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Abstract.  In this work, random homogenization analysis for the effective thermal properties of a 

three-dimensional composite material with unidirectional fibers is presented by combining the equivalent 

inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology 

and constituent material properties as well as the correlation among these random parameters are completely 

accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their 

correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The 

impact of randomness and correlation of the micro-structural parameters on the random homogenized results 

is revealed by two methods simultaneously, and some important conclusions are obtained. 
 

Keywords:  random homogenization; randomness and correlation; Random Factor Method; random 

effective thermal proterties; Monte-Carlo Method 

 
 
1. Introduction 
 

Heterogeneous materials such as composite materials are increasingly used in different fields, 

e.g. the aerospace (Rong et al. 2015), automotive (Tian et al. 2015) and civil construction 

industries (Wu et al. 2014), whereby they are designed and employed to satisfy special functional 

requirements that conventional homogeneous materials cannot meet (Miehe et al. 1999). In the 

field of materials and mechanics, as an efficient method relating the micro-scale feature to the 

macro-scale response, homogenization techniques are widely used to compute the effective 

properties of heterogeneous materials based on the knowledge of geometry and material properties 

of their microstructure. These techniques are both of computational and analytical nature. For 

analytical techniques, early approximations for this purpose were presented by Voigt (1889) and 

Reuss (1929). Later, key advances were reached with the work of Eshelby (1957), Hashin and 

Shtrikman (1962). Additional classical models to estimate the effective properties included the 

self-consistent method, the Mori and Tanaka (1972) method and many others, see e.g., Aboudi 
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(1991), Nemat-Nasser and Hori (1999). Computational techniques based on multiscale finite 
element were developed as well, see e.g., Zohdi and Wriggers (2008), Stroeven et al. (2004). 

During the manufacturing of the materials and structures, the effects of the uncertainty on the 
geometry and material parameters can never be avoided (Torquato 2002), and the uncertainty in 
material may further greatly affect the structural responses. Sometimes, the coefficient of variation 
of the biggest structural response was about seven times as high as that of the structural parameters 
(Li 1993) according to the computational results, and random structural parameters contributed 
more to the random dynamic response than the random external excitation (Li 1991). This recently 
motivated an increasing attention to random heterogeneous materials, including, e.g., composite 
materials with uncertainty in the location/shape of the reinforcement and/or in the pore/particle 
spatial distribution in the matrix as well as in the mechanical properties of the components. Many 
progresses about random homogenization have been reached with the work of many scholars. 
Sakata and coworkers (Sakata et al. 2008) applied the perturbation-based stochastic analysis with 
the equivalent inclusion method in order to estimate the influence of a geometrical uncertainty 
such as shape or volume fraction of inclusions on the probabilistic characteristics of a 
homogenized elastic property. Lu et al. (2013) developed a new approach to bounding effective 
properties of random heterogeneous materials and computed the expectation material properties 
for a stochastic unit cell representing the random heterogeneous materials, whereby the position of 
inclusions in different cells varies independently and is the only random variable. Bris (2010) 
overviewed a series of recent works tackling homogenization problems for some materials seen as 
small random perturbations of periodic materials. In addition, other different schemes used for the 
solution of stochastic homogenization problem were successively proposed such as multi-scale 
spectral stochastic method (Tootkaboni and Graham-Brady 2010), extended finite element method 
(Hiriyur et al. 2011) and many others, check Vel and Goupee (2010), Xu (2012), and effective 
responses of heterogeneous materials with random micro-structural properties or with random 
morphology as penny-shaped and slit-like random cracks were solved by these schemes. 

Despite the progress made, further research is still needed on random homogenization of 
heterogeneous materials. The existing models mainly address the randomness of the micro- 
structural morphology (Torquato 2002, Lu et al. 2013, Hiriyur et al. 2011, Vel and Goupee 2010, 
Xu and Stefanou 2012, Knott et al. 2011) or sometimes of several material properties (Sakata et al. 
2008, Tootkaboni and Graham-Brady, 2010). In particular, neither the correlations among micro- 
structural parameters nor the correlations among random homogenized results were ever 
considered in homogenization models thus far. Compared with the randomness in the 
microstructure, the correlation among micro-structural parameters also plays an important role to 
link the global properties of materials to the micro-structural feature. 

Moreover, since a kind of composite material such as a fiber reinforced composite is used to 
bear thermal loading in (Ashida et al. 2003, Lascoup et al. 2013), a stochastic homogenization 
thermal analysis is really important in order to evaluate reliability of a composite structure bearing 
thermal stresses. Hence, a rational homogenization description of the uncertain micro-structural 
features and of their translation into a macroscopic, effective thermal response would well benefit 
the predictive capability for heterogeneous materials. From these backgrounds above, the goal of 
this work lies in tackling the stochastic homogenization thermal problem of composite material by 
a convenient approach when fully considering the uncertainty in microstructure. Herein, the 
Random factor method (RFM) proposed in (Ma et al. 2011, Gao et al. 2004) is extended to the 
computation of random effective thermal properties of a unidirectional fiber reinforced composite 
in three-dimension, whereby the randomness of morphology parameters and material properties of 
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two constituents as well as the correlation among these random variables are accounted for. 
Furthermore, all results obtained from the RFM are compared with those from Monte-Carlo 
Method (MCM) in order to confirm the validity of the proposed method. Finally, the correlation in 
the macroscopic effective thermal properties is obtained by the MCM. 
 
 
2. Stochastic homogenization for effective thermal properties of fiber-reinforced 
composites based on RFM 
 

2.1 Homogenized thermal expansion coefficient tensor αEI of the composite materials 
 
The equivalent inclusion method is an effective method for estimating a homogenized elastic 

property of composite materials. For a unidirectional fiber reinforced composite material, e.g. as 
shown in Fig. 1(a), an equivalent inclusion method formula based on Mori-Tanaka theory (Mori 
and Tanaka 1972, Tohgo 2004) can be used for such estimation. Mori-Tanaka theory is then 
expanded for evaluation of an effective thermal expansion coefficient of a composite material in 
(Takao and Taya 1985), and the homogenized effective thermal properties, that is, effective 
thermal expansion coefficient tensor is computed as 

EIα fm Vα ( g  )                           (1) 

where matrices g and φ are as follows 

g = fV{ ( )} [{ ( )}f m f
     1 1S I I β E E β E  fV ( ) ] [ ]f

   1 1S I A D βE A   (2) 

( )f m α α                               (3) 

In order to simplifying Eq. (2), some matrix symbols without specific physical meaning are 
introduced in Eq. (2) are 

A fV )( IS  , ff EISEEH  ))(( m , β 1AH , )( mf EEβID    (4) 

For an isotropic material, the elastic tensor E can be expressed as 
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(5)

where e is the Young’s modulus of the material and v is its Poisson ratio. 
S is a 6×6 matrix and depends on the shape of the inclusions. In case of long continuous 
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Fig. 1 (a) a unidirectional fiber reinforced plastics: periodic microstructure (left) and unit cell (right); 
(b): a fiber inclusion with the relationship among three geometric dimensions a3>> a1, a2 
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For geometric dimensions a1 and a2, see Fig. 1(b). The cross-section of the fiber inclusion will 
be a circle if a1=a2. 

 
2.2 Numerical characteristics of stochastic effective thermal expansion coefficient 

tensor 
 
According to RFM, a random variable y can be expressed as a random factor y~  multiplied by 

its mean value μy: y= y~ ·μy. Random factor y~  represents the randomness of y, and the mean value 
of y~  is 1.0 and the mean square deviation of y~  is that of y. y~  and y obey the same  
probabilistic distribution. 

In the following, RFM is explicitly applied to derive the numerical characteristics of random 
effective thermal expansion coefficient tensor for a unidirectional fiber reinforced composite 
considered, whereby Young’s modulus em and Poisson ratio vm of matrix, Young’s modulus ef and 
Poisson ratio vf of fiber, cross-sectional dimensions of fiber a1 and a2, the fiber volume fraction Vf, 
thermal expansion coefficient of matrix and fiber αm and αf are random, and the correlation 
between em and vm, ef and vf, a1 and a2 is considered as well. 

These random parameters can firstly be written as em=
meme ~ , ef=

fefe ~ , vm=
mvmv ~ , 

vf=
fvfv ~ , a1=

11
~

aa  , a2=
22

~
aa  , Vf=

fvfV ~
, 

mmm
~α   , 

fff
~α   , where me~ , fe~ , 
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m
~ , f~ , 1

~a , 2
~a , fV

~ , m
~  and f~  are random factors of the random parameters. The mean 

values of the parameters are 
me , 

fe , 
mv , 

fv , 
1a , 

2a , 
fV , 

m  and 
f . The mean 

values of these random factors are 1.0, and the mean square deviations are 
me , 

fe , 
mv , 

fv , 

1a , 
2a , 

fV , 
m , 

f  for both random parameters and random factors. 
To obtain the coefficient of variance of αEI, mean value and mean square deviation of αEI 

should be firstly computed. From Eqs. (1)-(5), matrices A , H , β , D, g  and tensor αEI are 
functions of parameters em, ef, vm, vf, a1, a2, Vf, αm and αf. The method of computing mean value is 
essentially equivalent to a deterministic evaluation of the effective thermal expansion coefficient 
tensor by RFM, that is, mean values of A, H, β, D, g and αEI can be obtained by simply 
substituting the mean values 

me , 
fe , 

mv , 
fv , 

1a , 
2a , 

fV , 
m , 

f  into Eqs. 

(1)-(5) according to the random variables’ moment method (Ma et al. 2011, Gao et al. 2004). 
Hence, attention will be focused to the evaluation of the mean square deviation of αEI. 

αEI can firstly be rewritten as 

EIα fm Vα ( g  )= EIα ( fmffmfm ,,V,a,a,,,e,e  21 )           (6) 

From Eq. (6) and by random variables’ moment method, the mean square deviation EIα
  of 

effective thermal expansion coefficient tensor αEI without considering the correlation existing in 
the random parameters is 
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Mean square deviation EIα
  of αEI fully considering the correlation among random parameters 

is 
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where 
mmve , 

ff ve  and 
21aa  are correlation coefficients of em and vm, ef and vf, a1 and a2, 

respectively. 

The explicit expressions of the partial derivatives 
m

EI

e
α , 

m

EI


α , 

f

EI

e
α , 

f

EI


α , 

1a

EI


α , 
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f

EI

V
α , 

m

EI


α  and 

f

EI


α  in Eqs. (7)-(8) are all derived similarly. For conciseness, only the partial 

derivative 
f

EI


α  is explicitly analyzed (the formulations of other partial derivatives are listed as 

Eqs. (1)-(8) in Appendix). The application of the overall approach to the remaining partial 

derivatives follows in a straightforward fashion from the methods employed in 
f

EI


α . From Eqs. 

(1)-(4) and derivation rule, 
f

EI


α

 can be expressed as 

{ ( ) ( ) }
EI 1 1

f1 1 1 1
f f f

Eα A D A
D E A A E D E D
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Once again, for conciseness only computation of the first term ）（ AβED
A



 



f
f

fV 1
1


φ is 

analyzed hereafter in detailed, as the other four terms in Eq. (9) are computed in analogous way. In 

this term, only 
f

 1A  is a function of vf, whereas D-1, β, Ef, A and φ are constant matrices 

obtained by attributing to the nine random parameters their mean values. In order to compute 

f
 1A , the mean values of all parameters except for vf are first inserted into the matrices A-1, then 

the derivative with respect to vf is computed, and finally the mean value of vf is substituted. 
Completely analogous procedures are used to compute the other four terms in Eq. (9), 

f
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fV βE
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partial derivative 
f

EI


α  in Eqs. (7)-(8) is obtained. All the other partial derivatives 
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same way, and the mean square deviation EIα
  of αEI can finally be acquired. The coefficient of 

variance of αEI is thus 
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Table 1 Mean values of random parameters of fiber and matrix  

 e (GPa) v α (×10-6 1/K) a1 (mm) a2 (mm) 

Fiber (E-glass) ef =73.0 vf =0.2156 αf =5.0 0.04 0.05 

Matrix (Epoxy) em =4.5 vm =0.39 αm =81.0   

 
Table 2 10 samples of random parameters em, vm, a1 and a2 when me = m

 = 1a = 2a =0.05 

 
 

where EIα
  is the mean value of αEI, EIα

  is the mean square deviation of αEI computed with 

Eqs. (7)-(8). 
 
 
3. Numerical example 
 

Hereafter, for a unidirectional fiber reinforced plastic composites with fiber in Fig. 1, the 
coefficients of variance of αEI caused by microscopic uncertainty are inspected with the 
RFM-based homogenization analysis. The mean values of the random micro-structural parameters, 
including the material properties and thermal parameters of the constituents (E-Glass fibers and 
epoxy matrix) and the cross-sectional dimensions of the fibers are listed in Table 1. In order to 
validate the proposed method, the RFM results are compared with those of the MCM. Unless 
otherwise specified, the mean value of Vf is assumed as 0.25 and the number of simulation by 
MCM is 10000. 

Based on the Cholesky factorization of covariance matrix of random vector (Touran and Wiser, 
1992), the simulation of the correlation among random micro-structural parameters is realized by 
MCM in this work. According to the mean value of all random parameters in Table 1, their 
samples obeying normal distribution and satisfying different correlative conditions can be 
generated by MCM. The samples of random parameters em, vm, a1 and a2 with different correlative 
cases are listed in Table 2 and illustrated in Fig. 2. 

Clearly, when mme  =1 or 21aa =1, the relationship between em and vm, a1 and a2 is perfectly 
positive correlative, points corresponding to em and vm, a1 and a2 are in a straight line. Moreover,  

mme  =0 21aa =0 
mme  =0.5 21aa =0.5 

mme  =1 21aa =1 

em 

(×109) 
vm 

a1 

(×10-3) 
a2 

(×10-3) 
em 

(×109)
vm 

a1 

(×10-3)
a2 

(×10-3)
em 

(×109)
vm 

a1 

(×10-3) 
a2 

(×10-3)
4.6210 0.3637 0.4974 0.3827 4.6210 0.3724 0.4974 0.3840 4.6210 0.4005 0.4974 0.3980

4.9126 0.4492 0.4940 0.4015 4.9126 0.4591 0.4940 0.3989 4.9126 0.4258 0.4940 0.3952

3.9918 0.4041 0.5080 0.3757 3.9918 0.3802 0.5080 0.3822 3.9918 0.3460 0.5080 0.4064

4.6940 0.3888 0.5078 0.3777 4.6940 0.3973 0.5078 0.3838 4.6940 0.4068 0.5078 0.4063

4.5717 0.4039 0.4784 0.3999 4.5717 0.4052 0.4784 0.3912 4.5717 0.3962 0.4784 0.3827

4.2058 0.3860 0.4992 0.4307 4.2058 0.3738 0.4992 0.4262 4.2058 0.3645 0.4992 0.3994

4.4024 0.3876 0.4959 0.3846 4.4024 0.3837 0.4959 0.3850 4.4024 0.3815 0.4959 0.3967

4.5771 0.4190 0.5157 0.4074 4.5771 0.4185 0.5157 0.4127 4.5771 0.3967 0.5157 0.4126

5.3051 0.4175 0.5273 0.3955 5.3051 0.4487 0.5273 0.4070 5.3051 0.4598 0.5273 0.4219

5.1231 0.4176 0.5277 0.4223 5.1231 0.4409 0.5277 0.4304 5.1231 0.4440 0.5277 0.4222
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Fig. 2 Distribution of 10 samples corresponding to Table 2 (above) and of 100 samples (below) for 
different values of ρ 
 

 
the larger the correlation coefficients mme   or 21aa , the closer the points of samples satisfying 

mme   or 21aa  to that straight line. In the following sections 3.1-3.4, samples of parameters  
satisfying different correlative cases are used in the simulation by MCM, and the correlation 
among random effective properties is examined as well. 

 
3.1 Effects of the randomness of micro-structural parameters on the randomness of αEI 
 
Mean square deviations EIα

  and variation coefficients EIα
  of αEI obtained from both the  

RFM and MCM are listed in Table 3 considering the randomness of each micro-structural 
parameter in turn. 

First of all, Table 3 shows that RFM and MCM results are in very good mutual agreement, 
which validates the proposed RFM procedure. Moreover, from Table 3 it emerges that the effect of 
every random parameter on the randomness of αEI is very different, especially every element of αEI 
more greatly affected by every random parameter is quite different. The relationship, however, 
between coefficients of variance of random parameters and random effective results is basically 
linear, so here only the curves of αm and Vf are illustrated as instances in Fig. 3. According to the 
statistical results here, among all of random parameters, the randomness of αm has the greatest 
effect on that of αEI; and the randomness of Vf takes the second place and affects main diagonal 
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elements α1 and α2 of αEI more greatly; the randomness of vm takes the third place with a greater 
effect on element α2; the fourth is the randomness of em and ef as well as α1 and α2, and the former 
influences element α3 clearly while the latter has a greater impact on α1 and α2; the last group is vf 
and αf with obvious effects on elements α2 and α3, respectively. Moreover, the randomness of vf, 
em, ef, a1 and a2 respectively has no impact on the randomness of elements α1, α2, α2, α3 and α3. 

 
3.2 Impacts of the correlation among micro-structural parameters on αEI 

    
When considering the randomness of all micro-structural parameters simultaneously and the  

coefficient of variance is 
me =

m
 =

fe =
f =

1a =
2a =

fV =
m

 =
f , mean square deviation 

EIα
  and coefficients of variance EIα

  of αEI are listed in Tables 4-5 and illustrated in Fig. 4.  
Here Vf=0.25 and the simulation number is 10000. 
 
 
Table 3 Mean square deviations and variation coefficients of αEI when Vf=0.25  

 Results obtained from RFM Results obtained from MCM (10000) 

 1


 
(×10-6) 

2
(×10-6) 

3


 
(×10-6) 

1
  

(×10-3)
2

(×10-3)
3

(×10-3)
1


(×10-6)

2
(×10-6)

3


(×10-6)
1

  

(×10-3) 
2  

(×10-3) 
3

(×10-3)

em =0.05 0.0333 0.0054 0.5861 0.3030 0.0519 3.8305 0.0332 0.0054 0.5828 0.3020 0.0520 3.8090

m
 =0.05 0.0817 0.4382 0.1669 0.7435 4.2109 1.0909 0.0807 0.4378 0.1967 0.7342 4.2078 1.2860

fe =0.05 0.0332 0.0055 0.5862 0.3023 0.0526 3.8310 0.0334 0.0054 0.5850 0.3038 0.0523 3.8238

f =0.05 0.0004 0.1706 0.0487 0.0039 1.6400 0.3184 0.0004 0.1699 0.0484 0.0036 1.6331 0.3163

1a =0.05 0.3550 0.2600 0.0075 3.2305 2.4987 0.0490 0.3572 0.2639 0.0085 3.2510 2.5360 0.0556

2a =0.05 0.3560 0.2600 0.0080 3.2396 2.4987 0.0523 0.3555 0.2594 0.0085 3.2351 2.4931 0.0554

fV =0.05 1.2669 1.1207 0.7738 11.529 10.771 5.0568 1.2599 1.1148 0.7719 11.464 10.712 5.0449

m
 =0.05 5.4104 5.1358 7.4415 49.235 49.356 48.633 5.3825 5.1092 7.4029 48.933 49.052 48.334

f =0.05 0.0840 0.0670 0.2094 0.7642 0.6441 1.3682 0.0835 0.0667 0.2083 0.7603 0.6408 1.3610
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Fig. 3 Variation of the randomness of αEI with the randomness of αm (left) and Vf (right) 
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Table 4 EIα
  and EIα

  of αEI under different correlative cases when γ=0.05 and Vf=0.25 
1

  

 Results of Random Factor Method Results of Monte-Carlo Method (MCM: 10000)

 1
  

(×10-5) 
2

(×10-5) 
3

  

(×10-5) 
1

  

(×10-2)
2

(×10-2)
3

(×10-2)
1


(×10-5)

2
(×10-5)

3


(×10-5)
1

  

(×10-2) 
2  

(×10-2) 
3

(×10-2)
 =0 0.558 0.5291 0.7532 5.0788 5.0847 4.9225 0.5580 0.5290 0.7533 5.0784 5.0844 4.9222
 =0.5 0.5575 0.5288 0.7536 5.0736 5.0817 4.9254 0.5573 0.5286 0.7538 5.0735 5.0815 4.9252

mme  =0.5 0.5581 0.5291 0.7537 5.0790 5.0849 4.9259 0.5581 0.5290 0.7536 5.0786 5.0847 4.9256

ffe  =0.5 0.5581 0.5291 0.7534 5.0789 5.0848 4.9235 0.5580 0.5291 0.7535 5.0786 5.0845 4.9234

21aa =0.5 0.5575 0.5288 0.7532 5.0735 5.0816 4.9225 0.5573 0.5285 0.7533 5.0731 5.0814 4.9223

Here ρ means 
mme  = ffe  =

21aa , γ means 
me =

m
 =

fe =
f =

1a =
2a =

fV =
m

 =
f .    

 
Table 5 EIα

  and EIα
  of αEI under different random and correlative conditions 

 Results of RFM Results of MCM (MCM: 10000) 

 1
  

(×10-5) 
2  

(×10-5) 
3

  

(×10-5) 
1


(×10-2)

2

(×10-2)
3

(×10-2)
1


(×10-5)

2
(×10-5)

3


(×10-5) 
1

  

(×10-2) 
2  

(×10-2) 
3

(×10-2)
 =0.05,  =0 0.5581 0.5291 0.7532 5.0788 5.0847 4.9225 0.5580 0.5290 0.7533 5.0784 5.0844 4.9222
 =0.05,  =0.8 0.5572 0.5286 0.7539 5.0706 5.0800 4.9270 0.5573 0.5283 0.7542 5.0702 5.0805 4.9273
 =0.1,  =0 1.1162 1.0582 1.5064 10.158 10.169 9.8451 1.1162 1.0582 1.5066 10.157 10.167 9.8449
 =0.1,  =0.8 1.1144 1.0572 1.5078 10.141 10.157 9.8538 1.1146 1.0571 1.5080 10.140 10.159 9.8535

Here γ means 
me =

m
 =

fe =
f =

fV =
1a =

2a =
m

 =
f , ρ means 

mme  = ffe  =
21aa . 
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Fig. 4 Variation of the randomness of αEI with 
21aa  (left) and with  =

mme  = ffe  =
21aa  (right) 

 
 
Tables 4-5 and Fig. 4 interestingly demonstrate the interactive effects due to the simultaneous  

variability of different random parameters. The coefficient of variance EIα
  in Tables 4-5 is much  

larger than those in Table 3, which shows that the randomness of each element of αEI is an 
interactive and complementary result from the effects of all parameters. Secondly, when  
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Table 6 Variation coefficients EIα
  of αEI under different correlative conditions (RFM) 

ρ 
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1
 (×10-2) 5.0778 5.0768 5.0758 5.0747 5.0736 5.0727 5.0717 5.0706 5.0697

^

1
 (×10-2) 5.0788 5.0788 5.0788 5.0788 5.0788 5.0788 5.0788 5.0788 5.0788

2 (×10-2) 5.0841 5.0835 5.0829 5.0824 5.0817 5.0812 5.0806 5.0800 5.0794
^

2
 (×10-2) 5.0847 5.0847 5.0847 5.0847 5.0847 5.0847 5.0847 5.0847 5.0847

3 (×10-2) 4.9231 4.9236 4.9242 4.9247 4.9254 4.9258 4.9264 4.9270 4.9275
^

3
 (×10-2) 4.9225 4.9225 4.9225 4.9225 4.9225 4.9225 4.9225 4.9225 4.9225

Here ρ means 
mme  = ffe  =

21aa , EIα
  and ^

EIα
  are coefficients of variance when ρ≠0 and ρ=0. 

 
Table 7 Coefficients of variance of αEI under different Vf and ρ (MCM: 10000) 

Vf 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

ρ=0.4 1
 (×10-2) 5.0082 5.0531 5.0937 5.1225 5.1405 5.1505 5.1549 5.1558 5.1546

ρ=0 
^

1
 (×10-2) 5.0101 5.0568 5.0979 5.1264 5.1437 5.1527 5.1562 5.1564 5.1548

ρ=0.6 2 (×10-2) 5.0065 5.0531 5.1098 5.1649 5.2145 5.2582 5.2970 5.3327 5.3669

ρ=0 
^

2
 (×10-2) 5.0077 5.0560 5.1137 5.1690 5.2182 5.2610 5.2989 5.3336 5.3672

ρ=0.9 3 (×10-2) 5.0825 4.9577 4.9076 4.8845 4.8724 4.8655 4.8613 4.8586 4.8568

ρ=0 
^

3
 (×10-2) 5.0652 4.9503 4.9042 4.8829 4.8716 4.8651 4.8611 4.8585 4.8568

Here ρ means 
mme  = ffe  =

21aa . 

 
 
considering the randomness of all parameters simultaneously, EIα

  significantly increases when  
variation coefficient of parameters changes from 0.05 to 0.1 as shown in Table 5. Moreover,  
coefficient of variance EIα

  obtained considering the correlation among all random parameters is  
different from that obtained not considering or only partly considering this correlation, which  
again indicates a complementary and interactive effect of mme  , 21aa  and ffe   on the 
random homogenized results. For example, 

3
  slightly increase with the increasing mme   or 

ffe  , but it nearly remains a constant with the augmenting 21aa . As a result, 3
  goes up 

slightly with increasing mme  = ffe  = 21aa . 
When all micro-structural parameters are random and the correlation among random 

parameters is considered completely, coefficient of variance of αEI under different correlative 
conditions is displayed in Table 6 by RFM. Once again, with the increase of ρ, the correlation 
among random parameters strengthens the randomness of α3 but weaken the randomness of α1 and 
α2 as illustrated in Fig. 4. 
 

3.3 Influences of Vf on the randomness of αEI 
    

Geometry of a microstructure such as Vf has an important influence on homogenized results. 
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Relationship between the randomness of αEI and Vf is investigated under different correlative 
conditions by RFM and MCM when all micro-structural parameters are random. In this section, 
the coefficient of variance of every random parameter is still 0.05, and ρ means  

mme  = ffe  = 21aa . 
Coefficient of variance EIα

  of αEI is firstly given in Table 7 and illustrated in Fig. 5. Results  
show that coefficients of variance of elements α1 and α2 increase while that of element α3 decreases 
with the increasing Vf no matter random micro-structural parameters are correlative or not 
correlative. Again, the conclusions from section 3.2 are verified: with the increasing ρ, the 
randomness of α1 and α2 decreases while that of α3 increases slightly. 
 

 

0 0.2 0.4 0.6 0.8 1
0.048

0.049

0.05

0.051

0.052

0.053

0.054

0.055

0.0560.056

Volume fraction  V
f

V
a
ria

tio
n
 c

o
e
ff
ic

ie
n
t 
o
f 
 

E
I  

 

 




1
MC




2
MC




3
MC




1
RFM




2
RFM




3
RFM

0 0.2 0.4 0.6 0.8 1
0.048

0.049

0.05

0.051

0.052

0.053

0.054

0.055

0.056

Volume fraction  V
f

V
a
ri
a
tio

n
 c

o
e
ff
ic

ie
n
t 
o
f 
 

E
I  

 

 




1
MC




2
MC




3
MC




1
RFM




2
RFM




3
RFM

Fig. 5 Variation coefficient of αEI when 
mme  = ffe  =

21aa =0 (left) and that when 

mme  = ffe  =
21aa =0.8 (right) 
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Fig. 6 Value range of element α1 given by two methods (left) and that of α1 given under different 
correlative conditions (right) 

 

 
 
The mean value EI

 , upper bound EIEI 
 3  and lower bound EIEI 

 3  of αEI are 
given in Figs. 6-7, which illustrate the value range of αEI according to ±3σ rule. 
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Fig. 7 Value range of α2 (left) and of α3 (right) given under different correlative conditions 
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Fig. 8 Correlative curves of αEI when 
mme  =

ffe  =
21aa =0 (left) and 

mme  =
ffe  =

21aa =0.8 (right) 

 
 

From Figs. 6-7, values of EI
 , EIEI 

 3  and EIEI 
 3  augment with the increasing Vf. 

Moreover, the difference EI
6  of upper bound EIEI 

 3  and EIEI 
 3  for α1 and α2  

enlarges with the increasing Vf while that for α3 slightly decrease, which is consistent with the 
conclusions summarized from Fig. 5 and Table 7. In addition, the value range of α1 or α2 for ρ=0.8 
is comprised by that for ρ=0, as for α3, the opposite is true, which is consistent with the 
conclusions obtained in section 3.2. 

 
3.4 Impacts of different factors on the correlation among elements of αEI 
 
When fully considering the randomness of all parameters and the correlation among them, the 

correlation among elements of αEI is inspected by MCM, whereby coefficient of variance of every 
random parameter is still 0.05. The variation of correlation in αEI with Vf is shown in Fig. 8 under 
different correlative cases. 

From Fig. 8, the curves of correlation coefficients 
21  and 

31  as well as 
32  for 

mme  =
ffe  = 

21aa =0.8 are different from that for 
mme  =

ffe  =
21aa =0, that is, the correlation  
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Table 8 Correlation coefficients among elements of αEI when Vf =0.25 (MCE: 10000) 

 
mme  =0.1 

mme  =0.5 
mme  =0.1 

mme  =0.1
mme  =0.5

mme  =0.1
mme  =0.5 

mme  =0.9 
mme  =1

 
ffe  =0.1 ffe  =0.1 ffe  =0.5 ffe  =0.1 ffe  =0.5 ffe  =0.5 ffe  =0.5 ffe  =0.9 ffe  =1

 
21aa =0.1 

21aa =0.1 
21aa =0.1 

21aa =0.5
21aa =0.1

21aa =0.5
21aa =0.5 

21aa =0.9 
21aa =1

21
  0.9854 0.9856 0.9855 0.9906 0.9856 0.9906 0.9907 0.9962 0.9979

31
  0.9829 0.9826 0.9827 0.9846 0.9825 0.9846 0.9844 0.9854 0.9858

32
  0.9845 0.9862 0.9853 0.9854 0.9870 0.9854 0.9862 0.9914 0.9923
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Fig. 9 Correlative curves of αEI with different number of realization (MCM: 5000 left and MCM: 
50000 right) 

 
 

among random parameters has obvious effects on the correlation among the homogenized results. 
Moreover, the correlation in αEI changes with the increasing Vf, and the greatest change is from  

32 and is close to 10%. 
When coefficient of variance of every variable is 0.05, correlation coefficients of αEI are listed 

in Table 8, and the correlative curves of αEI are illustrated in Fig. 9 as well. 

From Fig. 9 and Table 8, it can be seen that elements 1 and 2 as well as 3 exhibit very 

strong positive correlation that varies from 0.98 to 1.0 no matter the correlation among parameters 
is strong or weak. The correlation among αEI goes up with the increasing correlation of parameters, 
which reflects the correlation of parameters has a positive and direct effect on that of αEI. 

In order to demonstrate the impact of the correlation of parameters on that of αEI, mean values  
of αEI are listed in Table 9 and indicated in Fig. 10 when 

me =
m

 =
fe =

f =
fV =

1a =
2a  

=
m

 =
f =0.05 and Vf=0.25. Here ρ means mme  = ffe  = 21aa . The number of realization is  

10000. 
From Table 9 and Fig. 10, when ρ=1, 

21  and 
32

  are nearly equal to 1 as shown in Table 

8, so the distribution of red points corresponding to mean values of α1
 and α2, α2 and α3

 are very 
concentrated and almost in a straight line especially for 100 samples’ realization, and predictably, 
such a trend is more obvious with the increasing number of samples’ realization. Clearly, the 
correlation among αEI enlarges with the strengthening correlation of parameters. 
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Table 9 Mean values of elements of αEI computed from 10 samples of each random parameter (MCM: 
10000) 

ρ=0 ρ=0.5 ρ=1 

α1 (×10-4) α2 (×10-4) α3 (×10-4) α1 (×10-4) α2 (×10-4) α3 (×10-4) α1 (×10-4) α2 (×10-4) α3 (×10-4)

1.0604 1.0046 1.4602 1.0597 1.0032 1.4598 1.0559 0.9981 1.4578 

1.1007 1.0310 1.5049 1.1009 1.0273 1.4986 1.1025 1.0356 1.5121 

1.1375 1.0619 1.5879 1.1373 1.0693 1.5903 1.1343 1.0828 1.5926 

1.1863 1.1112 1.6298 1.1846 1.1116 1.6295 1.1797 1.1153 1.6295 

1.1671 1.1037 1.6343 1.1686 1.1033 1.6345 1.1706 1.1091 1.6373 

1.1067 1.0596 1.5527 1.1080 1.0624 1.5535 1.1131 1.0597 1.5536 

1.0293 0.9712 1.4281 1.0294 0.9726 1.4285 1.0274 0.9747 1.4287 

1.0557 0.9919 1.4664 1.0549 0.9926 1.4665 1.0557 0.9982 1.4696 

1.0462 0.9813 1.4325 1.0433 0.9756 1.4254 1.0407 0.9730 1.4190 

1.2070 1.1367 1.6639 1.2049 1.1317 1.6568 1.2062 1.1317 1.6568 
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Fig. 10 Results obtained from 10 samples of every parameter (above) and that obtained from 100 
samples of each parameter (below) 
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4. Conclusions 
 

The subject of stochastic homogenization is devoted to the determination of the properties of a 
homogeneous material that approximates the behavior of the original heterogeneous problem with 
uncertainty. This work focuses on stochastic homogenization of a fiber reinforced composite 
material with uncertainty in microstructure, and the target is to address the relationship between 
the micro-structural uncertainty including the full randomness and correlation and the uncertainty 
of macroscopic thermal properties. In order to demonstrate such uncertainty existing in 
homogenized results, numerical characteristics such as the mean value and mean square deviation 
as well as coefficient of variance together with correlation coefficient of effective thermal 
expansion coefficient tensor are derived, which is quite crucial for the application in engineering, 
e.g. reliability analysis of structure comprising such composites bearing thermal stresses. 

This work focuses in particular on the evaluation of the macroscopic thermal expansion 
coefficient tensor based on the analytical Mori-Tanaka estimate, in presence of uncertainties of the 
geometry and material parameters of the microstructure. Results from RFM are compared with 
those from the Monte-Carlo Method (MCM) simulations in order to validate the proposed method. 

From the numerical results, the following conclusions can be obtained: 
• The sets of numerical results from the RFM and the MCM are in very good agreement. Hence 

the proposed method delivers the same accuracy of the MCM with lower computational cost; 
• The random effective thermal expansion coefficient tensor elements are significantly affected 

not only by the randomness of the micro-structural parameters but also by their correlation. The 
impacts of all random parameters on the randomness of αEI are complementary and interactive; 

• Different random parameters and their correlation have different impacts on the random 
effective thermal expansion coefficient tensor; 

• The correlation among random micro-structural parameters not only impacts the randomness 
of the effective thermal expansion coefficient tensor elements but also affects their value ranges 
and their correlation. The correlation among αEI remains very high and goes up with the increasing 
correlation among random parameters; 

• The randomness of Vf significantly affects the randomness and the correlation of effective  
thermal expansion coefficient tensor elements. Variation coefficients 

1
  and 

2
  increase 

while 
3

  decreases with the increasing Vf, which directly determines the enlarging difference of  
upper and lower bounds of α1 or α2 and the decreasing difference of α3 with the augment of Vf. 

As for two methods used for random homogenization here, the oscillation of results from RFM 
is much smaller than that from MCM as shown in Fig. 5, which is because MCM significantly 
depends on the realization number as illustrated in Fig. 9. RFM needs much less computational 
cost than MCM but outputs results with comparable accuracy to MCM. As shown in this paper, 
whenever an explicit relationship is available between homogenized results and micro-structural 
parameters, regardless whether this relationship is linear or nonlinear, the random homogenized 
results can be easily evaluated by the RFM. 

Moreover, the content of this work is analytical, although the wide range of micromechanical 
problems can be tackled with robust numerical methods. As in many other engineering fields, it is 
not wrong to say that the computational methods available to analyze micromechanical problems 
have superseded analytical ones as well as those available via laboratory experiments. However, 
analytical tools are indispensible for a solid foundation for computational methods. In addition, the 
stochastic homogenized results from RFM and MCM are verified by each other and consistent 
with each other very well, which will be the robust basis for the stochastic homogenization 
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problem based on computational techniques combined with the Monte-carlo method in the future 
work. 
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