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Abstract.  A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-

layered half-space is presented by means of the precise integration method (PIM) and the approach of dual 

vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the 

solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate 

system, a second order ordinary differential matrix equation can be gained by making use of the Hankel 

integral transform. Employing the technique of dual vector, the second order ordinary differential matrix 

equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions 

of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly 

accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the 

dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix 

operation. As a result, the computational effort is reduced to a great extent and the computation is 

unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the 

proposed approach. More examples are discussed to portray the dependence of the load-displacement 

response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency 

of excitation. 
 

Keywords:  time-harmonic point load; precise integration method; Hankel integral transform; dual vector; 

stratified soil 

 
 
1. Introduction 
 

The estimation for the magnitude and distribution of the displacements and stresses in the 

homogenous isotropic multi-layered soil has been a hot topic in soil and rock mechanics for a long 
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time. The solutions may contribute greatly to the design of structures such as pile foundations, 

municipal pipelines and metro tunnels. From the stand point of engineering applications, the media 

is often assumed to be homogeneous, isotropic and linearly elastic. Moreover due to a geologic 

process of sedimentation over a long period of time, soil in geotechnical engineering is always 

multi-layered. Therefore, in order to gain a more exact result for the practical engineering, it is 

essential and significant to study the field of displacements and stresses in the multi-layered 

isotropic materials. The distributions of stresses and displacements due to the action of the external 

forces concentrated at a point either on the boundary surface or in the interior of the elastic multi-

layered region are known as point load solutions. It is worth to point out that the point load 

solutions can be taken as fundamental solutions to solutions of the complex loading problems. 

What's more, the point load solutions can be used to construct solutions for the analytical 

examination of the elastic problems and incorporated into numerical schemes such as boundary 

element method. The research on the point load solutions in academia is so important that 

numerous researchers are concerned with this issue. 

Classical studies related to point load solutions in a homogeneous elastic infinite space were 

given by Kelvin (1848) and in a semi-infinite space by Boussinesq (1885) with the load on the 

surface of the half-space. Lamb (1901) proposed a perfectly simple and straightforward method to 

acquire the displacement response in an isotropic half-space under pressures applied normally to 

the free surface. Mindlin (1939) firstly studied the response of the elastic half-space subjected to a 

point load which was in the interior of the medium and created Mindlin’s solution. Burmister 

(1945) focused on the general theory of stresses and displacements in a two-layered and three-

layered system to facilitate the airport and foundation engineering. Rongved (1955) solved the 

problem of a point load acting in the interior of two joined semi-infinite media by introducing 

Papkovitch potential functions. Plevako (1969) derived the solutions for the deformation field 

caused by the concentrated load acting in the interior of two-layered half-space with different 

material properties. Harding and Sneddon (1945) studied the axisymmetric elastostatic problems 

of the homogeneous half-space using the integral transform technique (Sneddon 1951, 1972). 

Burmister (1956) made a further research on the displacement and stress solutions for the two-

layered soil with the bottom fixed under a point load on the plane boundary. Muki (1960) 

generalized the Harding and Sneddon’s approach to solve the asymmetric problems. Gilbert and 

Backus (1966) took advantage of the propagator matrix method to demonstrate the analysis of 

wave propagation in layered media. Bufler (1971) conducted a formal and exact solution to the 

distribution of stresses and displacements in a multilayered medium making use of integral 

transform technique and matrix analysis. With the aid of integral transform technique, Chan et al. 

(1974) formulated the solution for a two-layered semi-infinite domain caused by a vertical or 

horizontal point load applied in the interior of the system. Davies and Banerjee (1978) presented 

infinite series solutions of displacements in both layers of a two-layered half-space subjected to the 

horizontal and vertical point loads at the layer interface. Kausel and Peek (1982) revealed closed-

form dynamic Green's functions based on a discretization of the medium in the layering direction. 

Luco and Apsel (1983) studied the response of a multi-layered half space and viscoelastic media 

subjected to a time-harmonic buried source. Benitez and Rosakis (1987) utilized the two-

dimensional Fourier transform method and the transfer matrices approach to discuss the exact state 

of stresses and displacements in an infinite three-dimensional layer under concentrated body forces 

acting on an arbitrary internal point. Using the method of a mixed finite element, Stolle (1989) 

introduced a two-dimensional axisymmetric model to analyze the interaction between a static 

axisymmetric load and a layered pavement structure. According to Nat, Sarva and Sunita (1992), 
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the static displacement and stress field for a stratified elastic medium subjected to symmetric and 

asymmetric loads with the technique of transfer matrix was investigated. Yue (1995) conducted a 

study on the generalized Kelvin's problems of a multilayered medium due to concentrated forces 

by applying classical integral transforms and a backward transfer matrix method and proposed 

point load solutions to the layered elastic materials of infinite lateral extent, where the number of 

dissimilar elastic layers can be an arbitrary integer. Selvadurai (2001) showed the detailed 

derivation to obtain the solution of Boussinesq’s problem with a concentrated normal load on the 

surface of an isotropic elastic half-space. Yue et al. (1995) illustrated the variations of stresses and 

displacements under an external point load in a two-layered soil, where the elastic parameters of 

geo-materials are variable with depth. Employing axisymmetric governing equations, Hankel's 

transform and matrix analysis, the paper (Wang and Ishikawa 2001) was concerned with the 

distribution of stresses and displacements in a linearly elastic multi-layered medium under 

axisymmetric load. Ai et al. (2002) generalized Sneddon and Muki solutions and applied the 

transfer matrix method to solve elastostatic problems of the multilayered materials. Zhang and Li 

(2011) utilized the integral transform and the transfer matrix technique to determine the field of 

stresses and displacements in the elastic layered geo-materials subjected to an arbitrary point load 

in the Cartesian coordinate system. Futoshi et al. (2013) presented stress and strain responses in 

terms of a volumetric strain for an elastic multilayered structure under uniform and non-uniform 

loads. Chen (2015) studied the time-harmonic vibrations of a rigid circular foundation resting on a 

multi-layered elastic half-space. With the aid of the continued fraction solution, Lu et al. (2015) 

proposed a modified scaled boundary element method in the time domain to simulate the 

unbounded domain with bedrock. 

  As a semi-analytical technique to solve the partial differential equations (Song and Wolf 1997, 

2000, Wolf 2003), the scaled boundary finite-element method (SBFEM), which only needs to 

discretize the boundary and is no need for the fundamental solution, also can be applicable to the 

multilayered medium. Genes et al. (2005) were the earliest researchers who paid attention to 

combining finite element method (FEM), boundary element method (BEM) and scaled boundary 

finite element method (SBFEM) to acquire the dynamic response of 2D structures resting on 

layered media. However, the coupled model can not simulate the infinite lateral extent precisely. A 

modified scaled boundary finite element method (Birk and Behnke 2012) with degenerating the 

original scaling centre into the scaling line can solve the soil structure interaction in the layered 

system. But this operation is only suitable for the issue of a layered soil depositing over rigid 

bedrock. Chen et al. (2012) introduced a kind of time domain analysis using the technique of 

displacement unit-impulse response matrix for the layered media. 

The objective of this paper is to present a novel method to obtain the solutions of displacements 

and stresses in the stratified medium under a point load. The concentrated force may be prescribed 

either at the external surface or within the multilayered materials. In the process, the key ordinary 

differential equations are evaluated by the precise integration method (PIM) (Zhong et al. 2004). 

Making use of the Hankel integral transform, a second order ordinary differential matrix equation 

can be gained from the axisymmetric wave motion equations in a cylindrical coordinate system. 

Employing a couple of dual vectors about displacements and stresses, the second order ordinary 

differential matrix equation can be simplified into a first-order one. Utilizing the approach of PIM, 

the solutions to the ordinary differential matrix equation in the Hankel integral transform domain 

for the continuum subjected to a vertical point load can be known. In order to get the solutions in 

physical space domain, it is essential to take the Hankel inverse transform. As the Bessel functions 

generally can’t be carried out in exact closed forms, a numerical quadrature technique usually has  
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(a)                                        (b) 

Fig. 1 Multi-layered soil model (a) resting on half-space (b) fixed base 

 

 

to be adopted in such evaluations. Numerical trials are provided to check the effectiveness and 

accuracy of the proposed procedure. It is found that the numerical results and the exact solutions 

are in good correspondence. Further, more examples are given to depict the generalization of the 

proposed procedure and the effect of material parameters on the point solutions. 

 
 
2. Fundamental derivation 
 

Consider a set of linearly elastic, parallel layers of infinite horizontal extent as shown in Fig. 1. 

The load may be either applied on the surface of the soil or at the interface between the stratums. 

The origin of the cylindrical coordinate system is set on the surface with the z -axis in the 

depthwise direction with respect to the horizontal interface of the domain and it is the common 

axis of symmetry of the solid as illustrated in Fig. 1.  

  The axisymmetric governing equations of time-harmonic motion for a homogeneous isotropic 

elastic continuum in terms of displacements and in the absence of body forces in a cylindrical 

coordinate system can be expressed as 

 

 
2 2 2

2

11 44 13 442 2 2

r r z r
r

u u u u
d u d d d

r z r z t


   
      
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(1)
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            (2) 

in which 
2

2

2

1

r r r

 
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 
 

In the axisymmetric governing equations, ur and uz are the displacement components in r and z 
directions. dij and ρ are the components of the elastic modulus and the mass density of the 

interesting domain, respectively. It is convenient to obtain the following formulations for material 

constants dij. 
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 
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where E and υ are the Young’s modulus and Poisson’s ratio of the soil, respectively. 

According to the constitutive equations of the elastic solid, the following relationships can be 

acquired 

       
13 33

1 z
zz r

u
d u d

r r z


 
   
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
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(5) 

where σzz is the normal stress component in z direction and τzr is the shear stress in the plane z-r. 

For the sake of solving the partial differential equations conveniently, the Hankel transform is 

considered to convert the partial differential equations into the ordinary differential equations. The 

Hankel integral transform (Sneddon 1951, 1972) for the function f(r,z) with respect to the variable 

r is 

rdrkrJzrfzkf m )(),(),(
~

0
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                          (6) 

and its inversion is 

kdkkrJzkfzrf m )(),(
~

),(
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                          (7) 

where f
~

(k,z) is the Hankel integral transform for f(r,z); k is the Hankel transform parameter and  

Jm(kr) stands for the mth order the first kind of Bessel function. 

It is assumed that the motion is time-harmonic with circular frequency ω so that ur and uz can 

be denoted as ur(r,z,t)=ur(r,z)e
iωt

 and uz(r,z,t)=uz(r,z)e
iωt

. Transforming Eqs. (1) and (2) by applying 

the Hankel transform with respect to r and the Fourier transformation to t, the following 

formulations can be obtained 

0
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~)( 44132
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ud
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where ru~  is the result of the first order Hankel transform for ur and zu~  is the result of the zeroth  

order Hankel transform for uz. 

Eqs. (8) and (9) can be rewritten as follows 

0~)(~)(~ 2
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441344 
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(11) 
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where 
2

2~
~

dz

ud
u z

z   and 
2

2~
~

dz

ud
u r

r 


. 

Substituting q=[ ru~ zu~ ]
T
 into Eqs. (10) and (11) leads to the following second order ordinary  

differential equations expressed in the matrix form 
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where I is a 2×2 unit matrix. 
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Taking the Hankel transform for Eqs. (4) and (5), one can obtain 
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where zr~  is the result of the first order Hankel transform for τzr and zz~  is the result of the  

zeroth order Hankel transform for σzz. From Eqs. (14) and (15), a matrix formulation can be shown 

as 
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A dual vector p is introduced, which can be denoted as 

T
zzzr ]~   ~[ p                                (17) 

Substituting the expressions for k22 and k21 into Eq. (16), a formulation can be received 

     
 22 21'  p k q k q

 
(18) 

Eqs. (12) and (18) can be written in the state space 

     'V HV  (19) 
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in which 
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3. Solution procedure 
 
3.1 Boundary conditions 
 

For a multi-layered system the following boundary conditions are considered. 

a. At the interface between two adjacent layers, continuity of displacements and stresses is 

preserved 

     
         , 1,2,3... 1r r r rz z z z r l         p p q q

 
(21) 

b. For the multi-layered strata resting on bedrock, it should agree 

     
 1 1l lz z   q q 0

 
(22) 

c. For a homogeneous isotropic medium underlain by an elastic isotropic half-space, the 

radiation conditions in the half-space are addressed. It is assumed that the state equation for the 

semi-infinite space, i.e., the l+1 th layer, is expressed as 

     1 1 1l l l  
 V H V

 
(23) 

The eigenvalue equation for Hi+1 is 

     1l H Φ ΦΛ
 

(24) 

Since Hi+1 is the Hamiltonian matrix of the half-space, the eigenvalues can be divided into two 

groups with the opposite signs and the partitioned forms of Λ and Ф are expressed as 

i
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Φ Φ
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Φ Φ
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where the real parts of all elements λi 
are positive. 

An internal matrix b is introduced to facilitate the solution process 

     
1

1l



b Φ V
 

(26) 

Substituting Eqs. (24) and (26) into Eq. (23), a first order ordinary differential equations for b 
can be obtained 
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       'b Λb  (27) 

The solution for Eq. (27) is  
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Substituting Eq. (28) into Eq. (26), the solution expression for Eq. (23) is 
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When z→∞, the displacement must be zero. In addition, λ is a 2×2 diagonal matrix assembled 

by two positive eigenvalues. So that the integration constant c1 must be zero. Then one can have 
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or 
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(31) 

in which 
R  is the stiffness matrix. 

 
3.2 Solutions for the differential matrix equation 
 

Associated derivations and detailed solution procedure are exposed in relevant papers (Lin et 

al. 2013, 2015). In this section, only the concept and key equations necessary for the numerical  

implementation are presented. Each layer is divided into 12
N  sub-layers of equal thickness and 

each sub-layer is further divided into 22
N  mini-layers of equal thickness. Then, a typical mini- 

interval [za, zb] (za<zb) within a layer is taken as an example. Let qa 
and pa be the displacement and 

force vectors at za. Similarly, qb and pb are the displacement and force vectors at zb. For 

conservative linear systems, the following relations stand (Zhong et al. 1997, Gao et al. 2004) 

e e

b F a G b

e e

a Q a E b

 
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q M q M p

p M q M p
                            

(32) 

where 
e

FM , 
e

GM , 
e

QM , 
e

EM  are the transfer matrices to be determined. 

By the virtue of Eqs. (19) (32) and the technique of Taylor series, one can gain the expressions 

for the transfer matrices after a series of algebraic manipulation. 

After the transfer matrices are determined and with the help of Eq. (32), it is of great 

convenience to combine any two adjacent intervals [za, zb] and [zb, zc] into a new larger interval [za, 

zc]. The corresponding transfer matrices for the new layer are as follows 
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(33) 

in which the superscript 1 and 2 stand for the transfer matrices of the original intervals [za, zb] and 

[zb, zc] and the superscript c denotes the transfer matrices of the combined larger interval [za, zc]. 

After determining the transfer matrices for a mini-layer, it’s easy to combine two mini-layers 

together according to the way above.  

In a layer each pass of combining two adjacent mini-layers reduces the total mini-layers by a 

half. When N2 
passes have been operated, the transfer matrices for a sub-layer can be obtained. 

Combination for two sub-layers is performed directly by taking advantage of Eq. (33). The transfer 

matrices for a typical layer can be gained after running N1+N2 combinations. The whole process is 

very easy.  

Taking a four-layered soil as an example as shown in Fig. 2, the relationship of displacement 

and stress for each layer is 

1 1
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                         (34) 

From Eq. (34), the relationship of displacement and force for the global multi-layered soil 

system is defined as 
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(a)                                          (b) 

Fig. 2 An example of four-layered soil (a) resting on half-space (b) fixed base 
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     P = KU  (35) 

where  1 2 3 4

T
P = P P P P    1 2 3 4

T
U = U U U U    

1 1P = p   
1 2
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2 2 2 U q q  
2 3

3 3 3 U q q   
3

4 4 4 U q q  

    
4 4p K q  

In Eq. (35), P stand for the external force vectors and U are unknown displacements. From Eq. 

(35), K are the stiffness matrix composed by the transfer matrices for the whole stratified system 

in the Hankel transform domain. For a multi-layered half-space, K∞ are the stiffness matrix for the  

half-space layer, which is the matrix R  in Eq. (31). For the case of layered soil resting on rigid  

base, K∞ must be equal to zero. 

 
 

4. Transfer to physical space domain 
 

The case of a vertically concentrated dynamic force of the unit amplitude acting on the 

symmetric axis of the cylindrical coordinate system is addressed. At first, in order to solve the 

problem conveniently it is advantageous to assume that the force is uniformly distributed in a 

circular disk with the radius R (R→0) R  and the amplitude of the uniform force is 0 2

1
zp

R
 . 

Applying the Hankel integral transform to pz0, one can obtain 
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 

 


               (36) 

where  zp k is the result of the zeroth order Hankel transform for pz0. The zeroth order Hankel  

transform for a point load is 

        
   0 1

0 0

1 1
lim lim

2
z z

R R
p k Rp J kR

k  
 

 
(37) 

Substituting Eq. (37) into Eq. (35), the displacements for each layer in the multi-layered soil 

can be obtained. 

      
     1

0
, , , ,r ru r z u k z J kr kdk 
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   
(38) 
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The displacements and stresses in physical space domain could be obtained by taking the 

numerical inversion of Hankel transforms. As indicated in the previous equations, the 

displacement and stress components are expressed in terms of one-dimensional semi-infinite 

integrals. As the integrations generally cannot be carried out in exact closed forms, a numerical 

quadrature technique usually has to be adopted in such evaluations. 

 
 

5. Numerical examples 
 
In this section, several examples are illustrated to evaluate the accuracy and the efficiency of 

the current solutions. They are followed by a series of parametric study to explore the influence of 

stratified characters, the frequency of excitation and the positions of loading on the dynamic 

response of the homogeneous medium. When one factor is discussed, the other factors would 

remain constant. It needs to point out that all numerical results presented here are dimensionless, 

with a non-dimensional frequency defined as 
0 L G    and the normalized vertical 

displacement ( )z z zu Gu F L , where L is the unit of characterized length. 

 
5.1 Verification 
 
The following three examples are employed to compare the present solutions with the existing 

numerical solutions in order to elucidate the feasibility of the proposed method. The first two 

examples (Ai et al. 2002) are about an isotropic half-space and an elastic three-layered media with 

rigid base, respectively. Both examples are under a static concentrated load. The third example 

(Khojasteh et al. 2008) involves a homogeneous semi-infinite domain subjected to a time-

harmonic point load.  

 
5.1.1 Homogeneous elastic half-space 
The solutions for a vertical load Fz concentrating at the origin of the coordinate system and 

acting in the interior of the media for a homogenous elastic half-space are the classical Boussinesq 

solutions and Mindlin’s solutions, respectively. 

In this example, a static point load is applied on the surface of an elastic half-space. In order to 

satisfy the static case, the excitation frequency is chosen ω0=0. 

Fig. 3 illustrates the variations of the vertical displacement due to the vertically concentrated 

load acting on the surface of the homogeneous elastic half-space with the depth z/r off the axis of 

loading (r=1) and presents a comparison of the solution form the proposed approach with the 

Boussinesq solution. Wonderful agreement between the two solutions demonstrates the 

effectiveness of the proposed approach to deal with the homogeneous elastic half-space. 
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Fig. 3 Variations of the dimensionless vertical displacement due to the vertical point load on the 

surface of the elastic half-space with the depth z/r off the axis of loading (r=1) 

 

 

Fig. 4 Variations of the normalized displacement due to the vertical point load Fz in the interior of 

the three-layered soil with the depth z/r off the axis of loading (r/h=1) for case1 

 
 
5.1.2 Three-layered soil with rigid base 
From the paper (Ai et al. 2002), there is an example of the displacement field in a three-layered 

elastic material with the bottom plane fixed subjected to a vertical point load. The case of the 

vertical point load acting on the point (0,0,h) in the elastic layers attracts our attention. The 

material parameters for all cases are listed in Table 3 (Ai et al. 2002).   

Figs. 4-6 show the normalized vertical displacements for three different cases. From those 

figures, it is clearly observed that the numerical results from the proposed method are nearly the 

same as those from Ai et al. (2002), which describes that the proposed method can solve the 

problem of the multi-layered soil with the bottom fixed effectively. 
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Fig. 5 Variations of the normalized displacement due to the vertical point load Fz in the interior of 

the three-layered soil with the depth z/h off the axis of loading (r/h=1) for case2 

 

 

Fig. 6 Variations of the normalized vertical displacement due to the vertical point load Fz in the 

interior of the three-layered soil with the depth z/h off the axis of loading (r/h=1) for case3 

 

 

5.1.3 Half-space under dynamic load 
In order to provide a comparison of the results for a dynamic case, the solution (Khojasteh et 

al. 2008) for the displacement in z-direction along the r axis induced by a time-harmonic point 

load of unit intensity with a dimensionless frequency ω0=0.5 is used as a benchmark. The elastic 

parameters of the medium are G=10 Gpa and υ=0.25. As indicated in Fig. 7, there is an excellent 

agreement between the solutions of this paper and the solutions obtained (Khojasteh et al. 2008) 

for both real and imaginary parts. Consequently, the effectiveness of the method in this part has 

been confirmed. 
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Fig. 7 Variations of the non-dimensional vertical displacements due to a vertical point load along 

free surface 

 

 
Fig. 8 Variations of the vertical displacements under the vertical point load acting on the surface of 

the homogeneous elastic half-space with the depth on the axis of loading 

 
 
5.2 Influence of the loading location 
 

In order to present the effect of the loading position, a degenerated example of a homogeneous 

isotropic half-plane is carried out. A time-harmonic point load is applied on and within the soil 

system. The mass density of the medium is ρ=3.0×10
3
 kg/m

3
; the Poisson's rations is υ=0.25 and 

the normalized frequency is ω0=3.0. Three cases of different loading depth s=0, 2L, 5L are 

discussed in details. In this part, it is worth mentioning that the vertical displacements off the axis 

of loading are along the axis r/L=1 and the variable r stands for the distance off the loading  
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Fig. 9 Variations of the vertical displacements under the vertical point load acting on the 

surface of the homogeneous elastic half-space with the depth off the axis of loading 

 

 
Fig. 10 Comparisons of the real parts of the vertical displacements off the axis of loading due to a 

point load 

 

 

 

location. The calculating results of the vertical displacement against the normalized depth under 

the action of a point load acting on the surface of an isotropic half-space are plotted in Figs. 8-9, 

respectively. Figs. 10-11 describe the variations of the vertical displacement with the depth off the 

axis of loading caused by the vertically concentrated loading acting on the surface and in the 

interior of the semi-infinite domain.  

As indicated in Fig. 8, the real part of the maximum displacement is noted at the depth where 

the load is applied. However, both the real and imaginary parts of the displacement in vertical  
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Fig. 11 Comparisons of the imaginary parts of the vertical displacements off the axis of loading 

due to a point load 

 

 

direction in Fig. 9 don't copy this phenomenon. It is concluded that one of the most important 

features of point load solutions is the presence of the singularities at the loading position. On the 

contrary, the distribution curves of the displacement off the loading location are smoother. As 

shown in Figs. 10-11, the real parts of the vertical vibration amplitude on the surface decrease with 

the point load moving down. Meanwhile, the curves of real parts give rise to a kink at the 

horizontal stratum where the load is applied. Moreover, with the increase of depth, the real parts of 

the vibration amplitude decrease. The real parts tend to zero when the depth is large enough. As for 

the loading depth, the imaginary parts exhibit complicated pattern. 

 

5.3 Influence of material characters  
 

Additional examples are considered to reveal the influence of elastic material characters on the 

vertical deformations. In order to simplify the analysis, a model of an isotropic, linearly elastic 

layer bonded to the surface of a half-space of a different isotropic material is chosen. It is 

meaningful to point out that in order to avoid the singularity, point load solutions are along the axis 

r/L=1, in which the variable r represents the distance off the loading location. Meanwhile, the 

parameter G stands for the shear modulus of the top stratum in the non-dimensional frequency and 

vertical settlement. 

 
5.3.1 Influence of shear modulus 
The first example is about the influence of shear modulus on the magnitude of the vertical 

solutions. The remaining elastic parameters are υ1=υ2=0.25 and ω0=3.0. The boundary between the 

top layer and the substrate is set at h=2L. Figs. 12-15 depict the real and imaginary parts of the 

normalized vertical displacements at different depth induced by a time-harmonic point load acting 

on and within the solid media, respectively. In Figs. 12-13, the phenomenon that the stiffness of 

the lower layer has a significant effect on displacements attracts our attention. Both the real and 

imaginary parts of the case E1:E2=1:5 are prodigiously changeable. In addition, it is apparent that 
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Fig. 12 Results of the real parts of the vertical displacements against normalized depth caused by 

the surface point load 

 

 
Fig. 13 Results of the imaginary parts of the vertical displacements against normalized depth 

caused by the surface point load 

 

 

with the depth increase, the solutions in all three cases tend to zero. However, the displacement 

field from Figs. 14-15 don't show the same basic characteristics as described earlier. The solutions 

are markedly more influenced by the upper layer under the situation of the load application on the 

interface. Since the load is applied in the interior, the negative maxima of the real and imaginary 

parts occur at the loading level in the case of E1:E2=5:1. 

 

5.3.2 Influence of poisson’s ratio 
Two sets of examples are illustrated to consider the effect of Poisson's ratio. Let E1:E2=1:4, 

ρ=3.0×10
3
 kg/m

3
 and the dimensionless frequency ω0=3.0. At first, three cases of υ1=υ2=0.1, 
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Fig. 14 Results of the real parts of the vertical displacements against normalized depth caused by 

the interface point load 

 

 
Fig. 15 Results of the imaginary parts of the vertical displacements against normalized depth 

caused by the interface point load 

 
 

υ1=υ2=0.25 and υ1=υ2=0.4 are performed for comparisons. The variations of the normalized 

vertical displacement with the depth off the axis of loading under the vertically concentrated force 

applied on the surface and on the interface of the two-layered soil are portrayed in Figs. 16-19. 

Following this way, the comparisons of υ1=0.1, υ1=0.25 and υ1=0.4 are considered. The Poisson’s 

ratios of the half-space in three cases are equal to 0.25. Figs. 20-23 illustrate the variations of the 

real and imaginary parts of the normalized vertical settlement in terms of normalized depth z/L 

with the concentrated time-harmonic loading applied on the surface and in the interior of the 

research domain. From Figs. 16-17, it is obvious that there are dramatic changes in both the real 

and imaginary parts of the normalized vertical displacement in case 2 when the external load is  
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Fig. 16 Real parts of the normalized vertical displacements due to the concentrated force on the surface 

 

 
Fig. 17 Imaginary parts of the normalized vertical displacements due to the concentrated force on 

the surface 

 

 

applied on the surface of the interesting domain. As illustrated in Figs. 18-19, the difference 

between the maximum and minimum values of the displacement curve is great in case 1, in which 

the load is acting on the interface of the medium. Similarly, both the real and imaginary parts of 

case 1 intensely vary along the normalized depth when the point load is employed either on the 

surface or in the interior of the stratified system in Figs. 20-23. A conclusion may be drawn that 

the Poisson’s ratio of the top layer causes significant influence on the displacement field. Thus, 

medium’s stratified parameter and the loading depth have a great effect on the vertical 

displacement, which should not be neglected in practical engineering. 
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Fig. 18 Real parts of the normalized vertical displacements due to the concentrated force on the 

interface 

 

 
Fig. 19 Imaginary parts of the normalized vertical displacements due to the concentrated force on 

the interface 

 

 

5.4 Effect of thicknesses of the layer 
 

For most of the geotechnical situations, layered formations with different material properties 

are usually encountered in practical engineering. Herein the four layered geo-materials are selected 

as an example to demonstrate the influence of thicknesses of the medium strata on the elastic field. 

The elastic parameters are listed E1:E2:E3:E4=1.0:1.5:2:2.5, ρi=3000 kg/m
3
, υi=0.25 (i=1,2,3 and 4) 

and the non-dimensional frequency ω0=3.0. Three cases of different thicknesses are illustrated for 

discussion (1) h1:h2:h3:L=8:1:1:1, (2) h1:h2:h3:L=1:8:1:1 and (3) h1:h2:h3:L=1:1:8:1. In the  
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Fig. 20 Influence of Poisson’s ratio on the real parts of the normalized vertical displacements 

subjected to the concentrated load acting on the outer boundary 

 

 
Fig. 21 Influence of Poisson’s ratio on the imaginary parts of the normalized vertical 

displacements subjected to the concentrated load acting on the outer boundary 

 

 

following pictures, the normalized vertical deformations due to a point load concentrated on the 

surface of the four layered medium or at the interior point (0,0,h1+h2+h3) are along the axis r/L=1. 

The variable r means the distance off the loading position. In the non-dimensional frequency and 

vertical displacement, the parameter G indicates the shear modulus of the first layer. Results of the 

vertical displacement against normalized depth under the action of concentrated forces applied on 

the surface and in the interior of the four-layered homogeneous isotropic media are plotted in Figs. 

24-27, respectively. As indicated in all figures, the case of h1:h2:h3:L=8:1:1:1 which has the 

thickest top layer is much more different from other cases. Moreover, the magnitudes of the  
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Fig. 22 Influence of Poisson's ratio on the real parts of the normalized vertical displacements 

subjected to the concentrated load acting on the inner interface 

 

 
Fig. 23 Influence of Poisson’s ratio on the imaginary parts of the normalized vertical 

displacements subjected to the concentrated load acting on the inner interface 

 
 

vertical displacements in this case violently oscillate regardless of the point loading prescribed 

either at the external surface or within the multi-layered materials. At the same time, the real parts 

of vertical results on the surface in case 1 are larger than that of case 2 and case 3. The curvilinear 

shapes of the vertical displacement in case 2 and case 3 are analogous. All the appearances 

demonstrate that the variations of the normalized vertical displacements are more sensitive to the 

thickness of the top layer. 
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Fig. 24 Effect of different thicknesses on the real parts of the normalized vertical displacements 

with the point load acting on the surface of the multi-layered media 

 

 
Fig. 25 Effect of different thicknesses on the imaginary parts of the normalized vertical 

displacements with the point load acting on the surface of the multi-layered media 

 

 

5.5 Influence of the excitation frequency 
 

It has been well recognized that the occurrence of time-varying displacements under external 

forces is quite common in engineering practice. Excitation frequency is a basic and key factor of 

time-harmonic external loading. So it is essential to explore the influence of the excitation 

frequency on the distribution of normalized vertical displacements in the multi-layered medium. 

An example of four layered soil as the previous section is chosen to investigate the influence of the 

excitation frequency. The corresponding relationships of the elastic material parameters are as 

follows: E1:E2:E3:E4=1.5:2:3.5:5, ρi=3×10
3
 kg/m

3
, υi=0.25 (i=1,2,3,4) and h1:h2:h3:L=1:2:3:1. 

There are four cases of frequency range discussed, which are ω0=0.5,3.0,5.0,10.0, respectively. To 
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Fig. 26 Influence of different thicknesses on the real parts of the normalized vertical displacements 

under the point load applied in the interior of the system 

 

 
Fig. 27 Influence of different thicknesses on the imaginary parts of the normalized vertical 

displacements under the point load applied in the interior of the system 

 
 

maintain consistency with the previous sections, the vertical displacements are also along the axis 

r/L=1 and the material parameter G of the non-dimensional frequency and vertical displacement 

denotes the shear modulus of the top layer. Figs. 28-31 plot the real and imaginary parts of 

normalized displacements in vertical direction induced by the external loading concentrated at a 

point acting with different frequencies. From the displays, one may observe that the influence of 

the excitation frequency of the time-harmonic loading is obviously evident on vertical 

displacement solutions. As frequency increases, both real and imaginary parts show more 

oscillatory variation with the depth. At low frequencies, both real and imaginary parts decays  
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Fig. 28 Variations of the real parts of the vertical displacements with respect to z/L under a 

concentrated load applied on the surface of the exterior boundary 

 

 
Fig. 29 Variations of the imaginary parts of the vertical displacements with respect to z/L under a 

concentrated load applied on the surface of the exterior boundary 

 

 

smoothly along with depth under a surface loading. What's more, it is also shown that unlike 

previous observations, the unified variation of the amplitude of vertical displacements with 

increasing frequencies is not obvious. Variations of both the real and imaginary parts of the non-

dimensional vertical displacements are more complicated when frequencies are increasing. Either 

the real or the imaginary parts of the vertical settlements tend to zero with the increasing depth 

when the load is acting on the surface of the research domain in Figs. 28-29. However, form Figs. 

30-31 the real and imaginary parts of the displacements induced by concentrated forces applied 

within the stratified soil don't arise this phenomenon. The solutions delineate that variations of the 

displacement field are decisively affected by the frequency of excitation. 
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Fig. 30 Variations of the real parts of the vertical displacements with respect to z/L due to a point 

load acting on the interior interface 

 

 
Fig. 31 Variations of the imaginary parts of the vertical displacements with respect to z/L due to a 

point load acting on the interior interface 

 

 

6. Conclusions 
 
In this paper, solutions for the axisymmetric elastodynamic response in a continuously 

homogeneous isotropic multilayered media are presented by employing the proposed method. The 

precise integration algorithm and mixed variable formulation ensure the accuracy and 

effectiveness of the proposed approach. According to the Hankel integral transform and mixed 

variable formulation, the partial differential equations are conveniently converted into ordinary 

differential equations. The point load solutions are extremely precise for the precise integration 
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method is a highly accurate method to solve sets of first-order ordinary differential equations. To 

obtain the space domain displacements, it is essential to take the numerical inversion of the Hankel 

transform. All calculation is based on the standard matrix algebra method. Computational effort 

can be reduced to a great extent for the size of the transfer matrices is not larger than 2×2. 

Comparing with the analytical solutions reveals that the field of vertical displacements from the 

proposed process is precise. There is no problem for this method to simulate the multi-layered 

stratum with all kinds of boundary conditions. From the figures above, it is obvious that one of the 

most important features of point load solutions is the presence of the singularities at the loading 

position. But the curves of the dimensionless vertical settlements off the axis of the external 

loading tend to be smooth. The loading depth has a remarkable influence on the magnitude and 

distribution of the displacements. When the load moves down, the displacement amplitude at the 

surface decreases. Moreover, the real parts of the displacements give rise to a kink at the depth of 

the applied load. As to the stratified character, influences of the shear modulus and the Poisson's 

ratio on the normalized displacements vary as the loading position. In addition, the frequency of 

excitation has an obvious effect on the vertical displacement as well. With the frequency 

increasing, the real and imaginary parts of the point load solutions become increasingly oscillatory. 

Solutions presented in this paper can be of great value in developing solutions for analytical 

examination of elastic problems and incorporated into numerical schemes such as boundary 

element methods for numerical analysis of elastostatic and elastodynamic problems. 
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