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Abstract. The aim of this work is the development of a 2D quadrilateral isoparametric finite element
model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the
core are modeled individually using, respectively, the first order shear deformation theory and the third-order
plate theory. The displacement continuity condition at the interfaces ‘face sheets-core’ is satisfied. The
assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The
developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF).
Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational
degrees and three translation components which are common for the all sandwich layers. The performance
of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite
sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results
obtained are compared with the analytical solutions and the numerical results obtained by other authors. The
results indicate that the proposed element model is promising in terms of the accuracy and the convergence
speed for both thin and thick plates.
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1. Introduction

Nowadays, composite sandwich structures gained considerable attention and became
increasingly important in various areas of technology such as civil construction, marine industry
and aerospace engineering due to their rigidity-and-resistance to weight ratios. However, there are
still questions on the complexity of the behavior of these structures. The effect of shear
deformation is quite significant which may lead to failure and becomes more complex in case of
sandwich construction, as the material property variation is very large between the core and face
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layers (Khandelwal et al. 2013). Moreover, an accurate estimation of stress components,
specifically the transverse shear stresses, plays an important role in reducing these failures (Kant
and Swaminathan 2000).

Several theories have been proposed to study the behavior of composite sandwich structures.
Three different approaches can be distinguish: (i) The Three-Dimensional (3D), elasticity
approach, (ii) The Equivalent Single Layer approach (ESL) and (iii) The Layerwise approach
(LW) and Zig-Zag, (ZZT), theories.

The 3D elasticity approach, give very accurate results, but few authors adopted it, the fact that,
high cost in computation time (Kant and Swaminathan 2002, Noor and Burton 1990, Pagano 1969,
1970, Srinivas and Rao 1971).

In the second approach, ESL approach, the heterogeneous multilayer plate is treated as a single
equivalent homogeneous layer. This approach is the most adopted by researchers and can be
divided into three major theories, namely: (1) the classical laminated plate theory (CLPT) which
does not include the effect of the transverse shear deformation (Kirchhoff 1850, Librescu 1975,
Ounis et al. 2014, Stavsky 1965, Whitney 1970); (2) the first order shear deformation theory
(FSDT) where the effect of the transverse shear deformation is considered, but taken constant
through the thickness (Kabir 1995, Reddy et al. 1987, Reissner 1975, Whitney and Pagano 1970);
and (3) the higher order shear deformation theories (HSDT), where a better representation of
transverse shear effect can be obtained (Aydogdu 2009, Grover et al. 2013, Kant 1982, Lo et al.
1977b,a, Manjunatha and Kant 1993, Nayak et al. 2003, Reddy 1984, Rezaiee-Pajand et al. 2012,
Sheikh and Chakrabarti 2003, Tu et al. 2010, Kant and Kommineni 1992).

However, the ESL approach is unable to predict accurately the local behavior (e.g.,
interlaminar stresses) of sandwich structures. For that reason, many researchers developed more
accurate theories such as zig-zag theories (Chakrabarti and Sheikh (2004, 2005), Kapuria and
Kulkarni 2007, Nemeth 2012, Pandit et al. 2008, 2010, Singh et al. 2011, Topdar et al. 2003,
Xiaohui et al. 2012, Sahoo and Singh 2013, Carrera 2003, Cho and Parmerter 1992, 1993, Di
Sciuval986, Murakami 1986, Khandelwal et al. 2013, Chalak et al. 2012, 2014) and layerwise
approach (Lee and Fan 1996, Linke et al. 2007, Mantari et al. 2012, Oskooei and Hansen 2000,
Plagianakos and Saravanos 2009, Ramesh et al. 2009, Ramtekkar et al. 2002, 2003, Reddy 1987,
Robbins et al. 2005, Spilker 1982, Wu and Hsu 1993, Wu and Lin 1993, Cetkovié¢ and Vuksanovi¢
2009, Kheirikhah et al. 2012, Maturi et al. 2014). This latter approach assume separate
displacement field expansions within each material layer, thus providing a kinematically correct
representation of the strain field in discrete laminated layer, and allowing accurate determination
of ply level stresses (Reddy 1993). Survey of various researches on approaches, theories and finite
elements models, can be found in references (Carrera 2002, Ha 1990, Khandan et al. 2012, Noor et
al. 1996, Reddy and Robbins 1994, Zhang and Yang 2009).

In the literature, many researchers have adopted the layerwise approach to the development of
finite elements, which are able to give a good description of sandwich structures. Wu and Lin
(1993) presented a two-dimensional mixed finite element based on higher order layerwise model
for the analysis of thick sandwich plates, where the displacement continuity at the interface is
satisfied as well as the interlaminar stresses. These authors proposed for each layer a cubic and
quadratic polynomial functions for in-plane and transverse displacements, respectively.
Afterwards, Lee and Fan (1996) describe a new model in which, the first order shear deformation
theory is used for the face sheets whereas the displacement at the core are expressed in terms of
the two face sheets displacements. In this model, the transverse shear strain varies linearly while
the transverse normal strain is constant through the thickness of the core. They used a nine-nodded
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isoparametric finite element to study the bending and vibration of sandwich plates. On the other
hand, Oskooei and Hansen (2000) developed a three-dimensional finite element based on a
layerwise model to analyze the sandwich plates with laminated face sheets. They used the first
order shear deformation theory for the face sheets, whereas for the core a cubic and quadratic,
functions for the in-plane and transverse, displacements, was adopted. In addition, an eighteen-
nodes three-dimensional brick mixed finite element with six DOF at each node based on layerwise
has been developed by Ramtekkar et al. (2002, 2003) for an accurate evaluation of transverse
stresses in laminated sandwich. The continuity of displacements as well as the transverse stresses
is satisfied. In the same context, Linke et al. (2007) developed a three-dimensional displacement
finite element containing eleven DOF at each node (each face sheet contains five DOF per node
and only one DOF in the core) for static and stability analysis of sandwich plates. The formulation
of this element is based on the layerwise approach, where the face sheets are represented as an
elements of classical plate theory and the core is represented by the third order shear deformation
theory. The in and out-of, plane displacements of the core assume a cubic and quadratic variation,
respectively. Recently, Mantari et al. (2012) presented a new layerwise model using a
trigonometric displacement field for in-plane displacements and constant out-of plane
displacements through the thickness. The authors used a C° four- node isoparametric quadrilateral
element in order to study the bending of thick sandwich panels.

In this work, a new layerwise finite element model has been developed for the bending analysis
of sandwich plates. The face sheets are modeled based on the first order shear deformation theory,
whereas the core is modeled using the third-order shear deformation plate theory. Several
examples have been examined, for symmetric/unsymmetric composite laminated, sandwich and
skew plates, in order to test the performance and the convergence of the developed element model.
Thus, the obtained numerical results can be compared with the analytical solutions and the
numerical results found in literature.

2. Mathematical model

Sandwich plate is a structure composed of three principal layers as shown in (Fig. 1): two face
sheets (top-bottom) of thicknesses (hy), (h,) respectively, and a central layer named core of
thickness (h;) which is thicker than the previous ones. Total thickness (h) of the plate is the sum of
these thicknesses. The plane (x,y) coordinate system coincides with mi-plane plate.

2.1 Kinematics

In the present layerwise model, the core is modeled using the third order shear deformation
plate theory (TSDT), whereas the first order shear deformation theory (FSDT) is adopted for the
two face sheets.

» Core

The displacement field for the core is written as a third-order Taylor series expansion of the in-
plane displacements in the thickness coordinate, and as a constant one for the transverse
displacement
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Fig. 1 Geometry and notations of a sandwich plate

c

U =Uy+ 2y +2Z°n5 + 238

Vo =Vo+Zys + 275 + 2° (1)
W, =W,

where ug, Vo and wy are respectively, in-plane and transverse displacement components at the mid-

plane of the sandwich plate. ¢, t//§ represent normal rotations about the x and y axis

respectively. »¢, 77, ¢¢ and ¢ are higher order terms.

* Top face sheet
The compatibility conditions as well as the displacement continuity at the interface (top face

sheet-core-bottom face sheet), leads to the following improved displacement fields (Fig. 2)
h h
= _c 7Z ——< |yt
ut uc ( 2 j—‘r( 2 jl/lx

A :vc(h—gj{z —h—g)l//; @)

where y/; and l//; are the rotations of the top face-sheet cross section about the y and x axis,

respectively.
with

4 8 3)
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Fig. 2 Kinematics of QSFT52 model

The substitution of Eq. (3) in Eqg. (2) led finally to the following expressions

h ¢ (h2) o () .. h.
ut :uo +(ECJI//X +[7Jnx +[EJ§X +(Z _?jl/li

e (R e (1) h, @)
e (L) (B -3

W, =W,

» Bottom face sheet
According to Fig. 2, the displacement field of the bottom face sheet can be written as

h h
U =u, | ——= [+| Z+-= |y’
b c( Zj ( 2]‘//x
h h 5)
V=V, | ——== |+] Z+ = |p?
; ( 2) ( 2}“

W, =W,

where y?and l,//;’ are the rotations of the bottom face-sheet cross section about the y and x axis

respectively
where

(6)
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Substituting of Eq. (6) in Eqg. (5), the displacement field of the bottom face sheet is given by
h h? h? h
U =U. —| = b+ = |p° =] = |£°+| Z+-C |yP
b 0 (Zjl/lx (4]77x [BJé’x ( Z\Jl//x

ho) o« (h) . [h) .. h, ()
Vb:vO_(EJWVJ{Ij”y_(E];V+(Z+?jl//§

2.1.1 Strain-displacement relationships

The strain-displacement relationships derived from the displacement model of Egs. (1), (4) and
(7) are given as follows:

For the core layer,

c

c c
c _%+Zawx+zzaﬂx+zsa§x
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For the top face sheet
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For the bottom face sheet
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2.2 Constitutive relationships

In this work, the two face sheets (top and bottom) are considered as laminated composite.

Hence, the stress-strain relationship of the k™ layer in the global coordinate

system is given as

f=top, bottom (11)

(12)

o! Q Q 0 0 Qf (o
o, Qi Q 0 0 Qf |g
Tt =0 0 Q. Qs O \7
f% 0 0 Q Q 0 7%

Tl |Qy Qe 0 0 Qulyy U

The core is considered as an orthotropic composite material and the stress-strain relationship is
given by

Lol 00 Qe
oyl 1Q Q. 0 0 Qlle,
Ty (= 0 0 Q_44 Q_45 0 |17y
2 0 0 Q Q. 0|
) [Qy Q. 0 0 Qg U

The stress resultants of the core are calculated
thickness direction of laminated plate as follows

by integration of the stresses through the
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"o
X X X E X
N, M, N, M, :J. o, (1,2,22,23)dz (13a)
_ — h
Xy Xy ny Mxy 2 fXY

{sz }(1 z,7° ) dz (13b)

where N, M, N and M , denote membrane, bending moment, higher order membrane and higher

order moment resultants respectively. V is the shear resultant; S and R are the higher order shear
resultant.

By introducing the constitutive equation in the expressions of the resultant stress, (13a), (13b)
the generalized constitutive equations become
[A] [B] [D] [E]][e@
B] [D] [E] [F @
_|[B1 o] B [P (142)
[O] [E] [F] [Gl||x
[E] [F]1 [G] [H1]{x®

Sz =z

V] |[A] [B°] [D°1][yO
s+=|[B°] [D°] [E°T{ & (14b)
R| |[D°1 [E°] [F]||+?

where N=(N, N, N,) M=(M, M, M), N=(N, N N,

M=(M, M, M) V(v v,)s=(s. s,) R=(R R)

The elements of the reduced stiffness matrices of plate ([A;], [Bj], etc.) are defined by

—— ‘03'

(AIJ! Bij! Dij1 Eij’ Fij’Gij’ HIJ) = 6” (1, Z, ZZ, 23, 24, Zs, Ze)dZ (l, J :1,2’6)

ol

(A)J(’ Bi)j(i Di)j(’ Ei)j(’ Fijx) =

QL z,2%,2%z%dz (i, j=45) (15)

;!—.N ‘03'

|

According to the FSDT, the elements of reduced stiffness matrices of the face sheets are
defined by

* Top face sheet



Development of a 2D isoparametric finite element model based on the layerwise approach... 481

hy

f+ht

nlayer <"
(A,BL, DY) = j QL z,2%)dz= Z:j QL z,2%)dz (ij=126)
k=1 pk
2
hC
- ?m' o nlayer hk*
®)- o a-"STop e s (16)
P k=1 pk
2
« Bottom face sheet
hc
nlayer h ™

(A}, B, Df) = j QM z,2%)dz= > fQ.fk)(lzz)dZ (i,j=1.2,6)

[ h] k=1
+
2

_he
Iayer hk*

(A)) = J Qj dz= JQ.““ dz  (ij=45) (17)
k=1 hk

{5

3. New finite element formulation

The proposed finite element, named QSFT52 (Quadrilateral Sandwich First Third with 52-
DOF), is a four-nodded quadrilateral sandwich plate element having thirteen DOF per node. Each
node contains: two rotational DOF for each face sheet, six rotational DOF for the core, while the
three translations DOF are common for sandwich layers (Fig. 3).

The displacements vectors ¢ at any point of coordinates (x, y) of the plate are given by

=iNAKw@ (18)

where & ={u; v, W, wy, wy; 5 15 C S Wi Wy W w'y’i}T is displacement vector corresponding to
node i (i=1,2,3,4), and N; are the interpolation functions (Zienkiewicz andTaylor 1977) associated
with the node i (Niz[Nl, N2, Ng, N4])
The field variables may be expressed as follows
a. at mid- plate'

4 4

Uy (%, Y) ZN X¥) Uy 5 Vo(xy)=D N (xy) Vg 5 wixy)=D N/(xy)w, (19)

i=1l i=1
b. core:

ve(Y) =D Ni(xylws, wiay)=> Ni(x yls

i=1 i=1
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Fig. 3 Geometry and corresponding degrees of freedom of the QSFT52 element

(% y)=g Ny v, g (x, ”:.Z:' N; (%, Y

£ y) = Z Ni( Y5, ¢y y) = Ni (%, y)¢s, (20)
c. top face sheet: 7 7

wi(x,y)=g N Y, wy(xy) = Z Ni(% Yy, (21)
d. bottom face sheet: _ _

l//i’(x,y)=li‘, Ni (% y W w';(x,y)=2 N (%, Y, (22)

For the core, the generalized strain vector (&) of Eq. (8) at any point of coordinates (x,y) can be
expressed in terms of nodal displacements as follows
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(6] (s},

(82975}, (23)

(O =[] (o}, {2) =[B2]" (6} ()
) =[897 6} 1) =[8]7 (8}, {2}
0 =[8297"(a),,

where the matrices [Bﬁ")]gxsz ,[BS)LSZ, [Bf)]sxsz , [Bf)]gxsz, [ij)]Mz , [Bz)]m and

[ij) ]3 ., are related the strains to nodal displacements.

For the top face sheet, the generalized strain—displacement matrices given by

o f =[BOTo k. i | =[BT ok b =[BOT 461}, (24)

In the same way, the generalized strain—displacement matrices for the bottom face sheet are

e =BOTe L e =BT L. bef =[BOT o), (25)

Details of B® for each layer of the sandwich plate are highlighted in Appendix A.
3.1 Introduction of assumed natural strains method

In general, a phenomenon appears in bending of thin plates known as transverse shear locking.
In order to remedy this problem, Dvorkin and Bathe (1984) and Huang and Hinton (1984), have
proposed the so-called ‘Assumed Natural Strains method as a solution (for more in detail see
(Nayak et al. 2002, Lee 2004, Lee and Kim 2013, Nayak et al. 2003). In this work, we have used
this technique at the face sheets to avoid an eventual shear locking. Therefore, assumed strains are
derived by using the interpolation functions based on Lagrangian polynomial and the strain values
at the sampling points where the locking does not exist (Lee and Kim 2013).

The sampling points (Lee 2004) used for natural assumed transverse shear strains of the face

sheets v/ and vi® (f=top, bottom) are presented in Fig. 4

1i® —(02),:(0,-1),, v{¥ —(10),:(-10), (26)

From Eq (26) the assumed natural strains are defined as follows
2 2
=Y R Y =Y Q8T 27)
i=1 i=1

Where ¢ denotes the position of the sampling point as shown in Fig. 4 and the interpolation
functions P, Q are employed as follows
1 1
P1:E(1+77), PZ 25(1—77)
. (28)

1
Q1=E(1+§), szz(l_f)

The transverse shear strain-displacement relationship produced by the assumed natural strain
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Fig. 4 The position of sampling point: (left) /(% and (right) Y;Z(A)

method can be written in the following matrix form
—t 4 —t(A)
{75} =Z[Bs ]{ffi}
i=1
—b 4 —b(A) (29)
{75} =Z[Bs J{@}
i=1

—t(A —b(A
where Bts( )and B:( ) are the assumed natural strain-displacement relationship matrix of top and
bottom faces sheet, respectively.

3.2 Stiffness matrix calculation:

To establish the relationship between the forces and displacements, the principle of virtual
work is used.

STI=8U —W =0 (30)

Herein U and W denote the strain energy of the sandwich and the work done by the external
forces respectively.
The virtual work done by a distributed transverse static load of intensity f(x,y)

a/vzﬂf(x, y) SwdA (31)
The first variation of the potential energy of the sandwich plate is the summation of

contribution from the two face sheets and from the core as

h

C

2
C C C C C C C C C C
I (0O + 008y, + 0y 06 + 0,08, +0,08,)dV,
“h
2

éUzIAc

Cc
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—+h(

j j (0486 + 0,06l + 0,56, + 0%, 86%, + 0,68, )aV,

+ Lb j (08,58 + 00,56, + 00,68, + 02,568, +05,565,)dV, (32)

The substitution of the expressions of the stress resultants (Eq. (14)) in the virtual work
expression of the core (Eq. (32)), leads to

I, - {({55«» LA} o) [B1{2®) + {59 [D] () + {5} [E){ )

o} 1B} + o) DI+ o} TN+ o} TR}

(o} o)+ {or ) [EN 2} + {0} (127 + {7} e

(o} [EN 4o} TFI (o} [o)x o) [HD{x")

(o} [A 1} +{or?} T8 J{a} +{on”f [0 J{47) (33)
(o[BI} + {o o I} o} [ ](27)

o} [0 {0+ {oe?} [ [+ {on”} [F 7] )dA—IAfffwdA=0

According to Eq. (23), the equilibrium equation can be expressed as follows
(KO0} ={1) @)
where { £} and [K{ ] are the load vector, the element stiffness matrix, of the core respectively.
The elements stiffness matrix is computed using the Gauss numerical integration.

[K(C)]ZZ‘I([&@T [A][BS’)}[B,E(’)]T [B][B}(tl)}{Bﬁo)T o] 8% |

+

+

+30y

+
)

+

8 ] [L][B® ] (35)
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Table 1 Boundary conditions used in this study

Boundary conditions Abbreviations Restrained edges
Wo =y =5 =C5 =y =y, = atX=i%
Simply supported SSSS
c c c t b b
Wo =Yy =1y :é/y SYy=yy = at y:iE
Wy =y, =y, =1, =1, =0
Clamped CcccC

c b b
$i= =y, =y, =y, =y, =0

The same steps are followed to elaborate the stiffness matrix of the two face sheets, therefore:
* Top face sheet:

[WW=E£Q%TD“K%}{%Tﬁml&}{ﬁfhmlﬁ]

(36)
o[8; ] [0 ][8: J+[B] [A”] 1]
[K“”};{ ([éﬁ]T[A(b>][Ba]+[Bz]T[B‘b’][e*:HB*:T[B“”][B:;] -

8] [0 et ]+ [o: T [A"][&¢] s
Finally, the total stiffness matrix of the element is given by

[Ke = KO ]+ [KO ]+ [K®] (38)

4. Numerical results and discussions

In order to verify the performance of the developed element to convergence, stability and
accuracy, different examples are studied considering symmetric/unsymmetrical composite
sandwich plates with different loadings, geometry and boundary conditions. The obtained results
are compared with the analytical solution given by Pagano (1970) and others finite elements
numerical results found in literature.

Table 1 shows the boundary conditions, for which the numerical results have been obtained,
where CCCC and SSSS respectively indicate: fully clamped and fully simply supported. The
following non-dimensional quantities used in the present analysis are defined as:

Non-dimensional in-plane stresses

hZ
(ox.0y.0) = ?(Ux 0,.0,)
0

Non-dimensional transverse shear stresses
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(sz,Uyz)ZE(O'XZ,UyZ)

Non-dimensional transverse displacement
— (100 E2h3WJ
W=| ——
aqo

Example 1. Simply supported cross-ply laminate (0/90/0) under bi-sinusoidal loading

A simply supported three-layer square laminated plate of equal thickness, subjected to a
sinusoidal loading in the two directions is considered. The mechanical characteristics of the plate
are presented in Table 2. The convergence of the non-dimensional results of transverse

Table 2 Material properties for laminated plates and Sandwich

Elastic properties

Location = E, Gy Gis Gos V19=Vyq
Composite plates All layer 25E E 0.5E 0.5E 0.2E 0.25
Sandwich plates Core 0.04E 0.04E 0.016E 0.06E 0.06E 0.25
Face 25E E 0.5E 0.5E 0.2E 0.25

Table 3 Central deflection (v_v) at the important points of a simply supported square laminate (0/90/0) under
sinusoidal load

Thickness ratio h/a

References
0.25 0.1 0.05

Present element (4x4) QSFT52 2.0564 0.6735 0.4096
Present element (6x6) QSFT52 2.0334 0.6921 0.4562
Present element (8x8) QSFT52 2.0253 0.6989 0.4751
Present element (10x10) QSFT52 2.0216 0.7021 0.4844
Present element (12x12) QSFT52 2.0195 0.7038 0.4889
Present element (14x14) QSFT52 2.0024 0.7049 0.4921
Present element (16x16) QSFT52 2.0017 0.7056 0.4942
Reddy (1984) HSDT 1.9220 0.7130 0.5041
Pagano (1970) Elasticity solution 2.0059 0.7405 0.5164

Sheikh and Chakrabarti (2003) HSDT 1.9230 0.7140 -
Ramesh et al. (2009) LW 1.9927 0.7535 0.5166
Ramesh et al. (2009) TSDT 1.9136 0.7178 0.5060
Chakrabarti and Sheikh (2004) HOZT 1.9502 0.7522 0.5066

Kulkarni and Kapuria (2007) RTOST 1.9248 0.7136 -
Kant and Swaminathan (2002) HSDT 1.8948 0.7151 0.5053
Liou and Sun (1987) Hybrid FEM 2.0200 0.7546 0.5170

Khandelwal et al. (2013) HOZT 2.0151 0.7480 -
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displacement with different thickness ratios (h/a=0.1, 0.2, and 0.25) and different mesh sizes (4x4,
6x6, 8x8, 10x10, 12x12, 14x14 and 16x16) are shown in Table 3. The obtained results are very
satisfactory especially in the case of thick plates (h/a=0.25), where the results are in excellent
agreement with the results based on 3-D elasticity solution provided by Pagano (1970) or other
models in the literature (Chakrabarti and Sheikh 2004, Kant and Swaminathan 2002, Liou and Sun
1987, Ramesh et al. 2009, Reddy 1984, Sheikh and Chakrabarti 2003, Kulkarni and Kapuria
2007).

Example 2. Symmetric square sandwich plate (0/c/0) subjected to a sinusoidal load

A simply supported square sandwich plate subjected to sinusoidal load (q(x,y)=qosin(zy/a)
sin(zy/b)) is considered. The material properties of the sandwich are presented in Table 2. The
thickness of each face sheet is 0.1h and the thickness of the core is 0.8h respectively, where h is
the total thickness of the plate. The non-dimensional results of transverse displacement, in plane
normal stresses and transverse shear stress for different mesh sizes and thickness ratios are
displayed on Table 4. Distributions of non-dimensional in-plane stresses through the thickness are
plotted with the 3D elasticity solution given by Pagano (1970) in Figs. 5 and 6 for h/a ratio equal
to 0.25 and 0.1. It was found that the present results especially for the transverse shear stresses,
are in excellent agreement with those obtained by the elasticity solution given by Pagano (1970)
and other finite elements models based on different theories (Chalak et al. 2012, Kant and
Kommineni 1992, Kant and Swaminathan 2002, Khandelwal et al. 2013, Nayak et al. 2003, Tu et
al. 2010, Wu and Lin 1993, Pandit et al. 2008, Ramtekkar et al. 2003, Singh et al. 2011), which
shows the performances and convergence of the proposed formulation.
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Fig. 5 Variation of non-dimensional (a) in-plane stress (&,,) and (b) in-plane stress (5W), through the
thickness of simply suported square sandwich plate under sinusoidal transverse load (a/h=10)
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Fig. 6 Variation of non-dimensional (a) in-plane stress (&,,), (b) in-plane stress (5yy) and (c) in-plane

shear stress (5xy), through the thickness of simply suported square sandwich plate under sinusoidal

transverse load (a/h=4)
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Example 3. Symmetric square sandwich plate (0/c/0) subjected to uniformly

distributed load

This example has been studied by Khatua and Cheung (1973), Topdar et al. (2003) and
Chakrabarti and Sheikh (2004). The sandwich plate is defined by the dimensions (a=b=254 mm)
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and a thickness h=20.4724 mm. Each face sheet has a thickness of 0.7112 mm. In the first case,
the plate is fully simply supported (SSSS) and subjected to a uniformly distributed load F=0.00688
N/mm?.

The material properties are:

Face layers: E;1=E»=68.8 GPa, G13=G»3=27.52 GPa and v13=0.3

Core: E11:E22:6.88x 10_12 GPa, 613=623:0.2064 GPa and V13:0.3

In the second case, the plate is fully clamped (CCCC). The mechanical properties are the same
as in case one, except for the transverse shear rigidity of the core G;3=G»;=0.3131 GPa. The results
of the transverse displacement, in-plane normal stress and transverse shear stress with different
mesh sizes of (8x8, 12x12 and 16x16) are reported in Table 5. The results obtained by the present
element are in excellent agreement with those obtained by the analytical solution given by Azar
(1968) and the numerical results given by (Chakrabarti and Sheikh 2004, Khatua and Cheung
1973, Topdar et al. 2003).

Example 4. All edges clamped square sandwich plate (0/c/0) under uniformly

distributed load

In this test, the same geometrical and mechanical properties as in example 2 have been adopted.
The plates are fully clamped (CCCC) and subjected to a uniformly distributed load. The non-
dimensional results of transverse displacement, in-plane normal stresses at the top and the bottom
faces sheets and the transverse shear stress at the important points for different thickness ratios
(h/a=0.01, 0.02, 0.05, 0.1 and 0.25) are presented in Table 6 using mesh size of (16x16). The
variation of the non-dimensional deflection (w) with different thickness ratios has been plotted as
shown in Fig. 7. It was seen that the values of non-dimensional transverse displacement (w)

—a— Present-QSFTS2
- ©-- FEM-Q9-HOZT (Pandit et al. 2008)

Non-dimensional deflexion ()
=
1

0 - &

J : T
0 20 40 60 80 100
Aspect ratio (a/h)

Fig. 7 Effect of aspect ratio (a/h) on the non-dimensional transverse displacement (w) of square
clamped sandwich plates (0/c/0) under sinusoidal loading
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Fig. 8 A skew plate with mesh arrangement (mesh size: mxn)

decreases when increasing (h/a) ratio. This is due to the effect of the thickness of the core (0.8h)
which has an important role in the sandwich plates because; it considerably affects the flexural
rigidity. The numerical results of the present element are very close with the finite element results
obtained by Pandit et al. (2008) using a nine-nodded isoparametric element with eleven degrees of
freedom (11 DOF) per node, based on a higher order Zig-Zag theory. It can be noticed that the
present model is applicable in both thick and thin sandwich plates.

Example 5. Square sandwich plate (6/ 6+90/C/ 6/ 6+90) with an angle-ply laminated

stiff sheets at the two faces subjected to uniformly distributed load

This example has been chosen to test the performance of our element (QSFT52) in sandwich
plates with laminated face sheets. A square sandwich plates with an angle-ply laminated stiff
sheets (6/ 6+90/C/ 6/ 6+90) at the two faces and subjected to a uniformly distributed load is
considered. The thickness of each laminate layer is0.05h , whereas the thickness of the core is0.8h.
The mechanical properties of materials used are listed in Table 2. The non-dimensional results of
transverse displacement, in-plane stresses and transverse shear stresses obtained in the present
analysis for three orientation angles on the face sheets (0°, 30° and 45°) and three thickness ratios
(h/a=0.05, 0.1 and 0.2) are presented in Table 7. The obtained results (for a mesh size of 12x12)
are compared with those obtained by Chakrabarti and Sheikh (2005) and Khandelwal et al. (2013).
The obtained results present a good performance and also confirm the robustness of the QSFT52
element.

Example 6. Simply supported cross-ply (0/90/0) skew laminated plate under uniformly

distributed load

In the present study, a three-layered skew laminated plate (Fig. 8) of equal thickness, subjected
to uniformly distributed load is considered. The mechanical characteristics of the plate are listed in
Table 2. In this example, three skew angles (30°, 45° and 60°) with two thickness ratios (h/a=0.1
and 0.2) have been considered. The results of the normalized transverse displacement at the center



Table 4 Normalized maximum deflection (w) and stresses (&, ,5

w1 Oxy10x:0y;) &t the important points of a simple supported simply
supported square sandwich plate (0/c/0) under sinusoidal loading
h/a Reference w (a/2, b/2,0) &, (@/2, b/2, h12) 7, (a/2, b2, h2) 7 (0,b/2,0) &,(a/2,0,0) &, (0,0,h/2)
Present element (8x8) QSFT52 23.4200 2.2463 0.3931 0.1766 0.1363 0.2283
Present element (10x10) QSFT52 23.3493 2.2886 0.4014 0.1803 0.1388 0.2330
Present element (12x12) QSFT52 23.3106 2.3119 0.4060 0.1823 0.1401 0.2356
05 Present element (14x14) QSFT52 23.2875 2.3260 0.4088 0.1835 0.1409 0.2372
"~ Present element (16x16) QSFT52 23.2725 2.3351 0.4106 0.1843 0.1414 0.2382
Pagano (1970) Elasticity 21.6531 2.6530 0.3920 0.1850 0.1400 0.2340
Ramtekkar et al. (2003) LWT (FE-3D) - 2.6840 0.3960 0.1860 0.1420 0.2360
Kant and Kommineni (1992) TSDT 21.3707 2.7985 - - - 0.2371
Present element (8x8) QSFT52 7.7651 1.3281 0.2399 0.2255 0.1038 0.1386
Present element (10x10) QSFT52 7.7526 1.3563 0.2452 0.2303 0.1052 0.1417
Present element (12x12) QSFT52 7.7457 1.3719 0.2481 0.2330 0.1059 0.1434
Present element (14x14) QSFT52 7.7416 1.3813 0.2499 0.2346 0.1064 0.1444
Present element (16x16) QSFT52 7.7388 1.3875 0.2511 0.2357 0.1067 0.1451
Pagano (1970) Elasticity 7.5962 1.5160 0.2595 0.2390 0.1072 0.1440
Pandit et al. (2008) HOZT 7.6552 1.5218 0.2506 0.2520 0.1156 0.1468
Tu et al. (2010) TSDT 7.5610 1.5518 0.2483 0.2447 0.1184 0.1459
0.25 Singh et al. (2011) HOZT 7.8556 1.5480 - 0.2611 - 0.1671
=% Khandelwal et al. (2013) HOZT 7.5873 1.5316 0.2674 0.2538 0.1192 -
Chalak et al. (2012) HOZT 7.5822 1.5306 0.2581 0.2436 0.1147 0.1445
Ramtekkar et al. (2003) LWT (FE-3D) - 1.5700 0.2600 0.2400 0.1080 0.1450
Wu and Lin (1993) LWT - 1.5480 0.2413 0.2497 - 0.1339
Pandya and Kant (1988) HSDT 0.6947 1.5230 0.2414 0.2750 - 0.1419
Manjunatha and Kant (1993) HOST 7.1596 - - 0.2370 0.1040 -
Kant and Kommineni (1992) TSDT 7.1502 1.4989 - - - 0.1428
Kant and Swaminathan HSDT 7.0551 1.5137 0.2648 - - 0.1379

(2002)




Table 4 Continued

h/a Reference w(a/2, b/2,0) 7, (a/2,b/2,hi2) 5, (a/2,b/2,h/2) 5 (0, b/2,0) Gy (a/2,0,0) Ty (0,0, h/2)
Present element (8x8) QSFT52 5.5650 1.2038 0.1972 0.2424 0.0893 0.1157
Present element (10x10) QSFT52 5.5600 1.2311 0.2017 0.2476 0.0903 0.1183
Present element (12x12) QSFT52 5.5571 1.2461 0.2042 0.2505 0.0908 0.1197

0.2 Present element (14x14) QSFT52 5.5554 1.2552 0.2057 0.2523 0.0911 0.1206
Present element (16x16) QSFT52 5.5554 1.2612 0.2067 0.2535 0.0913 0.1212
Pagano (1970) Elasticity 5.4746 1.3704 0.2094 0.2569 0.0918 -
Khandelwal et al. (2013) HOZT 5.4464 1.3617 0.2216 0.2530 0.1025 -
Present element (8x8) QSFT52 2.1964 1.0484 0.1020 0.2815 0.0538 0.0662
Present (10x10) QSFT52 2.2036 1.0777 0.1047 0.2880 0.0534 0.0680
Present element (12x12) QSFT52 2.2075 1.0939 0.1062 0.2916 0.0532 0.0690
Present element (14x14) QSFT52 2.2099 1.1038 0.1071 0.2938 0.0531 0.0696
Present element (16x16) QSFT52 2.2115 1.1103 0.1077 0.2952 0.0530 0.0699
Pagano (1970) Elasticity 2.2004 1.1531 0.1104 0.3000 0.0530 0.0707
Pandit et al. (2008) HOZT 2.2002 1.1483 0.1086 0.3158 0.0570 0.0709
Tuetal. (2010) TSDT 2.2027 1.1466 0.1105 0.3181 0.0532 0.0715

01 Singh et al. (2011) HOZT 2.2389 1.1594 - 0.3237 - 0.0759

"~ Khandelwal et al. (2013) HOZT 2.1786 1.1539 0.1184 0.3185 0.0598 -
Chalak et al. (2012) HOZT 2.1775 1.1528 0.1143 0.3058 0.0575 0.0705
Ramtekkar et al. (2003) LWT (FE-3D) - 1.1590 0.1110 0.3030 0.0550 0.0720
Wu and Lin (1993) LWT - 1.2100 0.1115 0.3240 - 0.0713
Pandya and Kant (1988) HSDT 0.2023 1.1660 0.1052 0.3400 - 0.0692
Kant and Kommineni (1992) TSDT 2.0864 1.1657 - - - 0.0692
Kant and Swaminathan (2002) HSDT 2.0798 1.1523 0.1100 - - 0.0685
Nayak et al. (2003) HSDT (Q4) - 1.1410 0.1034 0.3465 0.0574 0.0685

Nayak et al. (2003) HSDT (Q9) - 1.1510 0.1043 0.3506 0.0580 0.0689




Table 4 Continued

h/a Reference w(a/2, b/2,0) &, (a/2, bl2, h/2) 5,,(a/2, bi2, h/2) 5 (0,b/2,0) 7,(a/2,0,0) 7, (0,0, h/2)
Present element (8x8) QSFT52 1.1766 0.9895 0.0627 0.2944 0.0430 0.0459
Present element (10x10) QSFT52 1.1953 1.0292 0.0652 0.3025 0.0407 0.0477
Present element (12x12) QSFT52 1.2058 1.0516 0.0666 0.3069 0.0393 0.0487
Present element (14x14) QSFT52 1.2122 1.0653 0.0674 0.3097 0.0385 0.0493
Present element (16x16) QSFT52 1.2164 1.0743 0.0680 0.3115 0.0379 0.0497
Pagano (1970) Elasticity 1.2264 1.1100 0.0700 0.3174 0.0361 0.0511

0.05 Pandit et al. (2008) HOZT 1.2254 1.1055 0.0694 0.3342 0.0392 0.0509

"% Singh et al. (2011) HOZT 1.2424 1.1161 - 0.3429 - 0.0536
Khandelwal et al. (2013) HOZT 1.2128 1.1113 0.0769 0.3374 0.0415 -

Chalak et al. (2012) HOZT 1.2121 1.1103 0.0742 0.3272 0.0399 0.0508

Ramtekkar et al. (2003) LWT (FE-3D) - 1.1150 0.0700 0.3170 0.0360 0.0510

Wu and Lin (1993) LWT - 1.1730 0.0724 0.3530 - 0.0525

Kant and Kommineni (1992) TSDT 1.1947 1.1246 - - - 0.0506

Kant and Swaminathan (2002) HSDT 1.1933 1.1110 0.0705 - - 0.0504

Present element (8x8) QSFT52 0.7347 0.8099 0.0419 0.2801 0.0646 0.0329

Present element (10x10) QSFT52 0.7962 0.8979 0.0465 0.2937 0.0547 0.0365

Present element (12x12) QSFT52 0.8341 0.9523 0.0493 0.3019 0.0483 0.0387

Present element (14x14) QSFT52 0.8588 0.9877 0.0511 0.3072 0.0441 0.0401

0.02 Present element (16x16) QSFT52 0.8756 1.0119 0.0524 0.3107 0.0412 0.0411

Pagano (1970) Elasticity 0.9348 1.0990 0.0569 0.3230 0.0306 0.0446

Pandit et al. (2008) HOZT 0.9341 1.0948 0.0566 0.3403 0.0333 0.0445

Singh et al. (2011) HOZT 0.9458 1.1050 0.3617 0.0465

Chalak et al. (2012) HOZT 0.9248 1.0997 0.0611 0.3300 0.0321 0.0443




Table 5 Central deflection (\TV) and stresses (0., gy, 0x2, Gyzs Oxy) at the important points of a simple supported square sandwich plate under
uniformly distributed load

h/a Reference w100 (mm)oy(@/2, b2, hi2) oy(al2, b2, h/2) 0(0, b/2,0) oy,(a/2,0,0) o4(0,0, h/2)
Present element (8x8) QSFT52  1.8679 1.5146 1.5146 0.0244 0.0244 -0.9700
Present element (12x12) QSFT52  1.8745 1.5588 1.5588 0.0262 0.0262 -1.0396
Present element (16x16) QSFT52  1.8767 1.5742 1.5742 0.0270 0.0270 -1.0704

Cas | Khatua and Cheung (1973) - 1.8697 - - - - -
Azar (1968) Analytical  1.8780 - - - - -
Chakrabarti and Sheikh (2004) RHSDT  1.8750 1.5817 1.5817 0.0284 - -
Chakrabarti and Sheikh (2004) RFSDT 1.8682 1.5816 1.5816 0.0297 - -
Topdar et al. (2003) PRHSDT  1.8793 - - 0.0232 0.0232 -
Present element (8x8) QSFT52  0.8813 0.7906 0.7906 0.0221 0.0221 -0.1802
Present element (12x12) QSFT52  0.8750 0.8149 0.8149 0.0246 0.0246 -0.1762
Present element (16x16) QSFT52  0.8717 0.8141 0.8141 0.0252 0.0252 -0.1664

Cas Il Khatua and Cheung (1973) - 0.8707 - - - - -
Chakrabarti and Sheikh (2004) RHSDT  0.9535 0.8916 0.8916 0.0558 - -
Chakrabarti and Sheikh (2004) RFSDT 0.8880 0.8225 0.8225 0.0475 - -

Folie (1970) - 0.8814 - - ] ) ]




Table 6 Normalized maximum deflection (w) and stresses (G, ,&

w10xy10x:0y) &t the important points of a clamped square sandwich plate
(0/c/0) under uniformly distributed load

h/a Reference w(a/2, b/2, £h/2) &, (@/2,bl2, £h/2) 7, (a/2, bi2, +hi2) 5 (0,b/2,0) &,(a/2,0,0) &, (0,0, £h/2)
Present element QSFT52 0.2458 0.4490 0.0178 -0.0018
001 0.2458 10,4490 0.0178 0.5120 0.2321 0.0018
"7 Pandit et al. (2008) HOZT 0.2897 0.5398 0.0099 0.5429 0.1764 -0.0025
0.2897 -0.5398 -0.0099 ' ' 0.0025
Present element QSFT52 0.3458 0.5226 0.0189 -0.0037
0.0 0.3458 10.5226 10,0189 0.5024 0.1841 0.0037
' Pandit et al. (2008) HOZT 0.3549 0.5478 0.0131 05138 0.1806 -0.0040
0.3549 -0.5478 -0.0131 ' ' 0.0040
Present element QSFT52 0.7871 0.5576 0.0402 -0.0098
005 0.7871 -0.5576 -0.0402 0.4528 0.1776 0.0098
"7 Pandit et al. (2008) HOZT 0.7793 0.5754 0.0371 0.4368 0.2020 -0.0089
0.7789 -0.5754 -0.0371 ' ' 0.0089
Present element QSFT52 2.0585 0.6011 0.0999 -0.0197
o1 20585 0.6011 10.0999 0.3761 0.2049 0.0197
"~ Pandit et al. (2008) HOZT 2.0090 0.6346 0.0951 0.3367 0.2372 -0.0171
2.0022 -0.6346 -0.0952 ' ’ 0.0163
Present element QSFT52 8.4575 1.0148 0.2070 -0.0457
025 8.4575 -1.0148 -0.2070 0.2751 0.2212 0.0457
Pandit et al. (2008) HOZT 8.2090 1.1809 0.1919 0.2242 0.2630 -0.0401

7.9482 -1.1819 -0.1923 0.0314




Table 7 Normalized maximum deflection (w) and stresses (Cxx:Oyy10yy1 0y, 0y,) al the important points of a simple supported simply

Wy S
supported square sandwich plate with angle-ply laminated faces (6/ 6+90/C/ 6/ 6+90) under uniformly distributed load
h/a Reference w(a/2,b/2,0) &, (a/2,b/2,h2) &, (a/2,b/2,h/2) 7 (0,b/2,+0.4h) &, (a/2,0,+0.4h)
Present element QSFT52 1.6766 1.6197 1.6197 0.3408 0.3408
6 =0° Pagano (1970) Elasticity 1.6957 1.5851 1.5692 0.3560 0.3563
0.05 Khandelwal et al. (2013) HOZT 1.7107 1.6265 1.5653 0.4515 0.5230
Chakrabarti and Sheikh (2005) HOZT 1.7126 1.5988 - 0.3732 -
Present element QSFT52 2.6149 1.7320 1.7320 0.3337 0.3337
01 Pagano (1970) Elasticity 2.6168 1.6004 1.5794 0.3496 0.3503
™ Khandelwal et al. (2013) HOZT 2.6295 1.6537 1.5829 0.4142 0.4142
Chakrabarti and Sheikh (2005) HOZT 2.6296 1.6249 - 0.3612 -
Present element QSFT52 6.2940 2.1538 2.1538 0.3242 0.3242
0.2 Pagano (1970) Elasticity 6.2981 1.7093 1.7523 0.3436 0.3413
"= Khandelwal et al. (2013) HOZT 6.3001 1.8111 1.7328 0.3982 0.3993
Chakrabarti and Sheikh (2005) HOZT 6.3016 1.7792 - 0.3482 -
0 —30° Present element QSFT52 1.2199 0.7884 0.7884 0.3465 0.3465
0.05 Khandelwal et al. (2013) HOZT 1.2450 0.7985 0.7666 0.4637 0.5079
) Chakrabarti and Sheikh (2005) HOZT 1.2381 0.7653 - 0.3603 -
Present element QSFT52 2.2137 0.9575 0.9575 0.3406 0.3406
0.1 Khandelwal et al. (2013) HOZT 2.2322 0.9290 0.8840 0.4280 0.4409
Chakrabarti and Sheikh (2005) HOZT 2.2237 0.8882 - 0.3659 -
Present element QSFT52 5.9326 2.1538 2.1538 0.3382 0.3382
0.2 Khandelwal et al. (2013) HOZT 5.9579 1.1733 1.1074 0.4376 0.4321
Chakrabarti and Sheikh (2005) HOZT 5.9463 1.1165 - 0.3762 -
0= 450 Present element QSFT52 1.0671 0.4366 0.4366 0.3215 0.3215
0.05 Khandelwal et al. (2013) HOZT 1.0773 0.4479 0.4228 0.4621 0.5309
' Chakrabarti and Sheikh (2005) HOZT 1.0615 0.4247 - 0.2197 -
Present element QSFT52 2.0035 0.4991 0.4991 0.3223 0.3223
0.1 Khandelwal et al. (2013) HOZT 1.9950 0.4698 0.4422 0.4445 0.4592
Chakrabarti and Sheikh (2005) HOZT 1.9764 0.4444 - 0.2203 -
Present element QSFT52 5.6615 0.7022 0.7022 0.3144 0.3144
0.2 Khandelwal et al. (2013) HOZT 5.6329 0.5755 0.5408 0.4612 0.4484

Chakrabarti and Sheikh (2005) HOZT 5.6079 0.5516 - 0.2197 -
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Table 8 Normalized maximum deflection (w) of a simple supported simply supported cross-ply (0/90/0)
skew laminate plate under uniformly distributed load

h/a Skew angle Reference w (a/2, b/2,0)
Present element QSFT52 0.8452
Chakrabarti and Sheikh (2004) RHSDT 0.8814
Chakrabarti and Sheikh (2004) FSDT 0.9182
300 Sheikh and Chakrabarti (2003) HSDT 0.8621
Ramesh et al. (2009) LWT 0.9013
Ramesh et al. (2009) TSDT 0.8666
Kulkarni and Kapuria (2007) RTSDT 0.8666
Chalak et al. (2014) HOZT 0.8366
Present element QSFT52 0.5758
Chakrabarti and Sheikh (2004) RHSDT 0.5742
Chakrabarti and Sheikh (2004) FSDT 0.6045
450 Ramesh et al. (2009) LWT 0.5939
0.1 Ramesh et al. (2009) TSDT 0.5745
Sheikh and Chakrabarti (2003) HSDT 0.5707
Kulkarni and Kapuria (2007) RTSDT 0.5725
Chalak et al. (2014) HOZT 0.5611
Present element QSFT52 0.2599
Chakrabarti and Sheikh (2004) RHSDT 0.2481
Chakrabarti and Sheikh (2004) FSDT 0.2642
Ramesh et al. (2009) LWT 0.2602
60° Ramesh et al. (2009) TSDT 0.2541
Sheikh and Chakrabarti (2003) HSDT 0.2505
Kulkarni and Kapuria (2007) RTSDT 0.2461
Chalak et al. (2014) HOZT 0.2490
Kabir (1995) FSDT 0.2600
Present element QSFT52 1.8328
Chakrabarti and Sheikh (2004) RHSDT 1.6811
30° Chakrabarti and Sheikh (2004) FSDT 1.8642
Ramesh et al. (2009) LWT 1.7350
Ramesh et al. (2009) TSDT 1.6713
Chalak et al. (2014) HOZT 1.6904
Present element QSFT52 1.3089
Chakrabarti and Sheikh (2004) RHSDT 1.1790
0.2 450 Chakrabarti and Sheikh (2004) FSDT 1.2174
' Ramesh et al. (2009) LWT 1.1248
Ramesh et al. (2009) TSDT 1.0980
Chalak et al. (2014) HOZT 1.1496
Present element QSFT52 0.6208
Chakrabarti and Sheikh (2004) RHSDT 0.5196
60° Chakrabarti and Sheikh (2004) FSDT 0.5158
Ramesh et al. (2009) LWT 0.5210
Ramesh et al. (2009) TSDT 0.5185
Chalak et al. (2014) HOZT 0.5073
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of the plate are presented in Table 8 using mesh size of (12x12). It may be observed that the
results of developed element are very close with the results reported by Chakrabarti and Sheikh
(2004), Sheikh and Chakrabarti (2003), Kabir (1995), Ramesh et al. (2009), Chalak et al. (2014),
Kulkarni and Kapuria (2007).

5. Conclusions

This paper reports the results of a new layerwise isoparametric finite element model for
bending analysis of sandwich plates. The model is based on the third order shear deformation
theory for the core and the first order shear deformation theory for the face sheets. The proposed
finite element is a four-nodded quadrilateral isoparametric sandwich plate element (QSFT52)
having thirteen degrees of freedom per node (13 DOF). The so-called ‘Assumed Natural Strains
method” was used to avoid an eventual locking phenomenon. The displacement continuity
condition at the interfaces ‘face sheets-core’ is satisfied.

The performance of the developed element was tested by different examples for symmetric/
unsymmetric composite laminated, sandwich and skew plates with different aspect ratios, loadings
and boundary conditions. The obtained numerical results were compared with those obtained by
the analytical solutions and other finite element models found in literature.

The use of the proposed finite element and the combination of the first order shear deformation
theory and the third-order plate theory, used respectively to modulate the face sheets and the core
of sandwich, showed a good accuracy and convergence speed for both thin and thick plates.
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Appendix A

The components of strain—displacement matrices for the core and the face sheets (top- bottom)
are given by
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* Top face sheet
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