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Abstract.  In this paper the differential transformation method (DTM) is utilized for vibration and 

buckling analysis of nanotubes in thermal environment while considering the coupled surface and nonlocal 

effects. The Eringen’s nonlocal elasticity theory takes into account the effect of small size while the Gurtin-

Murdoch model is used to incorporate the surface effects (SE). The derived governing differential equations 

are solved by DTM which demonstrated to have high precision and computational efficiency in the vibration 

analysis of nanobeams. The detailed mathematical derivations are presented and numerical investigations are 

performed while the emphasis is placed on investigating the effect of thermal loading, small scale and 

surface effects, mode number, thickness ratio and boundary conditions on the normalized natural frequencies 

and critical buckling loads of the nanobeams in detail. The results show that the surface effects lead to an 

increase in natural frequency and critical buckling load of nanotubes. It is explicitly shown that the vibration 

and buckling of a nanotube is significantly influenced by these effects and the influence of thermal loadings 

and nonlocal effects are minimal. 
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1. Introduction 
 

In recent years, nanomechanical and nano-electro-mechanical systems (NEMS) at nanoscale 

receive special attention from researchers. Among them nanobeams attracted more attention 

because of their potential usage (Eltaher et al. 2013). For difficulty of experiments at nanoscale, 

the mechanical behaviors of the nanostructures are usually investigated using mathematical 

simulations such as atomistic, atomistic-continuum mechanics and continuum mechanics 

approaches. Since performing atomistic and atomistic-continuum mechanics simulations in large 

scales experiments need much time and expenses, continuum mechanic approaches are often used 

(Malekzadeh et al. 2013). 

In the classical continuum theory the small scale effect and size dependence of material 

properties cannot be predicted, but in continuum approaches nonlocal effect can be simulated 

(Hosseini-Hashemi et al. 2013a). The nonlocal effect which first considered by Eringen expresses 
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that in continuum the stress in one point is the function of strains in all points in the bulk of 

material (Wang et al. 2006, Ansari et al. 2012). Reddy (2007) computed motion equations with 

considering nonlocal effect for different beam theories and described nonlocal effect on natural 

frequencies, buckling loads, deflections. Wang et al. (2007a) studied the nonlocal effect on 

vibration of nanobeams based on TBT. From their observations this effect has dominant role in 

stubby beam and also in high frequencies. Thai et al. (2012) obtained motion equations by 

considering the nonlocal effect on bending, buckling and vibration of nanobeams based on Euler-

Bernoulli beam theory for just simply boundary condition. They indicated that as this effect 

increases, the rate of drop of frequency with nonlocal parameter is magnified for higher modes. 

In studying nanoscale structures, the molecular effects which exist in this scale are undeniable, 

such as the surface effects. The surface of a solid has different property from the bulk which is 

considerable in nanoscale and this effect has dominant influence on frequency in nanoscale 

(Malekzadeh et al. 2013). The Young’s modulus of macroscopic materials is not size-dependent, 

but in nanoscale this modulus is size-dependent. The surface effects which affected from the 

elastic modulus depend on the size of the structures, too. In macroscale they can be neglected 

while in nanoscale because of the large surface to volume ratio they have significant role (Guo et 

al. 2007). Many studies considered surface effects in the dynamic analysis of nanostructures such 

as Gheshlaghi et al. (2011), Wang et al. (2007) and also Hosseini-Hashemi et al. (2013b). 

In few studies the surface and nonlocal effects investigated simultaneously. Most recently, 

Eltaher et al. (2013) studied the coupling effects of nonlocal and surface energy on free vibration 

of nanobeam based on EBT. They concluded that the surface effects depend on the size and the 

material of the nanobeam by calculating natural frequencies for two different materials. Hosseini 

et al. (2013a) studied the surface and nonlocal effects on free vibration of nanobeam based on both 

EBT and TBT by using analytical method for various boundary conditions. They showed that the 

rotary inertia and shear deformation reduce the surface effects on the natural frequencies. In a 

similar study, Ebrahimi et al. (2015a) studied surface and nonlocal effects on buckling and 

vibrational characteristics of nanotubes with differential transformation method. 

In addition, investigating the thermal effect in dynamic analysis of nanotubes is necessary. The 

thermal effect provides an axial load which result to bending and buckling in nanotubes. Few 

studies considered thermal effect in vibration and buckling analysis of nanotubes such as Zhang et 

al. (2007), Wang et al. (2008) and Amirian et al. (2014). And also Ebrahimi et al. (2015b) studied 

the effect of various thermal loadings on buckling and vibrational characteristics of nonlocal FG 

nanobeams. They indicated that the proposed modeling can provide accurate frequency results of 

the FG nanobeams. Moreover, Shariyat (2009) investigated the dynamic buckling of piezo-

laminated plates under thermo-electro-mechanical loads with consideration of the temperature 

dependency of the material properties. 

The governing motion equations are often solved by analytical method such as Reddy (2007) 

and Hosseini-Hashemi et al. (2013a) or finite element methods such as Eltaher et al. (2013) or 

generalized differential quadrature (GDQ) method like Malekzadeh et al. (2013) and other 

solutions which need high CPU time to solve. DTM method a semi-analytical-numerical technique 

which comes from Taylor’s series expansion is simpler and has better precision in compare with 

other methods. This method was first expresses by Zhou (1987) for electrical circuits. In contrast 

with the Taylor series method which is needed long computation time in large orders, in this 

method the accurate results with good precision can be obtained. The exact solution of both linear 

and nonlinear equations and even partial differential equations can be solved by this method such 

as Abazari et al. (2012). In other words, by applying DTM, governing equations for various 
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boundary conditions reduces to algebraic equations, and finally all the calculations turn into simple 

iterative process (Abbasi et al.2014).   

Moreover, although the dynamic analysis of nanotubes by considering surface and nonlocal 

effects is studied, but the thermal effects on the natural frequencies and buckling loads is not 

considered in these studies. To the best knowledge of the authors, no research has been found to 

study the buckling and vibration analysis of nanotubes characteristics by considering surface and 

small scale effects in presence of thermal effect for various boundary conditions by employing 

DTM. The approximate expressions of natural frequencies and buckling loads based on 

Hamilton’s method in the framework of Euler-Bernoulli beam theory for Aluminum and Silicon 

nanotubes are obtained. Comparisons with the results from the well-known references with good 

agreement between the results of the DTM method and those available in literature validated the 

presented approach. It is demonstrated that the DTM has high accuracy and precision in dynamic 

analysis of nanotubes. 

 
 
2. Theory and formulation 
 

2.1 Nonlocal elasticity theory 
 

According to Eringen (1983) in an elastic continuum the stress field at one point depends on 

strains of all points in the bulk. This effect can be justified by the atomic theory of lattice dynamics 

and phonon dispersions’ researches. The nonlocal tensor σij can be expressed as (Reddy 2007) 

( ) ( , ) ( ) ( )ij ijx x x t x d x  


                          (1) 

where tij (x′) are the components of the classical local stress tensor at point x which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e. 

klijklij Ct                                   (2) 

The meaning of Eq. (1) is that the nonlocal stress at point x is the weighted average of the local 

stress of all points in the neighborhood of x, the size of which is related to the nonlocal kernel 

α(|x′−x|, τ) . Here |x′−x| is the Euclidean distance and τ is a constant which depends on the bulk’s 

material and both internal and external characteristic lengths like lattice spacing and wavelength 

which can be obtained as 

l

ae0                                   (3) 

Which represents the ratio between a characteristic internal length, a (such as lattice parameter, 

C-C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 

wavelength) through an adjusting constant e0, dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics.  

For difficulty of integral form of Eq. (1) in motion equations, the differential form is 

represented as follows (Eringen et al. 1972) 
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klkl tae  ))(1( 2

0
                              (4) 

Here 
2
 is the Laplacian operator. Moreover, the scale length e0a takes into account the size 

effect on the response of nanostructures. In a one-dimensional case, for an elastic material the 

constitutive relations will be simplified as follows (Miller et al. 2000) 

     

2

2

xx
xx xxE

x


  


 

  
(5) 

where σ and ε are the nonlocal stress and strain respectively, μ=(e0a)
2
 is nonlocal parameter, E is 

the elasticity modulus. 

 
2.2 Surface effect theory 
 
The energy which associated by atoms in surface layers is different from the atoms in the bulk 

of material, which is called surface free energy. In most study this energy is neglected because it is 

introduced with a few layers of atoms near the surface, but in nanosize this energy cannot be 

ignored (He et al. 2004). In nanoscale this effect has dominant influence because of its high ratio 

of surface to volume which the result is the higher elastic modulus and mechanical strength than 

classical studies. The curvature of a bending beam can be approximated by ∂
2
w/∂x

2
. The Laplace-

Young equation (Wang and Feng 2009) in Eq. (6) indicates that for a bending beam ∂
2
w/∂x

2
, the 

distributed transverse loading induced by the residual surface stress is 

2

0 2

w
q q H

x


 


                              (6) 

Here the parameter H is a constant determined by the residual surface stress and the shape of 

cross section. For circular cross sections, H is given, respectively, by 

2 oH D                                  (7) 

where τ 

o
 is the residual surface stress under unstrained condition, and effective flexural rigidity, 

EI
*
, for nanotube is given by 

* 4 4 3 31
( ) ( )

4

s

o i o iEI E R R E R R                          (8) 

where E
s
 is the surface elastic modulus which can be determined by atomistic simulations or 

experiments and inner and outer radii Ri and Ro is considered, respectively. 

 

2.3 Euler-Bernoulli beam theory 
 

The motion equation is obtained by EBT which is based on the displacement of beam 

components. In this theory the straight vertical lines in the mid-plane remain straight after 

deformation. And the shear deformation and rotational inertia are not assumed .The strain-

displacement equations for EBT can be described as follows 

     
1 2 3( , ) , 0 , ( , )

w
u u x t z u u w x t

x


   

  
(9) 
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Fig. 1 Geometry of a nanotube with Length L, inner and outer radii Ri and Ro 

 

 

In the above equation (u,w) are axial and transverse displacements of a point on mid-plane of 

the beam, respectively. And the nonzero strains can be described as 

     

2

1 2

2
, 0xx xz

u uu w
z

x x x x
 

  
    
     

(10) 

The governing equations of motion and the boundary conditions for EBT can be derived by 

Hamilton’s principles as follows 

     0
( ) 0

t

T U V dt     
(11) 

Here U is the strain energy, T is the kinetic energy and V is work done by external forces. 

The first variation of the strain energy can be calculated as 

        
( )ij ij xx xx

v v
U dV dV        

(12) 

Substituting Eq. (10) into Eq. (12) yields 

       

2

20

L u w
U N

x x
M dx  

   
    

    

 

 
 

(13) 

where N and M are the axial force and bending moment respectively. These stress resultants used 

in Eq. (13) are defined as 

     
,xx xx

A A
N dA M zdA     

(14) 

The kinetic energy for EBT can be written as 

          

2 231

0

1
( ( ) ( ) )

2

L

A

uu
T dAdx

t t



 

  
 

(15) 

And the first variation of the Eq.(15) can be obtained as 

      

2 2

0
( ) ( )) ( )

L u u w w w w
T A A I dx

t t t t t x t x
      

      
   

        


 

(16) 
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where ρ, I, A are the mass density, moment inertia and cross sectional area of the nanotube 

respectively. The first variation of external forces work of the beam can be written in the form 

      
 

0

L

V f u q w dx     
(17) 

In which f and q are external axial and transverse loads distribution along length of beam, 

respectively. Substituting Eqs. (13), (16) and (17) into Eq. (11) and setting the coefficients of 

,u w  and ( )
w

x




 to zero, lead to the following motion equations 

     

2

2

N u
f A

x t


 
 

   
(18a) 

     
2 2 4

2 2 2 2

M w w w
N q A I

x x x t t x
 

     
    

      
 (18b) 

Integrating Eq. (5) over the beam’s cross-section area, we obtain the force-strain and the 

moment-strain of the nonlocal EBT can be obtained as follows 

     

2

2

N u
N EA

x x

 

 
   

(19a) 

     

2 2
*

2 2

M w
M EI

x x

 

  
   

(19b) 

The explicit relation of the nonlocal normal force and bending moment can be derived by 

substituting for the second derivative of M from Eq. (18) into Eq. (19) as follows 

     

3

2

u u f
N EA

x x t x

   

   
      

(20a) 

          

2 2 4
*

2 2 2 2

w w w w
M EI N q A I

x x x t t x
  
      

       
         

(20b) 

The nonlocal governing equations of Euler-Bernoulli nanotubes in terms of the displacement 

can be derived by substituting for N and M from Eq. (20) into Eq. (18) as follows 

     

2 2 4

2 2 2 2

u f u u
EA f A A

x x x t t x
  

     
    

        

(21a) 

2 2 2 2 2 4 2

0 02 2 2

4

*

2 2 2 2 2

2

2 22

w w w w
EI N A I

x x x x x t t x

w w w
N A I

x

w w
q

x t x

H q H
x x

t

  

 

          
          

           

    
   
   

 
 

 

 

 
(21b) 
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When the nanotube vibrates with a natural frequency ω, it is possible to separate the time 

dependency by expressing the displacement parameters in the following form 

     ( , ) ( ) i tw x t W x e   
(22) 

Substituting harmonic vibration modes of Eq. (22), into Eq. (21) leads to a time-independent 

governing equation as follows 

* 2 2

2 2 2

2 2

2 2 2 2 2 2

0 02 2 2

2

2

W
EI N A W I

x x x x x x

W w

W
N

W w
q H q H

x

I A W
x x

x

x

W

    

   

         
          

         

   
   
 

 
 









 (23) 

where E is Young’s modulus, I second moment of area about the y-axis, w the deflection of the 

beam, ρ density of the nanobeam, A cross section area of the nanobeam, L nanobeam length and 

N represents the axial force on the nanobeam and is expressed as 

     
mN N N   (24) 

where Nm and Nθ are the axial force due to the mechanical loading prior to buckling and axial force 

due to the influence of temperature change, respectively. The thermal axial force Nθ can be written 

as (Zhang et al. 2008) 

     
1 2

x

E A
N  


 


 (25) 

where αx is the coefficient of thermal expansion in the direction of X-axis, ν is Poisson’s ratio and 

θ denotes the change in temperature.  

 
 

3. Differential transformation method 
 

Several methods are used for solving resultant motion equations as finite element method, 

Galerkin method or analytical methods. These methods are so common but they need high CPU 

time to solve. DTM is one of the solving methods which has some advantages in compare with 

others as converging the value with acceptable precision and can be used for linear and non-linear 

equations for various boundary conditions. The basic definitions can be expressed as follows. In 

this method, differential transformation of k the derivative function y(x). This method transform 

the differential equations and boundary conditions into algebraic equations and also a closed-form 

series solution can be obtained. In Tables 1 and 2 some transformation rules are presented to both 

the differential equations and the boundary conditions. The basic definitions and the application 

procedure of this method can be introduced as follows. The transformation equation of function 

can be defined as (Chen and Ju 2004) 

    
 

0

1 ( )
( )

!

k

x xk

d f x
F k

k dx


 

(26) 

where f(x) the original is function and F[k] is the transformed function. The inverse transformation  
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Table 1 Some of the transformation rules of the one-dimensional DTM 

Original function Transformed function 

f(x)=g (x)±h(x) F(K)=G(K)±H(K) 

f(x)=λg (x) F(K)=λG(K) 

f(x)=g (x) h(x)    
0

( )
K

l

F K G K l H l


   

 
( )n

n

d g x
f x

dx
   

 !
( )

!

k n
F K G K n

k


   

f(x)= x
n
    

1

0

k n
F K K n

k n



   



 

 
Table 2 Transformed boundary conditions (B.C.) based on DTM 

X=0 X=L 

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 

f(0)=0 F(0)=0 f(L)=0 
0

[ ] 0
k

F k




  

df (0)
0

dx
  F(1)=0 

df ( )
0

dx

L
  

0

? ] 0
k

k F k




  

2

2

(0)
0

dx

d f
  F(2)=0 

2

2

( )
0

dx

d f L
   

0

1 ? ] 0
k

k k F k




   

3

3

(0)
0

dx

d f
  F(3)=0 

3

3

( )
0

dx

d f L
    

0

1 2 [ ] 0
k

k k k F k




    

 

 

is defined as 

     
   0

0

( ) ?k

k

f x x x F k




 
 

(27) 

Combining Eqs. (26) and (27) one obtains 

     

 
 

0

0

0

( )
( )

!

kk

x xk
k

d f xx x
f x

k dx










 

(28a) 

In actual application, the function f(x) is expressed by a finite series and Eq. (28a) can be 

written as follows 

     

 
 

0

0

0

( )
( )

!

kk

x x

N

k
k

d f xx x
f x

k dx







 

(28b) 

Which implies that the term in relation (28c) is negligible 

     

 
 

0

0

1

( )
( )

!

kk

x xk
k N

d f xx x
f x

k dx





 


 

 

(28c) 
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4. Implementation of differential transformation method 
 
The Eq. (23) is solved by DTM approach and solving the complicated transcendental algebraic 

equations for general boundary conditions will be simplified. By applying differential 

transformation method to Eq. (23) and using Table 1 the resultant equation has the following form: 

• Vibration equation 

 

* 2

2 2 2

( 4)!
( ) [ 4]

!

( 2)!
[ 2] [ ] 0

!

k
EI H I N W k

k

k
A I H N W k A W k

k

   

     


   


      

         (29a) 

• Critical buckling load equation 

  * ( 4)! ( 2)!
( ) [ 4] [ 2] 0

! !

k k
EI H N W k N H W k

k k
 

 
             (29b) 

where W[k] is the transformed functions of w. Also the various boundary condition for nanotubes 

by using Table 2 can be expressed as follows: 

Simply supported-Simply supported: 














0

0][]1[  ,0][

0]2[  ,0]0[

kk

kWkkkW

WW



                      (30a) 

Clamped-Clamped: 














00

0][    ,0][

0]1[  ,0]0[

kk

kWkkW

WW
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Clamped-Simply supported: 














0

0][  ]1[  ,0][

0]1[  ,0]0[

kk

kWkkkW

WW



                     (30c) 

By using Eq. (29) and with the transformed boundary conditions one arrives at the following 

eigenvalue problem 

 11 12

21 22

0
A A

C
A A

 
 

 
                            (31) 

where [C] correspond to the missing boundary conditions at x=0. For the non-trivial solutions of 

Eq. (31), it is necessary that the determinant of the coefficient matrix is equal to zero 
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Table 3 Material properties of Al and Si (Miller et al. 2000)  

Material E (Gpa) ρ (kg/m
3
) v Es (N/M) τ0 (N/M) αx (1/k)*10

-6
 

Al 70 2700 0.3 5.1882 0.9108 8.4 

Si 210 2370 0.24 -10.6543 0.6048 2.56 

 

Table 4 Comparison of the non-dimensional fundamental natural frequencies ( 2ˆ ρA / EIL  ) of simply  

supported beams 

L/D µ Thai (2012) Reddy (2007) Present paper 

10 

0 9.8293 9.8696 9.86960440 

1 9.3774 9.4159 9.41588108 

2 8.9826 9.0195 9.01948110 

3 8.6338 8.6693 8.66926898 

4 8.3228 8.3569 8.35691990 

20 

0 9.8595 9.8696 9.86960440 

1 9.4062 9.4159 9.41588108 

2 9.0102 9.0195 9.01948110 

3 8.6604 8.6693 8.66926898 

4 8.3483 8.3569 8.35691990 

100 

0 9.8692 9.8696 9.86960440 

1 9.4155 9.4159 9.41588108 

2 9.0191 9.0195 9.01948110 

3 8.6689 8.6693 8.66926898 

4 8.3566 8.3569 8.35691990 

 

 

11 12

21 22

0
A A

A A
                               (32) 

Solution of Eq. (32) is simply a polynomial root finding problem. Many techniques such as 

Newton’s method, Laguerre’s method, etc. can be used to find the roots of this frequency equation. 

 
 

5. Numerical results and discussions 
 

In this study, a nanotube with circular cross-section is assumed to obtain governing equations. 

The numerical results are obtained for Aluminum (Al) with crystallographic direction of [1 1 1] 

and Silicon (Si) with crystallographic direction of [1 0 0]. The material properties for Aluminum 

and silicon nanotube and the relevant properties is considered as shown in Table 3. First of all, to 

approve the validity of equations and solution method the nonlocal natural frequencies and critical 

buckling loads of nanotubes are compared will those in well-known studies. In Tables 4 and 5 the 

non-dimensional fundamental natural frequencies 
2ˆ ρA / EIL  , and the non-dimensional 

critical buckling load, are listed and compared with results given by Reddy (2007) and Thai  
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Table 5 Comparison of the non-dimensional critical buckling loads (
20 ( )cr mN N L EI ) of simply supported  

beams 

L/D µ Thai (2012) Reddy (2007) Present paper 

10 

0 9.8696 9.8696 9.86960440 

1 8.9830 8.9830 8.98301623 

2 8.2426 8.2426 8.24258361 

3 7.6149 7.6149 7.61491765 

4 7.0761 7.0761 7.07607999 

20 

0 9.8696 9.8696 9.86960440 

1 8.9830 8.9830 8.98301623 

2 8.2426 8.2426 8.24258361 

3 7.6149 7.6149 7.61491765 

4 7.0761 7.0761 7.07607999 

100 

0 9.8696 9.8696 9.86960440 

1 8.9830 8.9830 8.98301623 

2 8.2426 8.2426 8.24258361 

3 7.6149 7.6149 7.61491765 

4 7.0761 7.0761 7.07607999 

 
Table 6 Critical buckling load corresponding first mode with various boundary condition with changing 

temperature (L/D=10, Ro=2Ri) 

µ θ 

S-S C-S C-C 

NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) 

0 

0 9.8696 42.9089 34.2707 20.1907 53.2300 44.5918 39.4784 72.5177 63.8795 

10 9.8698 42.9091 34.2708 20.1909 53.2302 44.5919 39.4786 72.5179 63.8796 

20 9.8700 42.9093 34.2708 20.1911 53.2304 44.5920 39.4788 72.5181 63.8796 

50 9.8706 42.9099 34.2710 20.1918 53.2311 44.5921 39.4795 72.5188 63.8798 

100 9.8717 42.9110 34.2712 20.1928 53.2321 44.5923 39.4805 72.5198 63.8800 

1 

0 8.98302 42.0223 33.3841 16.7989 49.8382 41.2000 28.3043 61.3436 52.7054 

10 8.98323 42.0225 33.3842 16.7991 49.8384 41.2001 28.3045 61.3438 52.7055 

20 8.98344 42.0227 33.3842 16.7993 49.8386 41.2002 28.3047 61.344 52.7055 

50 8.9840 42.0234 33.3844 16.8000 49.8392 41.2003 28.3054 61.3447 52.7057 

100 8.9851 42.0244 33.3846 16.8010 49.8403 41.2005 28.3064 61.3457 52.7059 

2 

0 8.2425 41.2819 32.6437 14.3828 47.4220 38.7839 22.0603 55.0996 46.4614 

10 8.2427 41.2821 32.6437 14.3830 47.4223 38.7840 22.0605 55.0998 46.4615 

20 8.2430 41.2823 32.6438 14.3832 47.4225 38.7841 22.0607 55.1000 46.4615 

50 8.2436 41.2829 32.6439 14.3838 47.4231 38.7842 22.0614 55.1006 46.4616 

100 8.2446 41.2840 32.6442 14.3849 47.4241 38.7844 22.0624 55.1017 46.4619 

3 

0 7.6149 40.6542 32.0160 12.5742 45.6135 36.9753 18.0733 51.1126 42.4744 

10 7.6151 40.6544 32.0161 12.5744 45.6137 36.9754 18.0735 51.1129 42.4744 

20 7.6153 40.6546 32.0161 12.5747 45.6139 36.9755 18.0737 51.1133 42.4745 

50 7.6159 40.6553 32.0163 12.5753 45.6146 36.9756 18.0743 51.1137 42.4746 

100 7.6170 40.6563 32.0165 12.5763 45.6156 36.9758 18.0754 51.1145 42.4749 

*NE: Nonlocal effect, NSE: coupling nonlocal and surface effect 
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Table 7 Natural frequency corresponding first mode with various boundary conditions with changing 

temperature (L/D=10, Ro=2Ri) 

µ θ 

S-S C-S C-C 

NE (both) NSE(Al) NSE(Si) NE (both) NSE(Al) NSE(Si) NE (both) NSE(Al) NSE(Si) 

0 

0 9.8696 20.5790 18.3913 15.4182 24.6970 22.6692 22.3733 29.9999 28.2272 

10 9.8687 20.5789 18.3912 15.4169 24.6970 22.6691 22.3714 29.9999 28.2272 

20 9.8678 20.5789 18.3912 15.4156 24.6970 22.6691 22.3696 29.9999 28.2272 

50 9.8652 20.5788 18.3912 15.4117 24.6969 22.6691 22.3640 29.9998 28.2271 

100 9.8608 20.5786 18.3911 15.4051 24.6967 22.6690 22.3548 29.9996 28.2271 

1 

0 9.4158 20.3653 18.1518 14.5992 24.9139 22.6895 21.1090 30.8606 28.6439 

10 9.4150 20.3652 18.1518 14.598 24.9138 22.6895 21.1073 30.8606 28.6439 

20 9.4142 20.3652 18.1518 14.5967 24.9138 22.6895 21.1055 30.8605 28.6439 

50 9.4116 20.3651 18.1517 14.593 24.9137 22.6895 21.1003 30.8604 28.6439 

100 9.4075 20.3649 18.1517 14.5868 24.9135 22.6894 21.0916 30.8602 28.6438 

2 

0 9.0194 20.1850 17.9494 13.8962 25.0654 22.6911 20.0328 31.5082 28.9561 

10 9.0186 20.1850 17.9494 13.895 25.0654 22.6911 20.0311 31.5082 28.9561 

20 9.0178 20.1850 17.9494 13.8938 25.0653 22.6910 20.0295 31.5081 28.9561 

50 9.0154 20.1848 17.9493 13.8903 25.0652 22.6910 20.0245 31.508 28.9560 

100 9.0114 20.1846 17.9492 13.8844 25.0650 22.6909 20.0162 31.5078 28.9560 

3 

0 8.6692 20.0310 17.7760 13.2843 25.1767 22.6830 19.1029 32.014 29.1982 

10 8.6685 20.0310 17.7760 13.2832 25.1767 22.6830 19.1013 32.0139 29.1982 

20 8.6677 20.0309 17.7760 13.2821 25.1767 22.6829 19.0998 32.0139 29.1981 

50 8.6654 20.0308 17.7759 13.2787 25.1765 22.6829 19.0950 32.0137 29.1981 

100 8.6615 20.0306 17.7758 13.2731 25.1763 22.6828 19.0871 32.0135 29.1980 

*NE: Nonlocal effect, NSE: coupling nonlocal and surface effect 

 

 

(2012). 

It is observed that resultant natural frequencies matched very well with those given in Reddy 

(2007), Thai (2012). It is also shown that by increasing the nonlocal parameter the natural 

frequency and buckling load decrease. The reason is that the presence of the nonlocal effect tends 

to decrease the stiffness of the nanostructures and hence decreases the values of natural 

frequencies and buckling loads. 

Next, the critical buckling loads 
0

crN  and natural frequencies ̂  corresponding the first mode  

for a nanotube with various boundary conditions are presented in Tables 6-7 for constant value of 

aspect ratio L/D=10 and various nonlocal parameter μ by changing temperature. The nonlocal 

parameters μ=(e0a)
2
 are taken as 0, 1, 2, 3, and 4 nm

2
. It should be noted that μ=0 corresponds to 

local beam theory. It should be noted that when the value nonlocal parameter is zero the results are 

obtained for the local beam theory. The results show that the surface effects increase the stiffness 

of nanotubes, and also by increasing the temperature the value of natural frequency decreases 

while the critical buckling increases. 

The critical buckling load is calculated for different nanotube thickness for different 

temperatures which is presented in Tables 8-10. As it is shown in Tables 8-11 by increasing the 
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thickness of nanotube for different nonlocal parameters the value of critical buckling load 

decreases for all values of temperature which are presented (=0,50,100). And also it van be 

observed that for all values of nonlocal parameters and thicknesses the increase in temperature 

reduces the value of critical buckling load. 

 

 
Table 8 Critical buckling load corresponding with various boundary conditions (L/D=10 θ=0) 

Ro/Ri 

µ=0 nm
2
 µ=1 nm

2
 µ=2 nm

2
 

NE(both) NSE(Al) NSE(Si) NE(both) NSE(Al) NSE(Si) NE(both) NSE(Al) NSE(Si) 

S-S 

2 9.8696 42.9089 34.2707 8.9830 42.0223 33.3841 8.2425 41.2819 32.6437 

5 9.8696 43.0843 29.7825 8.9830 42.1977 28.8959 8.2425 41.4573 28.1555 

10 9.8696 43.1395 29.6369 8.9830 42.2530 28.7503 8.2425 41.5125 28.0099 

15 9.8696 43.1466 29.6247 8.9830 42.2600 28.7381 8.2425 41.5196 27.9977 

20 9.8696 43.1484 29.622 8.9830 42.2618 28.7354 8.2425 41.5214 27.9949 

50 9.8696 43.1497 29.6202 8.9830 42.2632 28.7336 8.2425 41.5227 27.9931 

100 9.8696 43.1498 29.6201 8.9830 42.2632 28.7335 8.2425 41.5228 27.9930 

C-S 

2 20.1907 53.2300 44.5918 16.7989 49.8382 41.2000 14.3828 47.4220 38.7839 

5 20.1907 53.4054 40.1036 16.7989 50.0136 36.7118 14.3828 47.5975 34.2957 

10 20.1907 53.4607 39.9580 16.7989 50.0689 36.5662 14.3828 47.6527 34.1500 

15 20.1907 53.4677 39.9458 16.7989 50.0759 36.5540 14.3828 47.6597 34.1379 

20 20.1907 53.4695 39.9431 16.7989 50.0777 36.5513 14.3828 47.6616 34.1351 

50 20.1907 53.4709 39.9413 16.7989 50.0791 36.5495 14.3828 47.6629 34.1333 

100 20.1907 53.4710 39.9412 16.7989 50.0791 36.5494 14.3828 47.6630 34.1332 

C-C 

2 39.4784 72.5177 63.8795 28.3043 61.3436 52.7054 22.0603 55.0996 46.4614 

5 39.4784 72.6931 59.3913 28.3043 61.5190 48.2172 22.0603 55.2750 41.9732 

10 39.4784 72.7484 59.2457 28.3043 61.5743 48.0716 22.0603 55.3302 41.8276 

15 39.4784 72.7554 59.2335 28.3043 61.5813 48.0594 22.0603 55.3373 41.8154 

20 39.4784 72.7572 59.2308 28.3043 61.5831 48.0567 22.0603 55.3391 41.8126 

50 39.4784 72.7586 59.2290 28.3043 61.5845 48.0549 22.0603 55.3404 41.8109 

100 39.4784 72.7586 59.2289 28.3043 61.5845 48.0548 22.0603 55.3405 41.8108 

 
Table 9 Critical buckling load corresponding with various boundary conditions (L/D=10, θ=50)  

Ro/Ri 

µ=0 nm
2
 µ=1 nm

2
 µ=2 nm

2
 

NE(both) NSE(Al) NSE(Si) NE(both) NSE(Al) NSE(Si) NE(both) NSE(Al) NSE(Si) 

S-S 

2 9.87065 42.9099 34.271 8.98407 42.0234 33.3844 8.24363 41.2829 32.6439 

5 9.87065 43.0853 29.7828 8.98407 42.1988 28.8962 8.24363 41.4583 28.1557 

10 9.87065 43.1406 29.6371 8.98407 42.254 28.7505 8.24363 41.5136 28.0101 

15 9.87065 43.1476 29.625 8.98407 42.261 28.7384 8.24363 41.5206 27.9979 

20 9.87065 43.1495 29.6222 8.98407 42.2629 28.7356 8.24363 41.5225 27.9952 

50 9.87065 43.1508 29.6204 8.98407 42.2642 28.7338 8.24363 41.5238 27.9934 

100 9.87065 43.1509 29.6203 8.98407 42.2643 28.7337 8.24363 41.5239 27.9933 
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Table 9 Continued 

C-S 

2 20.1918 53.2311 44.5921 16.8 49.8392 41.2003 14.3838 47.4231 38.7841 

5 20.1918 53.4065 40.1039 16.8 50.0147 36.7121 14.3838 47.5985 34.2959 

10 20.1918 53.4617 39.9583 16.8 50.0699 36.5664 14.3838 47.6538 34.1503 

15 20.1918 53.4688 39.9461 16.8 50.0769 36.5543 14.3838 47.6608 34.1381 

20 20.1918 53.4706 39.9433 16.8 50.0788 36.5515 14.3838 47.6626 34.1354 

50 20.1918 53.4719 39.9415 16.8 50.0801 36.5497 14.3838 47.664 34.1336 

100 20.1918 53.472 39.9414 16.8 50.0802 36.5496 14.3838 47.664 34.1335 

C-C 

2 39.4795 72.5188 63.8798 28.3054 61.3447 52.7057 22.0614 55.1006 46.4616 

5 39.4795 72.6942 59.3916 28.3054 61.5201 48.2175 22.0614 55.276 41.9735 

10 39.4795 72.7494 59.2459 28.3054 61.5753 48.0718 22.0614 55.3313 41.8278 

15 39.4795 72.7564 59.2338 28.3054 61.5824 48.0597 22.0614 55.3383 41.8157 

20 39.4795 72.7583 59.231 28.3054 61.5842 48.0569 22.0614 55.3402 41.8129 

50 39.4795 72.7596 59.2292 28.3054 61.5855 48.0551 22.0614 55.3415 41.8111 

100 39.4795 72.7597 59.2291 28.3054 61.5856 48.055 22.0614 55.3416 41.811 

 
Table 10 Critical buckling load corresponding with various boundary conditions (L/D=10, θ=100) 

Ro/Ri 

µ=0 nm
2
 µ=1 nm

2
 µ=2 nm

2
 

NE(both) NSE(Al) NSE(Si) NE(both) NSE(Al) NSE(Si) NE(both) NSE(Al) NSE(Si) 

S-S 

2 9.8717 42.9110 34.2712 8.9851 42.0244 33.3846 8.2446 41.2840 32.6442 

5 9.8717 43.0864 29.7830 8.9851 42.1998 28.8964 8.2446 41.4594 28.1560 

10 9.8717 43.1416 29.6374 8.9851 42.2551 28.7508 8.2446 41.5146 28.0104 

15 9.8717 43.1487 29.6252 8.9851 42.2621 28.7386 8.2446 41.5217 27.9982 

20 9.8717 43.1505 29.6224 8.9851 42.2639 28.7359 8.2446 41.5235 27.9954 

50 9.8717 43.1518 29.6207 8.9851 42.2653 28.7341 8.2446 41.5248 27.9936 

100 9.8717 43.1519 29.6206 8.9851 42.2653 28.7340 8.2446 41.5249 27.9935 

C-S 

2 20.1928 53.2321 44.5923 16.8010 49.8403 41.2005 14.3849 47.4241 38.7844 

5 20.1928 53.4075 40.1041 16.8010 50.0157 36.7123 14.3849 47.5996 34.2962 

10 20.1928 53.4628 39.9585 16.8010 50.0710 36.5667 14.3849 47.6548 34.1505 

15 20.1928 53.4698 39.9463 16.8010 50.0780 36.5545 14.3849 47.6618 34.1384 

20 20.1928 53.4716 39.9436 16.8010 50.0798 36.5517 14.3849 47.6637 34.1356 

50 20.1928 53.4730 39.9418 16.8010 50.0812 36.5500 14.3849 47.6650 34.1338 

100 20.1928 53.4731 39.9417 16.8010 50.0812 36.5499 14.3849 47.6651 34.1337 

C-C 

2 39.4805 72.5198 63.8800 28.3064 61.3457 52.7059 22.0624 55.1017 46.4619 

5 39.4805 72.6952 59.3918 28.3064 61.5211 48.2177 22.0624 55.2771 41.9737 

10 39.4805 72.7505 59.2462 28.3064 61.5764 48.0721 22.0624 55.3323 41.8281 

15 39.4805 72.7575 59.2340 28.3064 61.5834 48.0599 22.0624 55.3394 41.8159 

20 39.4805 72.7593 59.2313 28.3064 61.5852 48.0572 22.0624 55.3412 41.8131 

50 39.4805 72.7607 59.2295 28.3064 61.5866 48.0554 22.0624 55.3425 41.8114 

100 39.4805 72.7607 59.2294 28.3064 61.5866 48.0553 22.0624 55.3426 41.8113 
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And also the influence of nanotube thickness is investigated on the fundamental natural 

frequencies in Tables 11-13. It can be seen that for different values of nonlocal parameter and 

temperature the increase in thickness cause decrease in value of natural frequency for Si nanotube 

while the value of natural frequency in Al increases for all boundary conditions.  
 

 

Table 11 Natural frequency corresponding with various boundary condition (L/D=10, θ=0) 

Ro/Ri 

µ=0 nm
2
 µ=1 nm

2
 µ=2 nm

2
 

NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) 

S-S 

2 9.8696 20.5790 18.3913 9.4158 20.3653 18.1518 9.0194 20.1850 17.9494 

5 9.8696 20.6210 17.1447 9.4158 20.4077 16.8876 9.0194 20.2279 16.6698 

10 9.8696 20.6342 17.1028 9.4158 20.4211 16.8450 9.0194 20.2413 16.6267 

15 9.8696 20.6359 17.0992 9.4158 20.4228 16.8414 9.0194 20.2431 16.6231 

20 9.8696 20.6363 17.0984 9.4158 20.4232 16.8406 9.0194 20.2435 16.6222 

50 9.8696 20.6366 17.0979 9.4158 20.4235 16.8401 9.0194 20.2438 16.6217 

100 9.8696 20.6367 17.0979 9.4158 20.4236 16.8401 9.0194 20.2439 16.6217 

C-S 

2 15.4182 22.6692 24.6970 14.5992 22.6895 24.9139 13.8962 22.6911 25.0654 

5 15.4182 21.5334 24.7363 14.5992 21.4397 24.9569 13.8962 21.3518 25.1113 

10 15.4182 21.4954 24.7487 14.5992 21.3979 24.9705 13.8962 21.3070 25.1257 

15 15.4182 21.4923 24.7503 14.5992 21.3944 24.9722 13.8962 21.3032 25.1275 

20 15.4182 21.4915 24.7507 14.5992 21.3936 24.9726 13.8962 21.3023 25.1280 

50 15.4182 21.4911 24.7510 14.5992 21.3931 24.9730 13.8962 21.3018 25.1284 

100 15.4182 21.4911 24.7510 14.5992 21.3931 24.9730 13.8962 21.3018 25.1284 

C-C 

2 22.3733 29.9999 28.2272 21.1090 30.8606 28.6439 20.0328 31.5082 28.9561 

5 22.3733 30.0347 27.2550 21.1090 30.9039 27.4192 20.0328 31.5579 27.5358 

10 22.3733 30.0457 27.2228 21.1090 30.9176 27.3785 20.0328 31.5735 27.4884 

15 22.3733 30.0471 27.2201 21.1090 30.9193 27.3751 20.0328 31.5755 27.4845 

20 22.3733 30.0474 27.2195 21.1090 30.9198 27.3743 20.0328 31.5760 27.4836 

50 22.3733 30.0477 27.2191 21.1090 30.9201 27.3738 20.0328 31.5764 27.4830 

100 22.3733 30.0477 27.2191 21.1090 30.9201 27.3738 20.0328 31.5764 27.4830 

 
Table 12 Natural frequency corresponding with various boundary condition (L/D=10, θ=50) 

Ro/Ri 

µ=0 nm
2
 µ=1 nm

2
 µ=2 nm

2
 

NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) 

S-S 

2 9.86521 20.5788 18.3912 9.41169 20.3651 18.1517 9.01547 20.1848 17.9493 

5 9.86521 20.6208 17.1447 9.41169 20.4075 16.8875 9.01547 20.2277 16.6698 

10 9.86521 20.634 17.1027 9.41169 20.4209 16.8449 9.01547 20.2412 16.6266 

15 9.86521 20.6357 17.0992 9.41169 20.4226 16.8414 9.01547 20.2429 16.623 

20 9.86521 20.6361 17.0984 9.41169 20.423 16.8406 9.01547 20.2433 16.6222 

50 9.86521 20.6364 17.0979 9.41169 20.4233 16.84 9.01547 20.2436 16.6216 

100 9.86521 20.6365 17.0978 9.41169 20.4234 16.84 9.01547 20.2437 16.6216 
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Table 12 Continued 

C-S 

2 15.4162 22.6691 24.6969 14.5973 22.6895 24.9137 13.8944 22.691 25.0652 

5 15.4162 21.5333 24.7362 14.5973 21.4397 24.9567 13.8944 21.3518 25.1111 

10 15.4162 21.4954 24.7485 14.5973 21.3979 24.9703 13.8944 21.3069 25.1255 

15 15.4162 21.4922 24.7501 14.5973 21.3944 24.972 13.8944 21.3031 25.1273 

20 15.4162 21.4915 24.7505 14.5973 21.3936 24.9724 13.8944 21.3023 25.1278 

50 15.4162 21.491 24.7508 14.5973 21.3931 24.9728 13.8944 21.3017 25.1281 

100 15.4162 21.491 24.7508 14.5973 21.393 24.9728 13.8944 21.3017 25.1282 

C-C 

2 22.364 29.9998 28.2271 21.1003 30.8604 28.6439 20.0245 31.508 28.956 

5 22.364 30.0346 27.2549 21.1003 30.9037 27.4191 20.0245 31.5577 27.5357 

10 22.364 30.0455 27.2227 21.1003 30.9174 27.3784 20.0245 31.5733 27.4883 

15 22.364 30.0469 27.2201 21.1003 30.9191 27.375 20.0245 31.5753 27.4844 

20 22.364 30.0473 27.2194 21.1003 30.9196 27.3743 20.0245 31.5758 27.4835 

50 22.364 30.0475 27.219 21.1003 30.9199 27.3738 20.0245 31.5762 27.4829 

100 22.364 30.0476 27.219 21.1003 30.9199 27.3737 20.0245 31.5762 27.4829 

 
Table 13 Natural frequency corresponding with various boundary condition (L/D=10, θ=100) 

Ro/Ri 

µ=0 nm
2
 µ=1 nm

2
 µ=2 nm

2
 

NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) NE (both) NSE (Al) NSE (Si) 

S-S 

2 9.8608 20.5786 18.3911 9.4075 20.3649 18.1517 9.0114 20.1846 17.9492 

5 9.8608 20.6206 17.1446 9.4075 20.4073 16.8875 9.0114 20.2275 16.6697 

10 9.8608 20.6338 17.1026 9.4075 20.4207 16.8449 9.0114 20.2410 16.6265 

15 9.8608 20.6355 17.0991 9.4075 20.4224 16.8413 9.0114 20.2427 16.6229 

20 9.8608 20.6359 17.0983 9.4075 20.4228 16.8405 9.0114 20.2431 16.6221 

50 9.8608 20.6363 17.0978 9.4075 20.4231 16.8400 9.0114 20.2434 16.6216 

100 9.8608 20.6363 17.0978 9.4075 20.4232 16.8399 9.0114 20.2435 16.6215 

C-S 

2 15.4142 22.6690 24.6967 14.5954 22.6894 24.9135 13.8926 22.6909 25.065 

5 15.4142 21.5333 24.7360 14.5954 21.4396 24.9565 13.8926 21.3517 25.1108 

10 15.4142 21.4953 24.7484 14.5954 21.3978 24.9701 13.8926 21.3068 25.1253 

15 15.4142 21.4921 24.7499 14.5954 21.3943 24.9718 13.8926 21.3030 25.1271 

20 15.4142 21.4914 24.7503 14.5954 21.3935 24.9722 13.8926 21.3022 25.1276 

50 15.4142 21.4910 24.7506 14.5954 21.3930 24.9726 13.8926 21.3016 25.1279 

100 15.4142 21.4909 24.7507 14.5954 21.3930 24.9726 13.8926 21.3016 25.1280 

C-C 

2 22.3548 29.9996 28.2271 21.0916 30.8602 28.6438 20.0162 31.5078 28.9560 

5 22.3548 30.0344 27.2549 21.0916 30.9035 27.4191 20.0162 31.5574 27.5356 

10 22.3548 30.0454 27.2227 21.0916 30.9172 27.3784 20.0162 31.5731 27.4883 

15 22.3548 30.0467 27.2200 21.0916 30.9189 27.3750 20.0162 31.5751 27.4843 

20 22.3548 30.0471 27.2194 21.0916 30.9194 27.3742 20.0162 31.5756 27.4834 

50 22.3548 30.0474 27.2190 21.0916 30.9197 27.3737 20.0162 31.5759 27.4828 

100 22.3548 30.0474 27.2190 21.0916 30.9197 27.3737 20.0162 31.5760 27.4828 
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(a) θ=0 (b) θ=50 

 
(c) θ=100 

Fig. 2 Variation of natural frequency ratio versus length for Al and Si materials 

 
 

It can be observed that by increasing the nonlocal parameters for a constant value of thickness 

the natural frequency decreases for both Al and Si. And also by comparing the natural frequencies 

in a constant situation, it can be seen that increasing the temperate decreases the value of natural 

frequency. In the following the influence of surface effect will be studied, and the non-dimensional 

free vibration frequency and critical buckling load ratio of nanotubes made of Al and Si, 

normalized with respect to the fundamental natural frequency and critical buckling load by 

ignoring the surface effects. In Figs. 2 and 3 the variations of the natural frequencies and critical 

buckling loads ratio with respect to the Length of nanotube are plotted for various boundary 

condition and different nonlocal parameters for different values of temperature, respectively. It is 

shown from Figs. 2 and 3 that in constant length of nanotube with the increase in nonlocal 

parameter, the natural frequencies and critical buckling loads ratio increase. On the other hand, 

when the nonlocal parameter is increased, the surface effects play a significant role in the vibration 

and buckling behavior of nanotube 

In Fig. 4 and Fig. 5 the variation of the natural frequencies and critical buckling loads ratio 

wuth respect to the aspect ratio are investigated for Al and Si nanotube. All the results are 

calculated for simply supported nanotube for various temperature values (=0,50,100). It is 
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observed that in constant length of nanotube with the increase in the aspect ratio, the natural 

frequencies and critical buckling loads ratio increase. On the other hand, when the aspect ratio is 

increased, the surface effects play a significant role in the vibration and buckling behavior of  

 

 

  
(a) θ=0 (b) θ=50 

 
(c) θ=100 

Fig. 3 Variation of critical buckling ratio versus length for Al and Si materials for S-S 

 

  
(a) θ=0 (b) θ=50 

Fig. 4 Variation of natural frequency ratio versus aspect ratio(L/D) for Al and Si materials for S-S 
 

196



 

 

 

 

 

 

An investigation into the influence of thermal loading and surface effects... 

 
 (c) θ=100 

Fig. 4 Continued 

 

  
(a) θ=0 (b) θ=50 

 
(c) θ=100 

Fig. 5 Critical buckling load ratio versus aspect ratio(L/D) for Al and Si materials for S-S 

 
 
nanotube. In addition, this figures illustrate that increasing the nonlocal parameter cause increase 

of natural frequency and critical buckling load ratio. 
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(a) Material of Al (b) Material of Si 

Fig. 6 Variation of natural frequency ratio of simply supported nanotube versus length corresponding to 

magnitudes of different τ
o
 and E

s
 

 

  
(a) Material of Al (b) Material of Si 

Fig. 7 Variation of critical buckling load of simply supported nanotube versus length corresponding to 

magnitudes of different τ
o
 and E

s
 

 
 
Finally, the influence of surface effects separately and simultaneously are shown in Figs. 6 and 

7. All the results are calculated for simply supported nanotube for different cases of surface stress 

and surface elasticity when L/D=10 and μ=2 nm
2
. It is observed from these figures, that in the case 

that the surface stress is ignored the surface elasticity has no effect on the natural frequencies. But 

since surface stress is nonzero, value of surface elasticity play an important in nanostructures. 

Positive surface elasticity softens nanotube while negative surface elasticity stiffens nanotube. But 

surface stress lonely is important and effective even without consideration of surface elasticity and 

natural frequencies and critical buckling loads ratio is increased. 

 
 
6. Conclusions 
 

In the present study the free vibration and critical buckling load nanotubes by considering 

surface and thermal effects in presence of nonlocal effect were studied. The motion equations 
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where obtained by Hamilton method in the framework of Euler-Bernoulli beam theory for various 

boundary conditions. The numerical results were obtained for both Aluminum with positive 

surface elasticity and Silicon with negative surface elasticity by utilizing DTM as a semi-

analytical-numerical method. The results illustrated that: 

• By increasing the size of nanotube the influence of surface effects decrease for all the values 

of nonlocal parameter. 

• In the case that the aspect ratio increase the influence of surface effects increase, too 

• When the effect of thermal takes into account the value of natural frequencies decrease by 

increasing the temperature for Al and Si nanotubes, while the buckling load increase by 

increasing the temperature  

• By the time the nonlocal parameter increase the value of natural frequencies and also the 

buckling loads by considering a constant value for the size variables, increase. The reason is 

that the nonlocal effect makes the nanobeam soften and the values of natural frequencies and 

buckling loads decrease. 

• In should be found that the positive surface elasticity soften the nanotube while the negative 

surface elasticity makes the nanotube stiffer in presence of surface stress 

• The results of the present model are validated by the literature and demonstrated that the 

present model can capture correctly the surface and nonlocal effects in presence of thermal 

effect in vibration and buckling analysis of nanotubes. 
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