δK refer to virtual displacament energy, virtual work made by external load and 

virtual kinetic energy, respectively (Fares 1999, Pagano 1970, Phan and Reddy 1985, Reddy 2004, 

Zenkour and Fares 1999).  
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(9) 

When the Eq. (9) are substituted in Eq. (8) 
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where N, M and Q are the stress resultants defined by 
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Substituting Eq. (5) into Eq. (9) and subsequent results into Eq. (11), the stress resultants are 

obtained as (Phan and Reddy 1985, Reddy 1984, Reddy 2004, Reissner 1975, Thai and Choi 

2013a, 2013b, Yin et al. 2014) 
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where K is the shear correction factor and Aij, Bij, Dij are the extension (in-plane) stiffness, 

bending-extension coupling stiffness and bending stiffness of composite plate, respectively, 

defined by 
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4. Analitical solution 
 

The determination of deflections and stresses are the fundamental process in the design of 

many constructional components. Non-homogeneous function and non-homogeneous coefficients 

are used to analyse the non-homogeneous laminated plate.     

Boundary conditions of a simply supported rectangular plate are 
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The considered transverse distribution load can be expanded in a double Fourier series  
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where q0 represents the load at the center of the plate.  

Navier approach is considered for the analitical solution of the problems. So, it can be assumed 

that 
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where Wmn, Xmn and Ymn are the arbitrary coefficients. By substituting Eqs. (3), (12a) and (16) into 

the Eq. (9), the analytical solutions can be obtained from 
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where K is shear correction factor and it is determined as 5/6. 

 
 
5. Numerical results and discussion 
 

In this section, various numerical examples are analyzed and discussed to confirm the accuracy 

of the present study. For verification process, the obtained results are compared with the elasticity 

solutions of (Pagano 1970, Pagano and Hatfield 1972). For the sake of illustration, we discuss the 

improvement in the prediction of the present transverse displacements and stresses.  

The numerical results of stresses and deflections are achieved for symmetric and antisymmetric 

cross-ply non-homogeneous rectangular laminated composite plates that all four edges simply 

supported. It is assumed that the thickness and the material properties are the same for all 

laminates 
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It is understood from the results that, the deflections and stresses diminish with increasing the  

609



 

 

 

 

 

 

Zihni Zerin, Ferruh Turan and Muhammed Fatih Başoğlu 

Table 1 Non-dimensionalized deflections and stresses in four-layer cross-ply (0/90/90/0) square laminates 

under sinusoidal transverse loads (
*
Homogeneous) 

a/h Source  w  x  y  
xz  yz  xy  

4  

Pagano-Hatfield 1.9540 0.7200 0.6630 0.2920 0.2910 0.0467 

Zenkour-Fares 1.8937 0.6651 0.6322 0.2389 0.2064 0.0440 

Hom
*
. (present) 1.7101 0.4064 0.5410 0.3495 0.0785 0.0308 

μ=0.01 (present) 1.6917 0.4020 0.5361 0.3493 0.0784 0.0311 

10  

Pagano-Hatfield 0.7430 0.5590 0.4010 0.1960 0.3010 0.0275 

Zenkour-Fares 0.7147 0.5456 0.3888 0.1531 0.2640 0.0268 

Hom
*
. (present) 0.6632 0.4994 0.3647 0.4165 0.0517 0.0242 

μ=0.01 (present) 0.6560 0.4941 0.3614 0.4162 0.0516 0.0244 

20  

Pagano-Hatfield 0.5170 0.5430 0.3080 0.1560 0.3280 0.0230 

Zenkour-Fares 0.5060 0.5393 0.3043 0.1234 0.2825 0.0228 

Hom
*
. (present) 0.4916 0.5279 0.3108 0.4370 0.0435 0.0221 

μ=0.01 (present) 0.4863 0.5222 0.3079 0.4366 0.0434 0.0223 

100  

Pagano-Hatfield 0.4385 0.5390 0.2760 0.1410 0.3370 0.0216 

Zenkour-Fares 0.4343 0.5387 0.2708 0.1117 0.2897 0.0213 

Hom
*
. (present) 0.4341 0.5388 0.2901 0.4448 0.0403 0.0213 

μ=0.01 (present) 0.4295 0.5330 0.2875 0.4445 0.0403 0.0215 

 
Table 2 Non-dimensionalized deflections and stresses in rectangular (a=3b), three-layer cross-ply (0/90/0) 

laminates under sinusoidal transverse loads (
*
 Homogeneous) 

a/h Source  w  x  y  
xz  yz  xy  

4  

Pagano 2.8200 1.1000 0.1190 0.3870 0.0334 0.0281 

Zenkour-Fares 2.6411 1.0356 0.1028 0.0348 0.2724 0.0263 

Hom
*
. (present) 2.3631 0.6095 0.0054 0.4698 0.0123 0.0205 

μ=0.01 (present) 2.3378 0.6030 0.0054 0.4694 0.0123 0.0207 

10  

Pagano 0.9190 0.7250 0.0435 0.4200 0.0152 0.0123 

Zenkour-Fares 0.8622 0.6924 0.0398 0.0170 0.2859 0.0115 

Hom
*
. (present) 0.8035 0.6204 0.0354 0.4735 0.0064 0.0105 

μ=0.01 (present) 0.7949 0.6138 0.0351 0.4731 0.0064 0.0106 

20  

Pagano 0.6100 0.6500 0.0299 0.4340 0.0119 0.0093 

Zenkour-Fares 0.5937 0.6407 0.0289 0.0139 0.2880 0.0091 

Hom
*
. (present) 0.5789 0.6222 0.0403 0.4741 0.0054 0.0088 

μ=0.01 (present) 0.5727 0.6156 0.0400 0.4737 0.0054 0.0089 

100  

Pagano 0.5080 0.6240 0.0253 0.4390 0.0108 0.0083 

Zenkour-Fares 0.5077 0.6240 0.0253 0.0129 0.2886 0.0083 

Hom
*
. (present) 0.5069 0.6228 0.0419 0.4743 0.0051 0.0083 

μ=0.01 (present) 0.5015 0.6162 0.0416 0.4739 0.0051 0.0084 
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Fig. 1 Non-dimensional center deflection ( w ) versus side-to-thickness ratio of a (0/90/0) square 

plate under sinusoidal load for various values of μ 

 

 
Fig. 2 Effect of the aspect ratio on the center deflection ( w ) of a (0/90/0) plate under sinusoidal 

load for various values of μ (a/h=10) 

 

 

non-homogeneity coefficient. These results imply that the laminated composite plates become 

more rigid due to inclusion of non-homogeneous elastic properties.  

The results in Tables 1-2 demonstrate that the differences between sequences of elasticity 

solution and non-homogeneous effect on the composite plate are significant for all investigated 

side-to-thickness ratios (see Figs. 1, 3, 5 and 7). For a/h=4 (thick plates) these differences in 

deflection reach to about 13%. However, these differences become negligible when the thickness 

ratio a/h is greater than 4. Due to the decreasing thickness ratio, the FSDT provides acceptable 

results for the laminated composite plates.  

The results in Tables 1-2 show that the discrepancy between sequences of higher order shear  
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Fig. 3 Non-dimensional normal stress ( y ) versus side-to-thickness ratio of a (0/90/0) plate 

under sinusoidal load for various values of μ 

 

 

Fig. 4 Effect of the aspect ratio on the normal stress ( y ) of a (0/90/0) plate under sinusoidal 

load for various values of μ (a/h=10) 

 

 

deformation theory solution (Zenkour and Fares 1999) and the results of first order shear 

deformation theory solution (present) is getting smaller with increasing of a/h ratio. 

It is understood from Figs. 2, 4, 6 and 8 that the effect of non-homogeneity is substantial for 

rectangular plates due to the high aspect ratio, while it becomes less remarkable for symmetric and 

antisymmetric square plates.  

Fig. 4 shows that variation of y  versus aspect ratio a/b. It is to be noted that the deviation of 

y is minimum for aspect ratio of 3. Also, deviation of xy is maximum for square plate (Fig. 6). 
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Fig. 5 Non-dimensional tangential stress ( xy ) versus side-to-thickness ratio of a (0/90/0) square 

plate under sinusoidal load for various values of μ 

 

 

Fig. 6 Effect of the aspect ratio on the tangential stress ( xy ) of a (0/90/0) plate under sinusoidal 

load for various values of μ (a/h=10) 

 

 
Fig. 7 Non-dimensional center deflection ( w ) versus side-to-thickness ratio of a (0/90/90/0) 

square plate under sinusoidal load for various values of μ 
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Fig. 8 Effect of the aspect ratio on the center deflection ( w ) of a (0/90/90/0) plate under 

sinusoidal load for various values of μ (a/h=10) 

 

 
Fig. 9 Variation of non-dimensional normal stress ( x ) through the laminate thickness of a 

(0/90/90/0) square plate under sinusoidal load for various values of μ (a/h=4) 

 

 

Fig. 9 demonsrates that variation of x through the thickness of symmetric cross-ply square 

plate for a/h=4. It is seen in Fig. 9 that x is more pronounced for the outer layers of the plate.  

 
 
6. Conclusions 
 

An appropriate first order shear deformation theory for the non-homogeneous laminated 

composite plates is investigated and evaluated by comparing the results with the other previous 

studies available in literature. The obtained results imply that effect of non-homogeneity on 

deflections and stresses are not negligible. 

When the deflection and stress results are examined in detail, it can be observed that 0/90/90/0 
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lamination scheme is more effective than 0/90/0 lamination schemes in economic aspect of view 

for composite plate. The most significant point for the design of a laminated composite plate is that 

more appropriate and economical approach can be obtained by changing the orientation angle or 

increasing the number of layer. 
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