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Abstract.  Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which 

consist of thin metal sheets bonded together with alternating unidirectional fiber layers .In this study, the 

buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both 

analytical and finite element approaches. The governing equations are derived based on the first-order shear 

deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical 

shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to 

lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the 

proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are 

compared with the available results. Afterwards, the effects of FML parameters such as metal volume 

fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are 

studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling 

loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this 

paper hopefully provide a useful guideline for engineers to design an efficient and economical structure. 
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1. Introduction 
 

Fiber metal laminates (FMLs) are created by adhesively combining thin sheets of monolithic 

materials with some types of reinforced prepreg as shown in Fig. 1. This material provides 

improved fatigue characteristics, considerable fire resistance, ductility, high specific stiffness and 

damage behavior (Sinmazçelik et al. 2011). Initial studies have shown that the use of this 

lightweight composite in the design of engineering components can lead to weight reduction up to 

50% (Carrillo and Cantwell 2007). The concept of FML materials was first developed at the Delft 

University of Technology and FMLs, especially those based on a combination of 2024-T3 

aluminum and S2-glass fibers are a class of composite materials that are growing in popularity for 

use in aerospace applications (Vlot et al. 2002). The most commercially available FMLs are  
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Fig. 1 Schematic of a GLARE 4B 3/2 layup 

 
Table 1 Commercially available GLARE grades (Botelho et al. 2006) 

Prepreg orientation in each composite layer Metal type Sub-grade Grade 

0◦/0◦ 7475-T761 - GLARE1 

0◦/0◦ 2024-T3 GLARE 2A 
GLARE 2 

90◦/90◦ 2024-T3 GLARE 2B 

0◦/90◦ 2024-T3 - GLARE 3 

0◦/90◦/0◦ 2024-T3 GLARE 4A 
GLARE 4 

90◦/0◦/90◦ 2024-T3 GLARE 4B 

0◦/90◦/90◦/0◦ 2024-T3 - GLARE 5 

+45◦/-45◦ 2024-T3 GLARE 6A 
GLARE 6 

-45◦/+45◦ 2024-T3 GLARE 6B 

 

 

ARALL (Aramid Reinforced Aluminum Laminate) based on aramid fibers, GLARE (Glass 

Reinforced Aluminum Laminate) based on glass fibers and CARALL (Carbon Reinforced 

Aluminum Laminate) based on carbon fibers. Since FMLs are a relatively recent development, 

there is an absence of broad design base similar to that available for metal structure. Currently, 

FMLs such as GLARE and CARALL are attracting the interest of a number of aircraft 

manufacturers (Krishnakumar 1994). For example, GLARE is being used in the manufacture of 

the upper fuselage of the A380. Six standardized grades of GLARE are commonly being produced 

are shown in Table 1. 

Due to the above advantages, cylindrical shells composed of FML materials can replace instead 

of the cylindrical shells made of full-metal or full-composite. As regards most of the cylindrical 

shells are used under axial loading and this loading may cause damage, therefore considering 

buckling load of this structure is necessary in the design process. Here is a difference between the 

“buckling load” and “critical buckling load”. Buckling load is defined as the solution of 

eigenvalue problem so that a buckling load can be obtained for every eigenvalue. Critical buckling 

load is the minimum buckling loads caused the buckling behavior (Heidari-Rarani et al. 2014).  

Reviewing the literature appear a large numbers of studies about the buckling behavior of full-

metallic and full-composite cylindrical shells. For example, Mandal and Calladine (2000) 

investigated aspects of the elastic buckling of thin cylindrical shells under axial compression. 

Buckling behavior of elliptical cylindrical shells and tubes under compression is studied by 

Silvestre (2008) that a formulation of generalized beam theory developed to analysis the elastic  
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Axial buckling response of fiber metal laminate circular cylindrical shells 

 

Fig. 2 Geometry and coordinate system of a cylindrical shell (Topal and Uzman 2009) 

 

 

buckling behavior. Buckling of cross-ply circular cylindrical shells with various shell theories and 

simply-supported, clamped and free boundary conditions was studied by Khdeir et al. (1989). 

Kardomateas (1996) investigated three-dimensional elasticity solutions for the buckling of thick 

orthotropic cylindrical shells under axial compression and external pressure and shows the 

classical shell theories may produce highly non-conservative results on the critical loads. Buckling 

localization in a cylindrical panel under axial compression is studied by Tvergaard and Needleman 

(2000). Shen and Xiang (2008) studied buckling and post buckling of laminated cylindrical shells 

under combined axial compression and torsion based on the classical shell theory with Von-

Karman Donnell type of kinematic nonlinearity. A new perturbation technique in numerical study 

on buckling of composite shells under axial compression is investigated by Tahir and Mandal 

(2012). Fan et al. (2015) obtained analytically the critical buckling load of cylindrical shells with 

stepwise variable wall thickness under axial compression. 

Up to now, a few numbers of researchers have studied the buckling behavior of FML 

structures. The shear buckling behavior of the two FML panels, ARALL3 3/2 and GLARE 3 2/1, 

is investigated by Shi and Xiong (2000) using a probabilistic analysis method in order to predict 

the distributions of the buckling load. Also, Khalili et al. (2010) solved equilibrium equations for 

buckling, free and forced vibration problems of FML cylindrical shells using Galerkin method. 

However, to the knowledge of the authors, the buckling analysis of FML circular cylindrical shells 

using first-order shear deformation theory (FSDT) is not investigated yet. Therefore, the buckling 

loads of simply-supported FML circular cylindrical shells are analytically calculated based on the 

both classical lamination theory (CLT) and FSDT. Also, the buckling loads are estimated via finite 

element software, ABAQUS using linear eigenvalue analysis. The effects of different parameters 

of a FML are investigated on the buckling loads. Finally, the new interesting results are presented 

which provide a helpful insight for aircraft fuselage skin designers and space system engineers.  

 

 

2. Governing equations 
 

A FML circular cylindrical shell with mean radius R, thickness h, length L and the directions x, 

θ and z is shown in Fig. 2. According to the definition of FML, a coding system is used in this 

study for summarizing the name of FMLs. Each FML system is defined as “FML name (1+i)/i”. 

For example, GLARE 3/2 defines a FML composed of three aluminum layers and two glass 

reinforced polymer prepreg. Also, the metal volume fraction (MVF) is defined as the sum of the 
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ratio of thicknesses of the individual aluminum layers to the total thickness of the laminate as 

MVF
1

p

alh h  where hal is the thickness of each separate aluminum layer, h is the thickness of 

laminate and p is the number of aluminum layers (Vlot and Gunnink 2001). Hence, MVF=0 and 

MVF=1 represent full-composite and full-metal shells, respectively. 

The equilibrium equations in cylindrical coordinates based on the FSDT for a cylindrical shell 

under axial loading can be expressed as the following simplified form (Li and Chen 2002) 
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where Nx, Nθ and Nxθ are force resultants; Mx, 
Mθ and Mxθ are moment resultants; Qx and Qθ are  

shear resultants and N̂  is the axial force. 

Stress-strain relationship for a cylindrical shell with N orthotropic layers and uniform thickness 

is as follows (Reddy 2003) 
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where {σ} and {ε} are off-axis stresses and strains and [Q ] is transformed stiffness matrix. With  

the integration of the stresses and moments on the entire multilayer, the resultant moments and 

forces will be achieved as follows (Vinson 1993) 
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(3b)           
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   0 0 0 0, ,
T

x x      is the vector of the mid-surface engineering strains,    , ,
T

x xK K K K   

is the vector of the curvature and twist of the shell, [A], [B], [D] and [H] are the extensional, 

extension-bending coupling, bending and thickness shear stiffness matrices, respectively that are 

defined as follows (Nam et al. 2003) 
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 where ks is the shear correction factor introduced by Mindlin and is equal to 5/6 (Hosseini 

Hashemi et al. 2012). 

Displacement field based on the FSDT are expressed as follows (Reddy 2003) 
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and the corresponding strain-displacement relations are: 
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where u0, v0 and w0 are the displacement components of mid-plane in the axial, tangential and 

radial directions, respectively. Also, ϕx and ϕθ are the rotations of the normal to the mid-plane 

about θ- and x-directions, respectively. With substituting Eqs. (6) and (3) into Eq. (1), the 

governing equations in terms of displacement and rotation parameters can be obtained as follows 
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(7a) 
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(7e) 
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3. Solution method 
 

Using Navier solution method, the steady state solution of the governing equations obtained for 

the FML cylindrical shell (i.e., Eq. (7)) with simply-supported boundary conditions can be 

assumed as 

(8) 
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where m is the axial half wave number and n is the circumferential half wave number that for 

simplifying the equations n'=n/2 will be considered where n' is circumferential wave number. 

Substituting Eq. (8) into Eq. (7) gives the following equation for FSDT 

(9)     
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where Li (i=1...25)
 
are given in Appendix A. Eq. (9) can be simplified based on the CLT 

(10)      
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Table 2 Mechanical properties of unidirectional composite plies (Ungbhakorn and Singhatanadgid 2003) 

υ12 
G12, GPa E22, GPa E11, GPa Materials 

0.24 5.65 10.8 132 Graphite/Epoxy 

0.34 2.07 5.5 76.8 Kevlar/Epoxy 

0.26 4.14 8.27 38.8 E-glass/Epoxy 

 
Table 3 Comparison of buckling loads (N/mm) of a metallic cylinder for R=L=1000 mm, h=3 mm and n′=0 

Present study 
Ugural (1981) m 

FSDT CLT 

20945 20945 20944.82 1 

5242.7 5242.7 5242.692 2 

2342.6 2342.6 2342.58 3 

1336.6 1336.6 1336.623 4 

880.9451 880.9742 880.9742 5 

643.9731 644.0334 644.0334 6 

512.0696 512.1813 512.1813 7 

437.767 437.9575 437.9575 8 

398.3838 398.6888 398.6888 9 

381.969 382.4335 382.4335 10 

 

 

where Li (i=1...9) are given in Appendix B. To solve the Eqs. (9) and (10), the determinant of 

coefficient matrix should be zero and consequently the buckling load is obtained. It should be 

noted that Eqs. (9) and (10) do not give the critical buckling load (minimum buckling load) 

directly. For specific values of material properties and geometry parameters, many buckling loads 

are obtained for every value of m and n. The minimum load is selected as the critical buckling 

load. The critical buckling load does not happen at m=n' =1 essentially. Therefore, by changing the 

material properties and geometry parameters, this process should be repeated to obtain the critical 

buckling load.  

 

 

4. Results and discussion 
 

4.1 Validation of the proposed model  
 

In order to validate the developed approach, the FML cylindrical shell is simplified to a full-

metal cylindrical shell (MVF=1) and a full-composite cylindrical shell (MVF=0). Results obtained 

from the both CLT and FSDT are compared with those analytical results available in the literature. 

In the case of MVF=1, mechanical properties of aluminum are provided from Sadd (2009) as 

E=68.9 GPa, υ=0.34, and G=25.7 GPa. In the case of MVF=0, mechanical properties of various 

unidirectional composite plies are reported in Table 2. 

Table 3 compares the buckling loads of a metallic circular cylindrical shell (MVF=1) obtained 

based on the CLT and FSDT in this study with results of those obtained based on CLT for simply-

supported boundary conditions provided from Ugural (1981). Also, the buckling loads of a simply- 
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Table 4 Comparison of buckling loads (N/mm) of a composite cylinder based on the CLT for R=L=200 mm 

Difference )%( 
Present study 

(CLT) 

Ungbhakorn and 

Singhatanadgid (2003) 
n′ m Materials 

0.1978 84.0634 84.23 11 3 Graphite/Epoxy 

0.2011 39.3008 39.38 11 3 Kevlar/Epoxy 

0.698e-3 42.9697 42.97 11 3 E-glass/Epoxy 

 
Table 5 Comparison of buckling loads (N/mm) of a composite cylinder based on the FSDT for R=200 mm 

Difference 

)%( 

Present study 

(FSDT) 

Ungbhakorn and 

Singhatanadgid (2003) 
(m, n′) L/R Materials 

0.66271 83.6718 84.23 (3,11) 1 

Graphite/Epoxy 0.66271 83.6718 84.23 (6,11) 2 

0.66271 83.6718 84.23 (9,11) 3 

0.78746 39.0699 39.38 (3,10) 1 

Kevlar/Epoxy 0.86191 38.6242 38.96 (5,10) 2 

0.81117 38.5547 38.87 (8,10) 3 

0.34466 42.8219 42.97 (3,12) 1 

E-glass/Epoxy 0.34466 42.8219 42.97 (6,12) 2 

0.34466 42.8219 42.97 (9,12) 3 
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Fig. 3 Convergence for first eigenvalue vs. numbers of elements 

 

 

supported composite cylindrical shell (MVF=0) with stacking sequence of [0°/90°]2s and ply 

thickness of tply=0.127 mm are obtained based on the developed approach in this study using CLT 

and FSDT and compared with results provided from Ungbhakorn and Singhatanadgid (2003) in 

Table 4 and 5. Results showed that the developed method in this study predicts the buckling loads 

of both metallic and composite cylinders with good accuracy at different longitudinal and  
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Table 6 Material properties used for FML cylindrical shell (Payeganeh et al. 2010) 

υ12=υ13 G23, GPa G12=G13, GPa E22=E33, GPa E11, GPa Material 

0.078 1.34 3.34 7.77 24.51 Glass/polyster 

0.33 27.6 27.6 72.4 72.4 Al 2024-T3 

 

 

Fig. 4 Eleventh eigenvalue and buckling mode of GLARE 5 3/2 

 
Table 7 Buckling loads (N/mm) of a FML cylinder with MVF=0.4 obtained from theory (using FSDT) and 

ABAQUS for GLARE 5 3/2 (R=200 mm, L=600mm, h=3 mm, ks=5/6) 

Difference ()%  FSDT ABAQUS n′ m 

3.592974 1127.2 1086.7 5 2 

1.010553 1118.2 1106.9 7 6 

1.7429 1130.3 1110.6 6 4 

1.967184 1133.6 1111.3 6 3 

1.128989 1124.9 1112.2 7 8 

 

 

circumferential modes. 

 

4.2 Analytical and FE estimations of buckling loads of a FML cylindrical shell 
 

Now the validation of the developed approach is confirmed by full-metal and full-composite 

cylindrical shells, the buckling behavior of a FML cylinder can be investigated analytically. In this 

study, the buckling loads of FML cylinders are also computed by finite element method. A simply-

supported FML cylindrical shell is modeled in commercial finite element software, ABAQUS, and 

buckling loads are calculated by the linear eigenvalue analysis. Linear quadrilateral elements, S4R, 

are used to mesh the cylinder. Mesh sensitivity is done to obtain the appropriate element size. Fig. 

3 shows the variation of first eigenvalue versus the total numbers of elements in the model. The 

appropriate element size is 5 mm. The material properties of FML are listed in Table 6. Fig. 4 

shows the buckling mode of eleventh eigenvalue for instance related to m=3 and n′=6. Table 7 
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presents the buckling loads of a FML cylinder with MVF=0.4 obtained from FSDT and finite 

element method for GLARE 5 3/2. The maximum difference between analytical and numerical 

linear eigenvalue buckling loads are less than 4%.  

 
4.3 Effect of different parameters of a FML cylindrical shell on the buckling loads 

 
In this section, the effects of FML parameters such as MVF, stacking sequence of layers, types 

of layup (metal or composite), and geometric parameters is analytically investigated on buckling 

loads of a FML cylindrical shell based on the FSDT. Fig. 5 shows the variation of the buckling 

load versus the different values of circumferential half wave number (n) and m=1 for different 

values of MVF in GLARE 5 3/2 FML. The buckling load increases with increasing MVF from 0 

to 1 for all the circumferential half wave number. This is due to increasing of FML stiffness with 

increasing MVF values. The buckling loads corresponded to0≤MVF≤1 lie between those of full-

composite and full-metal shells. It is worth to note that the critical mode is observed in m=1 and 

n=8 for all MVF values. Also, the difference among the buckling loads in the case of FML and the 

in case of full-composite (MVF=0) is significant. It should be noted that similar results are 

approximately established for different types of GLARE. Fig. 6 depicts the effects of MVF on the 

buckling load of a FML cylindrical shell with L=600 mm and R=200 mm versus the axial half 

wave number (m) and n=2 for GLARE 5 3/2. Critical mode occurs in the higher axial half wave 

number than that of circumferential half wave number. Also, the variation of buckling loads versus 

the circumferential half wave number is more significant than the axial half wave number. 

Fig. 7 illustrates the effect of different layups on the buckling loads of GLARE 5 FML shell 

versus MVF. It is obvious that by increasing the number of layers with constant thickness and 
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Fig. 5 Effect of MVF on the buckling loads vs. circumferential half wave number for GLARE 5 

3/2 (L=600 mm, R=200 mm, m=1, h=3 mm) 
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Fig. 6 Effect of MVF on the buckling load vs. axial half wave number for GLARE 5 3/2 (L=600 

mm, R=200 mm, n=2, h=3 mm) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

400

600

800

1000

1200

1400

1600

1800

2000

Volume fraction of metal layers in FML lay up (MVF)

B
u

ck
li

n
g

 L
o

ad
 (

N
/m

m
)

 

 

GLARE 5 2/1

GLARE 5 3/2

GLARE 5 4/3

GLARE 5 5/4

 

Fig. 7 Effect of layup on buckling loads of GLARE 5 vs. MVF (L=600 mm, R=200 mm, h=3 mm, 

m=1, n=8) 

 

 

MVF, the buckling load approaches to a constant value. It is also observed from this figure, 

comparison between the values of buckling loads for 0MVF 0.05 with those for MVF> 0.05 

reveals that the order of buckling load with respect to different layups is reversed. 

Effects of radius of the shell on the buckling loads of different types of GLARE are plotted in 

Fig. 8. Results show that with increasing the shell radius up to 300 mm the buckling load increases  
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Fig. 8 Effect of shell radius on the buckling loads of different types of GLAREs (L=1000 mm, h=3 

mm, m=1, n=2, MVF=0.5) 
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Fig. 9 Effect of shell length on the buckling loads of different types of GLAREs (R=200 mm, h=3 

mm, m=1, n=2, MVF=0.5) 

 

 

and it decreases after R=300 mm. Also, the effects of various types of GLAREs on the buckling 

loads become more distinguished at higher radius. As it is seen, comparison between the values of 

buckling loads for R<300 mm with those of R>300 mm reveals that the order of buckling load 

with respect to different GLAREs is reversed. 

Fig. 9 illustrates the effects of length of the cylindrical shell on the buckling loads of different 

types of GLAREs. By increasing the shell length up to 625 mm the buckling load increases and  
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Fig. 10 Effect of cylindrical shell thickness on the buckling load of GLARE 2A, GLARE 2B and 

GLARE 3 (R=200 mm, L=600 mm, m=1, n=8, MVF=0.5) 
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Fig. 11 Effect of cylindrical shell thickness on the buckling load of GLARE 4A, GLARE 4B and 

GLARE 5 (R=200 mm, L=600 mm, m=1, n=8, MVF=0.5) 

 

 

then it decreases. It is also worth to mention that comparison the values of buckling loads of 

L<625mm with those of L>625 mm reveals that the order of buckling loads with respect to 

different GLAREs is reversed. 

Effects of cylindrical shell thickness on the buckling loads of different types of GLAREs are 

demonstrated in Fig. 10 and Fig. 11. It is found that the buckling load increases by increasing the 

shell thickness and variation of the buckling load for all types of GLARE is more severe at higher  
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Fig. 12 Comparison of FSDT and CLT on prediction of the buckling loads vs. MVF (L=600 mm, 

R=200 mm, h=3 mm, m=1, n=8) 

 

 

thicknesses. Obviously, the difference between the buckling loads of different types of GLAREs is 

larger at thick shells. It is also concluded that the maximum value of the buckling load is related to 

GLARE 2B and the minimum value is related to GLARE 2A at a constant thickness. 

Fig. 12 depicts the variation of buckling loads calculated by CLT and FSDT versus MVF for a 

FML cylindrical shell with layup Al/G 2/1 and fibers orientation [0/90/+45/-45]. The difference 

between the buckling loads of FSDT and CLT is larger at higher MVF. It means that the FSDT 

gives more reliable results for buckling loads than CLT by increasing the value of MVF. 

 

 

5. Conclusions 
 

FML circular cylindrical shells due to their specific features are widely extended in different 

industries, especially aerospace industry. In this study, the buckling analysis of a FML cylindrical 

shell under axial compression load is investigated both analytically and numerically. For the first 

time, the governing equations for the buckling behavior of a FML circular cylindrical shell are 

derived based on the first-order shear deformation theory (FSDT) and solved by Navier solution 

for simply-supported boundary conditions. Also, a FML cylindrical shell is modeled in the 

commercial finite element software, ABAQUS, and buckling loads are calculated numerically by 

the linear eigenvalue buckling analysis. Analytical and numerical results are compared with each 

other and verified with available results in the literature for the special cases such as full-metallic 

and full-composite cylindrical shells. To show the efficiency of FML materials rather than other 

materials used in aerospace industry, different parameters of FML such as metal volume fraction 

(MVF), stacking sequence of layers, types of layers (composite or metal), and geometric 

parameters are discussed in detail on the buckling loads of cylindrical shells. Results indicate that 

the metal layer is an effective controlling parameter for buckling loads of the FML cylindrical 

shells. It is found that the buckling load increases by increasing of MVF for all circumferential 

half wave numbers and axial half wave numbers. By increasing the number of layers and MVF in 
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a constant thickness, the buckling load approaches to a constant value. Also, by increasing shell 

radius and length, the buckling load first increases and then it decreases. It is also observed that the 

difference between the buckling loads of different types of GLAREs is larger at thick shell and the 

maximum value of the buckling load is related to GLARE 2B and the minimum is related to 

GLARE 2A (for a constant thickness). Finally, it is hoped that the results presented in this paper 

would be helpful for study and design of FML cylindrical shells. 
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