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Abstract.  In the present study, modelling and vibration control of axially moving laminated Carbon 

nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic 

visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, 

normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on 

new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one 

due to reducing the number of unknowns and governing equations, and significantly, it does not require a 

shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase 

composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. 

Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix 

and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing 

Hamilton’s principle, the equations of motion are obtained and solved by Hybrid analytical numerical 

method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by 

adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine 

vessels and aircrafts. 
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1. Introduction 
 

Laminated composite materials play an important role in today's modern industry such as 

aerospace, marine and civil infrastructure, etc., because they offer many excellent mechanical 

properties such as high strength/stiffness for lower weight, facility to vary fiber orientation, 

resistance to electrochemical corrosion, preferable fatigue response characteristics and other 

superior material properties of composites. This is especially meaningful in aerospace and 

submarine structures which require high stiffness and a substantial amount of weight-saving. 

Therefore, the accurate prediction of the structural and dynamical behavior of laminated composite 

structures can be useful in production of material with excellent features. 

In recent decades, study on the laminated composite structures was carried out by many 
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researchers. Phan and Reddy (1985) utilized a higher-order shear deformation theory (HSDT) to 
study laminated anisotropic composite plates. They developed a displacement finite element model 
of HSDT and investigated applications of the element in bending, vibration and stability of 
laminated composite plates. In other work, Basar and Omutag (2000) analyzed free-vibration of 
thin/thick laminated structures using layer-wise shell models. They approximated a quadratic 
polynomial function for the displacement field and considered multiplicative decomposition of the 
first-order term and a quadratic stretching parameter. Finally, these formulations developed to a 
layer-wise model. Dogruoglu and Omurtag (2000) studied the stability of the composite laminated 
plate resting on Pasternak foundation by mixed finite element model. By applying the appropriate 
dynamic and geometric boundary conditions using the Gâteaux differential, they achieved a 
functional for thin laminated plates. Also, they investigated the effect of damping parameter of 
elastic foundation and approved that type of foundation is a significant parameter on the critical 
buckling loads. Tahouneh (2014) analyzed free vibration of bidirectional functionally graded 
annular plates resting on a two-parameter elastic foundation. They utilized the 2-D power-law 
distribution to illustrate various material profiles along the thickness. Khalaj et al. (2015) 
presented comprehensive results from cyclic plate loading at a diameter of 300 mm supported by 
layers of geocell. They found that utilizing four layers of geocell cause to decrease the total and 
residual plastic settlements about 53% and 63%, respectively, and increase the resilient settlement 
145% in comparison with the unreinforced case. 

Axially moving flat structures at high speeds have widespread application in many devices 
such as magnetic tapes, textile webs during production and processing, conveyor belts and band 
saw blades. Therefore, predicting and controlling the instability of such systems at critical speeds 
can help to achieve high performance. Following papers is a collection of work done in this regard. 
Hatami et al. (2007) presented free vibration of axially moving laminated composite plates 
includes symmetric cross-ply and angle-ply laminates and anisotropic plates under in-plane forces 
by CPT. In another work, Hatami et al. (2008) studied on the free vibration analysis of axially 
moving viscoelastic plates with constant axial speed. They used rheological models for 
investigation on the viscoelastic behavior of materials by an exact finite strip method. Marynowski 
and Grabski (2013) analyzed the dynamic of an axially moving plate subjected to thermal loading. 
They utilized the extended Galerkin method to solve the set of equations of motion. They have 
been examined the effects of transport speed, the thermal critical loading and axial tension on the 
dynamic behavior of axially moving aluminum plate. As a continuation of their research, 
Ghorbanpour Arani and Haghparast (2015) proposed vibration analysis of axially moving 
viscoelastic microplate plate under initial tension. In this work, they used sinusoidal shear 
deformation theory to obtain governing equations of motion. Their results indicated that the 
critical speed of moving micro-plate is significantly dependent on the aspect ratios; therefore, the 
low aspect ratio should be selected for optimum design of moving micro-devices. 

CNTs/fiber/polymer composites, called as “multiscale” composite, are innovative generation of 
advanced composite materials. Weight reduction is the main reason for employing CNTFPCs in 
many engineering applications. Therefore, investigation of CNTs/fiber/polymer multiscale 
composites is of enormous importance. Modelling and nonlinear stress analysis of piezolaminated 
multiscale composite plates under a combined mechanical and electrical loading was presented by 
Rafiee et al. (2014). They considered symmetrically and perfectly bonded piezoelectric layers on 
the top and bottom surface of the composite host and investigated the influence of the applied 
constant voltage and weight percentage of CNT on the deflection and stress analyses of the 
piezoelectric CNTFPC plate. Nevertheless, the review of the literature confirms that no research  
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Fig. 1 A hierarchical configuration for modelling of three phase multiscale composite 

 
 

has been performed to study the vibration analysis of axially moving CNTs/fiber/polymer 
multiscale laminated composite plate. 

Motivated by the aforementioned ideas, the vibration analysis of axially moving 
CNTs/fiber/polymer multiscale composite plate resting on orthotropic visco-Pasternak foundation 
is investigated in this study for the first time. Halpin-Tsai model and fiber micromechanics 
approach are used to determine the material properties of the multiscale composite plate. 
Orthotropic visco-Pasternak foundation is developed by evaluating of orthotropy angle, damping 
coefficient besides normal and shear modulus. Employing a new form of first-order shear 
deformation theory, the equations of motion for axially moving multiscale laminated plate are 
derived and solved by means of hybrid analytical numerical method for various types of boundary 
conditions. The effects of various parameters on the frequencies and critical speed of axially 
moving CNTFPC laminated plates are investigated through a detailed parametric study. The result 
of this work can be useful to control and improve the performance of axially moving devices 
which are employed in military equipments. 
 
 
2. Halpin-Tsi model 
 

A set of semi-empirical relations have been presented by Halpin and Tsai (Thostenson et al., 
2002) for easy design procedure. These relations were developed by curve fitting to the results that 
are based on elasticity. According to the combination of Halpin-Tsai model and micromechanics 
approach, the mechanical properties of CNTFPC laminated plate can be obtained via two steps in 
the hierarchy as illustrated in Fig. 1. 

Therefore, the mechanical properties of three-phase composite laminated plate can be predicted 
by micromechanics approach as follows (Rafiee et al. 2014) 
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where E11, E22, G12, υ12, ρ, V represent longitudinal and transverse Young’s modulus, in plane shear 
modulus, Poisson ratio, density and volume fraction, respectively. Also, m and f superscripts are 
related to the nano-composite matrix and E-Glass fibers, respectively. 

According to Halpin-Tsai model, the mechanical properties of nano composite matrix can be 
obtained as (Rafiee et al. 2014, Kim et al. 2009) 
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in which, dNT and lNT are diameter and length of CNTs, respectively. Also, ηL , ηD and volume 
fraction of CNT are defined, respectively, as follows (Kim et al. 2009) 
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where wNT and t denote the mass fraction and thickness of CNTs. It should be noted that the 
superscripts NT and epoxy are related to the resin epoxy matrix and CNT fibers, respectively. 

108



 
 
 
 
 
 

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation 

 
Fig. 2 Schematic figure of axially moving CNTs/fiber/polymer multiscale laminated composite plate 
resting on orthotropic visco-Pasternak foundation 

 
 
3. Mathematical modelling 
 

3.1 The new form of FSDT 
 

Fig. 2 shows the schematic of cross-ply laminated plate with length a, width b and thickness h. 
Multi scale composite plate consist of a mixture of isotropic matrix (epoxy resin), CNTs and fibers 
(E-Glass) with different alignment for each lamina through the thickness. The CNTs are 
considered to be uniformly distributed and randomly oriented through the matrix. It is also 
assumed that the CNTs-matrix bonding, fiber-matrix bonding and CNT dispersion in the matrix are 
perfect. In addition, the mechanical properties and aspect ratio of each CNT and all straight CNTs 
are similar. x and y axes are located in the mid-plane and z axis located along the thickness 
direction. CNTFPC plate is moving along the x direction with the constant velocity C. 

Based on the new form of FSDT, the displacement fields can be expressed as (Thai et al. 2014) 
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It is obvious that u, v, w and θ are four unknown displacement functions of the mid-plane of the 
laminated plate. Therefore, the presented theory has one unknown displacement function less than 
the common FSDT where have five unknown displacement functions. Also, it’s proved that this 
theory does not require to the shear correction factor unlike the FSDT. 

Therefore, the strain relations can be defined as (Thai et al. 2014) 
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In the Eq. (5), ε0
, γ

0 and k are normal strains, shear strains and curvatures, respectively. Note 
that εzz=0. 

 
3.2 Constitutive equations 

 
The constitutive equations of laminated composite plate consist of the relations between the 

force and moment resultants and the strain components, can be expressed as (Dong Yang et al. 
2011, Reddy 2004) 
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(6)

where Ks is the shear correction factor that considered as Ks=1 in the new form of FSDT. A, B and 
D are called the extensional, coupling and bending stiffness matrices, respectively, and for Lth layer 
of composite plate can be obtained as 
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in which, zk is the kth width position along z direction. It should be mentioned that Bij is equal to 
zero when symmetric coordinate system in global z-direction is selected. The laminated composite 
consists of several orthotropic layers with their fibers axes that oriented randomly respect to the 
global coordinates (x, y, z). The elastic constants (Q) for each layer can be determined as follows 
(Reddy 2004) 
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The elastic constants should be transformed to the global coordinates. So, by assuming 
m=cosϕL and n=sinϕL (ϕL is the angle between global x-axis and fiber axes of Lth layer), reduced 
elastic constants (Q ) for Lth layer can be expressed as (Dong Yang et al. 2011, Reddy 2004) 
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The similar values for Q44 and Q55 are considered, generally. Therefore, 45Q  is equal to zero. 
In other side, in Eq. (6), (Nx, Ny, Nxy), (Mx, My, Mxy) and (Qx, Qy) are the in-plane force resultants, 
the moment resultants and transverse force resultants, respectively, and expressed as (Reddy 2004) 
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in which, σpq (p,q=x,y,z) denotes the stresses of laminated plate. 
 
3.3 Axially moving laminated composite plate 

 
Based on continuum mechanics, the velocity vector are obtained by (Marynowski and Grabski 

2013) 
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where r


 is displacement vector. So, the velocity vector (V


) for the laminated composite plate 
where moving along the x direction with constant velocity C can be calculated by Eq. (11) 
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3.4 Orthotropic pattern of visco-Pasternak foundation 

 
The laminated composite plate is resting on the orthotropic visco-Pasternak foundation. 

Winkler foundation simulates just normal load while the orthotropic Pasternak simulates both 
normal loads and transverse shear in addition to it is considered an arbitrarily oriented foundation. 
The force applied on laminated composite plate from orthotropic elastic foundation can be 
calculated by (Kutlu and Omurtag 2012) 
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where Kw
 and Cd are Winkler and damping constants. Also, Kgx and Kgy are shear foundation 

parameters in ς and η directions, respectively. The angle Θ is the local ς-direction of orthotropic 
foundation with respect to the global x-axis. 
 

3.5 Equations of motion based on Hamilton’s principle 
 

The Hamilton’s principle is utilized to obtain governing equations of CNTFPC laminated plate 
as follows (Reddy 2004) 
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in which, Ub, Up, K and Σ are potential energy due to bending and elongation, kinetic energy and 
external work, respectively. The variation of strain energy can be expressed as (Reddy 2004) 
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In this study, it is assumed that the uniform pre-stress σxx
0 along the x direction was applied on 

the CNTFPC plate. In addition, the pre-stress components in the shear stress and the normal stress 
in the y direction aren’t considered. Therefore, the variation of potential energy due to elongation 
in the x direction is obtained as (Dong Yang et al. 2011) 

     
2

0 0

1
( ),
2

b a
p x

w
U N dxdy

x
   

    
 (16)

where 2 0
2

h
x xxhN dz . 

The variation of kinetic energy and external work due to orthotropic elastic foundation can be 
expressed as (Ghorbanpour Arani and Haghparast 2015) 

     2 2

2

1
( ( ) ),

2

h

c
hA

K V dzdA   






 (17)

     2
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1
( ( , , , ) ).

2

h

hA
F w x y z t dzdA   



    (18)

By substituting Eq. (6) into Eq. (15), Eq. (12) into Eq. (17), Eq. (13) into Eq. (18) and the 
subsequent results into Eq. (14), the equations of motion can be obtained. Following parameters 
are defined to change the equations of motion in a dimensionless form 

(19)
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in which, I0, I1 and I2 defined as 
2 2

2
(1, , )

h

h
z z dz


. Finally, dimensionless equations of motion for 

axially moving three-phase laminated plate are calculated as follows 
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4. Hybrid analytical-numerical solution  
 

In order to solve motion equations, following functions are defined to separate time and space 
variables (Thai et al. 2014) 
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 (21)

in which, 1,i    is the natural frequency and (Umn, Vmn, θmn, Wmn) are coefficients. X(ζ) and 
Y(η) which satisfy at least the various geometric boundary conditions(Hatami et al. 2007). These 
parameters are presented in Table 1. 
 
 
Table 1 Coefficients of Eq. (21) for various boundary conditions 

B.C 

 
 X   2sin ( )  sin( )  2 2cos ( )[sin ( ) 1]   2sin ( )  

 Y   2sin ( )  sin( )  2sin ( )  sin( )  
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where m

a

   and n

b

  . Substituting Eq. (21) into Eq. (20) yields following relation 
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 (22)

in which, coefficients Srs (r,s=1,2,3,4) are given in Appendix A. In order to calculate a non-trivial 
solution, the determinant of the coefficient matrix in Eq. (22) must be zero. Expansion of this 
determinant provides the algebraic equation including ω parameters where it can be solved 
analytically and consequently, the frequencies of axially moving multiscale laminated plate are 
obtained. It should be noted that these frequencies contain real and imaginary parts which are 
corresponding to the natural and damping frequencies of the plate, respectively. In the following 
section, the influence of various parameters on the natural frequency has been investigated in 
details.  
 

 
5. Numerical results and discussion 
 

In this section, effects of various parameters such as volume fraction of CNTs and fibers, 
axially moving speed, aspect ratio and thickness on the vibration characteristics of axially moving 
CNTFPC plate are discussed in details. In this regard, four layer (0◦/90◦/90◦/0◦) symmetric cross-
ply CNTFPC plate with length a, width b and thickness h is considered. Geometrical properties of 
clamped-clamped laminated plate are assumed as: a/b=2, a/h=5 and h=100 mm. Multiscale 
composite plate consists of a mixture of isotropic matrix (epoxy resin), CNTs and fibers (E-Glass) 
with different alignment for each lamina through the thickness. The CNTs are considered to be 
uniformly distributed and randomly oriented through the matrix. The material properties of epoxy 
resin, E-Glass fibers, single walled and multi walled CNTs are listed in Tables 2 and 3. 

 
5.1 Validation of study 

 
Table 4 presents dimensionless natural frequencies ( 2 / /b h E   ) of a simply supported 

symmetric laminated composite plate (0◦/90◦/90◦/0◦), in which the thickness-to-length ratios (h/a)  
 
 
Table 2 Mechanical properties of Epoxy resin polymer matrix and E-Glass fibers (Rafiee et al. 2014) 

Properties E (Kg/m2) ρ (Kg/m3)  υ12 

Epoxy resin polymer matrix 2.72 ×109 1200 0.33 

E-Glass fibers 69 ×109 1200 0.2 

 
Table 3 Mechanical properties of SWCNTs and MWCNTs (Rafiee et al. 2014)  

Properties dNT (m) lNT (m) tNT (m) E11
NT (Kg/m2) ρNT (Kg/m3) υ12 

SWCNT 1.4 ×10-9 25 ×10-6 0.34 ×10-9 640 ×109 1350 0.33 

MWCNT 20×10-9 50 ×10-6 0.34 ×10-9 400 ×109 1350 0.33 
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Table 4 Comparison between the dimensionless natural frequencies ( 2 / /b h E   ) of a simply  

supported symmetric laminated composite plate (0◦/90◦/90◦/0◦) with zero moving speed 

Method 
h/a 

0.01 0.02 0.05 0.1 0.25 
Higher order refined theory 

(Kant  and Swaminathan, 2001) 
18.8357 18.6720 17.6470 15.1048 9.2870 

Simple higher order plate theory 
(Reddy,1984) 

18.8526 18.7381 17.9938 15.9405 10.2032 

New first order Shear deformation 
theory (Present work) 

18.8361 18.6716 17.6478 15.1093 9.3549 

 
Table 5 Comparison between the first natural circular frequencies (rad/s-1) for graphite/epoxy laminated 
plate with zero moving speed obtained from present method and Khorshid and Farhadi (2013) 

Method 
h/a 

0.01 0.1 0.2 

ANSYS (Khorshid and Farhadi 2013) 29.89544 239.2477 339.8131 

Rayleigh–Ritz (Khorshid and Farhadi 2013) 29.9778 240.440 343.370 

Present method 29.9442 240.1354 341.8566 
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Fig. 3 Comparison between the natural frequency for in-plane vibration of composite plate 
obtained from present method and Dong Yang et al. (2011) 

 
 
of plates are set to 0.01, 0.02, 0.05, 0.1 and 0.25. The square plate is made of graphite/epoxy. It can 
be concluded that the increasing thickness ratio leads to decrease dimensionless natural 
frequencies. In addition, this table elucidated that the difference between dimensionless 
frequencies of new form of FSDT and other shear deformation theories is negligible in lower 
dimensionless thickness parameter (h/a), while this difference is considerable in higher values of 
h/a. As can be observed, there is an excellent agreement between the results of present study and 
the published papers. 

In another attempt, the comparison between present study and the work which was done by 
Khorshid and Farhadi (2013) is performed in Table 5. Khorshid and Farhadi (2013) investigated 
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the natural frequencies of graphite/epoxy laminated plate with Rayleigh- Ritz approach and 
compared the results with ANSYS commercial software. The comparison between the results of 
presented method and the work which was done by Khorshid and Farhadi (2013) confirmed the 
accuracy of hybrid analytical numerical method which is utilized in this study. 

To verify the mathematical formulation of axially moving plate, another comparison is done. 
Dong Yang et al. (2011) investigated vibration and stability of axially moving laminated composite 
plate. They considered an anti-symmetrical cross-ply composite plate composed by six lamina 
with cross-ply angle [0/90/90/0/0/90]and thickness of 0.1 mm, 0.3 mm, 0.2 mm, 0.2 mm, 0.3 mm, 
and 0.1 mm, respectively, and calculated the natural frequency for in-plane and out of plane 
vibration. Fig. 3 shows the natural frequencies of composite plate versus moving speed obtained 
from present method and Dong Yang et al. (2011). The natural frequencies which are obtained by 
Dong Yang et al. (2011) are extracted by GET DATA software. This figure confirms the accuracy 
of present study for moving laminated plate. 
 

5.2 Vibration analysis results 
 

Dimensionless natural frequency versus thickness-to-length ratio of multiscale plate in various 
weight percentages of CNTs is demonstrated in Fig. 4. As can be seen, increasing thickness-to-
length ratio (h/a) leads to increase dimensionless frequencies of CNTFPC plate. The results reveal 
that small amount of SWCNTs (2-4%) can enormously increase the frequencies especially at high 
thickness-to-length ratio of CNTFPC plate. Also, this increase is more pronounced in the case of 
CNTFPC plate reinforced with SWCNT in comparison with MWCNT. Therefore, in the following 
figures, multiscale plate which is reinforced by 4% SWCNTs is selected.  

Fig. 5 shows the influence of elastic medium on dimensionless frequencies of CNTFPC plate 
versus aspect ratio (a/b). Different types of elastic medium models are studied in this figure. It can 
be found that the growth rate of frequency with change in aspect ratio is larger, in comparison with 
thickness ratio. As can be observed, when Pasternak model is used for simulation of elastic 
medium, natural frequencies of composite plate is higher than Winkler or visco-Pasternak types. 
Therefore, it is concluded from this figure that the elastic medium is a significant parameter that 
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Fig. 5 The influence of elastic medium on dimensionless frequencies of CNTFPC plate versus aspect ratio
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Fig. 6 The effect of fibers orientation in each lamina on the dimensionless frequencies of CNTFPC 
plate versus thickness-to-length ratio 

 
 

increases the stability of system inasmuch as orthotropic Pasternak model with orthotropy angle 
(Θ=0) is more effective than isotropic type.  

The influence of fibers orientation in each lamina on the dimensionless frequencies of 
CNTFPC plate is illustrated in Fig. 6. This figure approves that the highest and lowest frequencies 
correspond to four layer symmetric cross-ply plate with orientation (90°/0°/0°/90°) and 
(0°/90°/90°/0°), respectively. Also, increasing a/b causes to increase natural frequencies of 
laminated plate, rapidly. Therefore, designers could meet their purposes by selecting an 
appropriate fibers orientation in laminated composite plate. 

The influence of SWCNTs aspect ratio on the dimensionless natural frequencies of symmetric 
cross-ply CNTFPC plate versus weight percentage of SWCNTs is indicated in Fig. 7. It is obvious 
that the dimensionless natural frequencies of laminated composite plate increases rapidly with 
increase of CNT aspect ratio up to 800 and thereafter it is not significant. In addition, it can be  
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Fig. 7 The influence of SWCNTs aspect ratio on the dimensionless natural frequencies of 
symmetric cross-ply CNTFPC plate versus weight percentage of SWCNTs 
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Fig. 8 Dimensionless frequencies versus dimensionless axially moving speed in different volume 
fraction of E-Glass fibers 

 
 

seen that increase in SWCNTs weight percentage can increase the dimensionless natural 
frequencies of the multiscale laminated plate, considerably. 

Dimensionless frequencies versus dimensionless axially moving speed for different volume 
fraction of E-Glass fibers are depicted in Fig. 8. As can be observed, Im(ω) diminishes with 
increasing C. These physically proved that the system is stable and the small moving speed does 
not result in damping behavior. For zero resonance frequency, axially moving CNTFPC plate 
becomes unstable due to the divergence via a pitchfork bifurcation and the corresponding moving 
speed is called the critical speed. Therefore, with increasing moving speed, system stability 
decreases and became susceptible to buckling. It is obvious that increasing volume fraction of E-
Glass fibers causes to increase strength of laminated multiscale plate and consequently the 
frequencies of system increase. 
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Fig. 9 Dimensionless natural frequency versus dimensionless damping coefficients of elastic 
foundation for various boundary conditions 
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Fig. 10 Variation of dimensionless frequency versus orthotropy angles in different Pasternak shear constants

 
 
Fig. 9 shows dimensionless natural frequency versus dimensionless damping coefficients of 

elastic foundation for various boundary conditions. In this figure, four types of boundary 
conditions CCCC, CSCS, SSSS and FCFC are studied. It is evident concluded that the highest and 
lowest frequencies are related to CCCC and SSSS boundary conditions, respectively. Also, this 
figure approves that increasing damping coefficient of elastic foundation leads to decrease 
frequencies of multiscale plate, and this reduction is more considerable in SSSS boundary 
condition. 

In order to understand how the orthotropic foundation influences the vibrational behavior of 
CNTFPC plate, at first, the intensity of orthotropy is investigated on the natural frequency. All of 
curves in Fig. 10 are dependent on elastic modulus including Winkler spring and Pasternak shear 
constants. As can be observed from Fig. 10, the ratio of dimensionless shear constants (Kgx

*/Kgy
*) 

can affect the trend of orthotropy angle changes, inasmuch as the trend of figure for both cases 
Kgx

*>Kgy
* and Kgx

*<Kgy
* are exactly inverse. For example, if Kgx

*>Kgy
*, by increasing the  
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Fig. 11 Three-dimensional plot of dimensionless frequency variation versus dimensionless Winkler 
constant and moving speed in different weight percentage of CNTs 
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Fig. 12 Three-dimensional plot of dimensionless frequency versus dimensionless Pasternak shear 
constants in different damping coefficients. 

 
 

orthotropy angle from 0 to 90 (0.5π), the maximum values of frequency is obtained, and vice 
versa. Therefore, the stability of CNTFPC plate can be improved by selecting the optimum values 
for Kgx

*, Kgy
*, and Θ. 

Fig. 11 demonstrates the influence of Winkler constant, weight percentage of CNTs and moving 
speed, simultaneously. It is evident that increasing Winkler constant and decreasing moving speed 
causes to increase natural frequencies of CNTFP plate. Also, small amount of SWCNTs (2-4%) 
can enormously increase the stability of system. 

Three-dimensional plot of dimensionless frequency versus Pasternak shear constants are 
depicted in Fig. 12. It can be concluded that increasing both Kgx

* and Kgy
* leads to increase stability 

of laminated plate, while the effect of Kgy
* is more than Kgx

*. In addition, the stability of CNTFPC 
plate decreases with increasing damping coefficient of elastic medium. 

As mentioned ago, the uniform pre-stress along the x direction has been applied on the 
CNTFPC plate. Fig. 13 shows the influences of non-dimensional pre-tension load, vibration modes  
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Fig. 13 Three-dimensional plot of dimensionless frequency variation versus weight percentage of 
CNT and dimensionless pre-tension in different vibration modes 

 
 

and CNTs weight percentage, simultaneously. As can be seen, natural frequencies of multiscale 
plate increase with increasing the magnitude of pre-tension .Also, this figure reveals that the 
influence of initial tension in axially moving CNTFPC plate in higher vibration modes is more 
considerable than the first mode.  
 
 
6. Conclusions 
 

Free vibration of axially moving cross-ply laminated CNTFPC plate under initial tension is a 
novel topic that has been studied in this research for the first time. To obtain the structural 
properties of multiscale composite plate, Halpin-Tsai model and micromechanics approach were 
employed, simultaneously. Orthotropic visco-Pasternak foundation was developed to evaluate the 
effect of orthotropy angle, damping coefficient, normal and shear modulus on the stability of three-
phase laminated structure. A new form of first order shear deformation plate theory was used to 
derive the equations of motion. Set of equations were solved by hybrid analytical-numerical 
method and following results were concluded: 

• Small amount of SWCNTs (2-4%) can enormously increase the frequencies especially at 
higher thickness-to-length ratio () of CNTFPC plate, so that in small value of the curves 
converge to the same value. Also, this increase is more pronounced in the case of CNTFPC 
plate reinforced with SWCNTs in comparison to MWCNTs. 
• With increasing moving speed, system stability decreases and became susceptible to buckling.  
• Increasing volume fraction of E-Glass fibers causes to increase strength of laminated 
multiscale plate and consequently the frequencies of system increase. 
• Orthotropic visco-Pasternak foundation plays an important role on the stability of axially 
moving laminated CNTFPC plate so that: 

- Normal (Kw
*) and shear modulus (Kgx

* and Kgy
*) significantly increase the dimensionless 

frequency of laminated composite plate. 

122



 
 
 
 
 
 

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation 

- Damping coefficient leads to decrease of dimensionless frequency especially for plate with 
SSSS boundary condition.
- Varying the shear modulus of orthotropic elastic medium leads to change the intensity and 
the trend of orthotropy angle. 

Above results approves the capability of laminated CNTFPC materials to use in control and 
vibration suppression of moving systems. 
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