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Abstract.  This investigation is concerned with the disturbances in a homogeneous transversely isotropic 

thermoelastic rotating medium with two temperature, in the presence of the combined effects of Hall 

currents and magnetic field due to normal force of ramp type. The formulation is applied to the 

thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. Laplace and Fourier 

transform technique is applied to solve the problem. The analytical expressions of displacements, stress 

components, temperature change and current density components are obtained in the transformed domain. 

Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically 

simulated results are depicted graphically to show the effects of Hall current and anisotropy on the resulting 

quantities. Some special cases are also deduced from the present investigation. 
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1. Introduction 
 

As the importance of anisotropic devices has increased in many fields of optics and 

microwaves, a wide research in anisotropic media has been widely done over in the last decades. 

The anisotropic nature basically stems from the polarization or magnetization that can occur in 

materials when external fields pass by. During the past few decades, widespread attention has been 

given to thermoelasticity theories that admit a finite speed for the propagation of thermal signals. 

In contrast to the conventional theories based on parabolic-type heat equation, these theories are 

referred to as generalized theories. Because of the experimental evidence in support of the 

finiteness of the speed of propagation of a heat wave, generalized thermoelasticity theories are 

more realistic than conventional thermoelasticity theories in dealing with practical problems 

involving very short time intervals and high heat fluxes such as those occurring in laser units, 
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energy channels, nuclear reactors, etc. The phenomenon of coupling between the 

thermomechanical behavior of materials and magnetic behavior of materials have been studied 

since the 19th century.  

Chen and Gurtin (1968), Chen et al. (1968), Chen et al. (1969), have formulated a theory of 

heat conduction in deformable bodies which depends upon two distinct temperatures, the 

conductive temperature ߮ and the thermo dynamical temperature T. For time independent 

situations, the difference between these two temperatures is proportional to the heat supply, and in 

absence of heat supply, the two temperatures are identical. For time dependent problems, the two 

temperatures are different, regardless of the presence of heat supply. The two temperatures, and 

the strain are found to have representations in the form of a travelling wave plus a response, which 

occurs instantaneously throughout the body (Boley and Tolins 1962). The wave propagation in 

two temperature theory of thermoelasticity was investigated by Warren and Chen (1973). Green 

and Naghdi (1991), postulated a new concept in thermoelasticity theories and proposed three 

models which are subsequently referred to as GN-I, II, and III models. The linearised version of 

model-I corresponds to classical thermoelastic model (based on Fourier’s law). The linearised 

version of model-II and III permit propagation of thermal waves at finite speed. Green-Naghdi’s 

second model (GN-II) (1993), in particular exhibits a feature that is not present in other established 

thermoelastic models as it does not sustain dissipation of thermal energy .In this model the 

constitutive equations are derived by starting with the reduced energy equation and by including 

the thermal displacement gradient among other constitutive variables. Green-Naghdi’s third model 

(GN-III) admits dissipation of energy. In this model the constitutive equations are derived by 

starting with the reduced energy equation, where the thermal displacement gradient in addition to 

the temperature gradient, are among the constitutive variables. Green and Naghdi (1992), included 

the derivation of a complete set of governing equations of a linearised version of the theory for 

homogeneous and isotropic materials in terms of the displacement and temperature fields and a 

proof of the uniqueness of the solution for the corresponding initial boundary value problem.  

A comprehensive work has been done in thermoelasticity theory with and without energy 

dissipation and thermoelasticity with two temperature. Youssef (2011), constructed a new theory 

of generalized thermoelasticity by taking into account two-temperature generalized 

thermoelasticity theory for a homogeneous and isotropic body without energy dissipation. Youssef 

et al. (2007), investigated State space approach of two temperature generalized thermoelasticity of 

infinite body with a spherical cavity subjected to different types of thermal loading. Abbas (2011), 

discussed two dimensional problem with energy dissipation. Quintanilla (2002), investigated 

thermoelasticity without energy dissipation of materials with microstructure. Abbas, Kumar and 

Reen (2014), discussed response of thermal source in transversely isotropic thermoelastic 

materials without energy dissipation and with two temperature. Several researchers studied various 

problems involving two temperature e.g., (Youssef and AI-Lehaibi 2007, Youssef 2006, Youssef 

2013, Kumar et al. 2014, Kaushal et al. 2011, Kaushal Sharma and Kumar 2010, Kumar and 

Mukhopdhyay 2010, Ezzat and Awad 2010, Sharma and Marin 2013, Sharma and Bhargav 2014, 

Sharma et al. 2013, Sharma and Kumar 2013, Sharma and Kumar 2012, Sharma et al. 2012). In 

view of the fact that most of the large bodies like the earth, the moon and other planets have an 

angular velocity, as well as earth itself behaves like a huge magnet, it is important to study the 

propagation of thermoelastic waves in a rotating medium under the influence of magnetic field. 

So, the attempts are being made to study the propagation of finite thermoelastic waves in an 

infinite elastic medium rotating with angular velocity. Several authors (Das and Kanoria 2014, 

Kumar and Kansal 2010, Kumar and Rupender 2009, Kumar and Devi 2010, Atwa and Jahangir 
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2014, Mahmoud 2013) have studied various problems in generalized thermoelasticity to study the 

effect of rotation.  

When the magnetic field is very strong, the conductivity will be a tensor and the effect of Hall 

current cannot be neglected. The conductivity normal to the magnetic field is reduced due to the 

free spiraling of electrons and ions about the magnetic lines of force before suffering collisions and 

a current is induced in a direction normal to both the electric and magnetic fields. This 

phenomenon is called the Hall effect. Authors like (Zakaria 2011, 2012, Salem 2007, Attia 2009, 

Sarkar and Lahiri 2021) have considered the effect of Hall current for two dimensional problems 

ins micropolar thermoelasticity. Inspite of these, not much work has been done in thermoelastic 

solid with the combined effects of Hall current, rotation and two temperature. Keeping these 

considerations in mind, we formulated a two dimensional problem in transversely isotropic 

thermoelastic solid with and without energy dissipation in the presence of magnetic field, two 

temperature and rotation taking into consideration the effect of Hall current. The components of 

normal displacement, normal stress, tangential stress, conductive temperature and current density 

are obtained by using Laplace and Fourier transforms. Numerical computation is performed by 

using a numerical inversion technique and the resulting quantities are shown graphically. 

 

 

2. Basic equations 
 

The constitutive relations for anisotropic thermoelastic medium are given by 

                                                                             (1) 

Equation of motion for anisotropic thermoelastic medium rotating uniformly with an angular 

velocity      , where n is a unit vector representing the direction of axis of rotation and taking 

into account Lorentz force 

              * ̈  (  (   ))
 
 (    ̇)  }                                 (2) 

Following Chandrasekharaiah (1998) and Youssef (2013), the heat conduction equation with 

two temperature and with and without energy dissipation is given by  

    
           ̇            ̈      ̈                                             (3) 

The above equations are supplemented by generalized Ohm's law for media with finite 

conductivity and including the Hall current effect 

   
  

     (    (  ̇    
 

   
    ))                                       (4) 

 and the strain displacement relations are 

     
 

 
(         )                                                         (5) 

 Here 

      (    )  are the components of Lorentz force.  

               and             

          ,           ,    
    

     ,   is not summed 
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     (                       ) are elastic parameters,      is the thermal tensor,    is the 

temperature,    is the reference temperature,     are the components of stress tensor,     are the 

components of strain tensor,   are the displacement components,   is the density,    is the 

specific heat,      is the thermal conductivity,    
  is the materialistic constant,     are the two 

temperature parameters,     is the coefficient of linear thermal expansion,   is the angular velocity 

of the solid, H is the magnetic strength,  ̇ is the velocity vector , E is the intensity vector of the 

electric field,   is the current density vector,  (      
      

    
) is the Hall parameter,    is the 

electron collision time,    
     

  
 is the electronic frequency, e is the charge of an electron,    is 

the mass of the electron,    
      

   
 , is the electrical conductivity and    is the number of density 

of electrons.  

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous perfectly conducting transversely isotropic magnetothermoelastic 

medium which is rotating uniformly with an angular velocity   initially at uniform temperature 

  . The rectangular Cartesian co-ordinate system (        ) having origin on the surface (  =0) 

with   -axis pointing vertically downwards into the medium is introduced. The surface of the half-

space is subjected to normal force. For two dimensional problem in     -plane, we take  

   (       ).                                                                (6) 

We also assume that  

 E=0 ,   (     ).                                                             (7) 

The generalized Ohm’s law  

                                                                             (8) 

the current density components    and    using (4) are given as 

   
      

     ( 
   

  
 

   

  
)                                                     (9) 

     
      

     (
   

  
  

   

  
)                                                   (10) 

 Following Slaughter (2002), using appropriate transformations, on the set of Eqs. (2) and (3) 

and with the aid of (6)-(10), we obtain the equations for transversely isotropic thermoelastic solid 

as 
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)    
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(     
  

  
)

   

   
  (     

  

  
)

   

   
    

  

   {  
   

   
   

   

    
}      ̈            (13)  

 and 

                                                                    (14) 

                                                                    (15) 

                                                                        (16) 

where 

    (  

   

   
    

   

   
 ) 

   (       )         ,                 

In the above equations we use the contracting subscript notations (             
                ) to relate              

We assume that medium is initially at rest. The undisturbed state is maintained at reference 

temperature. Then we have the initial and regularity conditions are given by 

  (       )       ̇(       ) 

  (       )       ̇(       )  (       )      ̇(       ) For              

  (       )    (       )   (       )                                   (17) 

 To facilitate the solution, following dimensionless quantities are introduced 
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       (18)  

Making use of (18) in Eqs. (11)-(13) and suppressing the primes, and applying Laplace and 

Fourier transforms defined by  

 ̅(       )  ∫  (
 

 
       ) 

      (19)  ̂(      )  ∫  ̅(       ) 
       

 

  
          (20)  

on the resulting equations, we obtain a system of homogeneous equations in terms of   ̃,   ̃ and  ̃ 

which yield a non trivial solution if determinant of coefficient *   ̃   ̃  ̃+   vanishes and we obtain 

the following characteristic equation 

(             )(  ̃   ̃   ̃)                                          (21)  

where        and   are given in appendix A. 

The solution of the Eq. (21) satisfying the radiation condition that   ̃   ̃   ̃    as      , 

can be written as 

  ̃     
         

         
                                         (22)  

   ̃       
           

           
                                      (23)  

 ̃       
           

           
                                        (24) 
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 where     (  1,2,3) , are the roots of (21) and    and    are given in appendix B. 

 

 

4. Applications 
 

The boundary conditions are taken as  

(1)    (       )    ( ) ( )                                                (25)  

(2)    (       )                                                          (26)  

(3)  (       )                                                           (27) 

where   (x) is an arbitrary function of x and G(t) is a function defined as 

 ( )   {

      

  
 

  
       

       

                                                (28)  

where    indicates the length of time to rise the heat and    is a constant, this means that the 

boundary of the half-space, which is initially at rest and has a fixed temperature   , is suddenly 

raised to a temperature equal to the function  ( ) ( )  and maintained at this temperature 

afterwards.  

Applying the Laplace and Fourier transforms to both sides of (28), we obtain 

   ̃    ̅( ) 

 where  ̅( )    
(       )

     

Applying the Laplace and Fourier transform defined by (19)-(20) on the boundary conditions 

(25)-(27) and with the aid of Eqs. (14)-(16), and (18) we obtain the components of displacement 

,normal stress, tangential stress, conductive temperature and the components of current density as 

given by  

  ̃  
 ̅( ) 

 
(   

         
         

     )                                    (29) 

  ̃  
 ̅( ) 

 
(     

           
           

     )                              (30)  

   ̃  
 ̅( )
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     )                            (31)  
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 ̅( )

  
(      

            
            

     )                            (32) 
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     )                             (33) 
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where   ,    ,   ,    ,    ,    ,    ,    ,    ,     ,    , and     are given in appendix C. 

 
 
5. Particular cases 
 

(i) If   
    

   , then from (29)-(35) ,we obtain the corresponding expressions for 

displacements, and stresses, conductive temperature and components of current density for 

transversely isotropic magnetothermoelastic solid without energy dissipation and with two 

temperature with Hall current effect and rotation. 

(ii) If        , then from (29)-(35),we obtain the corresponding expressions for 

displacements, stresses, conductive temperature and components of current density for 

transversely isotropic magnetothermoelastic solid with and without energy dissipation alongwith 

with Hall current effect and rotation. 

(iii) If we take             ,          ,      ,      =   ,        , 

        and         in Eqs. (29)-(35), we obtain the corresponding expressions for 

displacements, stresses , conductive temperature components of current density in isotropic 

magnetothermoelastic solid with two temperature and with and without energy dissipation 

alongwith combined effects of Hall current and rotation. 

(iv) If m=0, in Eqs. (29)-(35) ,we obtain the components of displacements, stresses, conductive 

temperature and components of current density for transversely isotropic magnetothermoelastic 

solid and with and without energy dissipation and with two temperature alongwith rotation. 

 

 

6. Inversion of the transformation 
 

To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(29)-(35). Here the displacement components, normal and tangential stresses and conductive 

temperature are functions of       the parameters of Laplace and Fourier transforms s and 

  respectively and hence are of the form f (ξ,   , s). To obtain the function  (       ) in the 

physical domain, we first invert the Fourier transform using 

 (       )=
 

  
∫       

 

  
 ̂(      )   

 

  
∫ |   (  )        (  )  |

 

  
              (36) 

Where           are respectively the odd and even parts of  ̂ (      )  Thus the expression (36) 

gives the Laplace transform  (       ) of the function  (        )  Following Honig and Hirdes 

(1984), the Laplace transform function  (       ) can be inverted to  (       )   
The last step is to calculate the integral in Eq. (36). The method for evaluating this integral is 

described in Press et al. (1986). It involves the use of Romberg’s integration with adaptive step 

size. This also uses the results from successive refinements of the extended trapezoidal rule 

followed by extrapolation of the results to the limit when the step size tends to zero. 

 

 

7. Numerical results and discussion 
 

For the purpose of numerical evaluation, cobalt material has been chosen following Dhaliwal 

and Singh (1980) as 
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Table Cobalt material 
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with non-dimensional parameter L=1 and ,  =2, , M=3 and two temperature parameters is taken as 

  =0.03 and   =0.06 

Using the above values a comparison has been made of values of transverse displacement u, 

normal displacement w, normal stress    , tangential stress    , conductive temperature  , 

transverse conduction current density    and normal conduction current density    for a 

transversely isotropic magneto-thermoelastic to show the effect of Hall current and isotropy and 

are presented in the Figs. 1-7.The computations are carried out in the range       . 

1) The solid line, small dashed line corresponds to transversely isotropic thermoelastic solid 

(TIS) with Hall current parameter               respectively. 

2) The solid line with centre symbol circle, the small dashed line with centre symbol diamond 

corresponds to isotropic thermoelastic solid (IS) with  hall parameter as             
  respectively. 

 
 

 

 

Fig. 1 Variation of transverse displacement u1 

with distance x 

Fig. 2 Variation of normal displacement u3 with 

distance x 
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Fig. 3 Variation of normal stress t33 with distance 

x (mechanical force) 

Fig. 4 Variation of tangential stress t31 with 

distance x 

 

  

Fig. 5 Variation of conductive temperature φ with 

distance x 

Fig. 6 Variation of transverse current density J1 

with distance x 

 

 

Fig.1 depicts transverse displacement    with distance x. We notice that the variations 

corresponding to (TIS) and (IS) follow opposite oscillatory pattern in case of both the values of 

Hall parameter for the whole range. For m=0.6, the amplitude of oscillation is smaller as compared 

to m=0. Fig. 2 presents the normal displacement    with distance x. We notice that, the values of 

normal displacement corresponding to (TIS) and (IS) follow similar oscillatory behaviour with 

change in magnitude for the whole range. Also as m increases, the amplitude of oscillation 

decreases. Fig. 3 exhibits the trends of normal stress     with distance x. Here opposite oscillatory  
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Fig. 7 Variation of normal current density J3 with distance x 

 

 

pattern in the variations is noticed corresponding to the two solids. Also, we notice that presence 

of Hall current parameter decreases the magnitude of oscillation. Fig. 4 shows variations of 

tangential stress     with distance x. Here, in all the cases similar oscillatory pattern with 

difference in magnitudes is noticed. Amplitude of variations corresponding to (TIS) is smaller as 

compared to (IS). The behaviour of conductive temperature   is depicted in Fig. 5. Here opposite 

oscillatory behaviour is noticed in the values of conductive temperature corresponding to the two 

solids with difference in magnitudes. As x moves away from the point of application of the source, 

amplitude of oscillation decreases. Fig. 6 and Fig. 7 describe the trends of current density 

components    and    respectively with respect to distance x. We notice that the pattern is 

oscillatory in all the cases. In Fig. 6, we notice that, with the absence of Hall current, the amplitude 

of oscillation is greater than as compared to the presence of Hall current. Also we notice maximum 

variations corresponding to (IS). In Fig. 7, we notice opposite pattern in the values of    as 

compared to   . 

 

 

8. Conclusions 
 

The analysis of graphs permits us some concluding remarks 

1. Hall current parameter and isotropy has great impact in transversely isotropic magneto-

thermoelastic solid.  

2. The Hall current plays a significant role in the distribution of all the physical quantities. The 

amplitude of all the physical quantities vary (increase or decrease) as Hall parameter increases. 

3. Presence of Hall current restricts the quantities to oscillate near the point of application of 

source as well as away from the source.  

4. The effect of isotropy tends the variations to move in opposite oscillatory pattern in case of 

transverse displacement, normal stress and conductive temperature whereas in similar 

oscillatory pattern in the rest of cases. 

5. Behaviour of both the components of transverse current density is just the reflection of each 
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other in presence of hall current.  

6. The resulting quantities with and without Hall current show opposite oscillatory pattern in 

the form of waves. These trends obey elastic and thermoelastic properties of a solid under 

investigation. The research work is useful in further studies, for both theoretical and 

observational in more realistic models of transversely isotropic thermoelastic solid present in 

the earth’s interior. 
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