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Abstract.  In this study, a non-stationary random earthquake Clough-Penzien model is used to describe 

earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear 

method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) 

system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing 

design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the 

minimization of the maximum energy response level of the upper structure subjected to an earthquake as an 

objective function, and with the constraints that the bearing failure probability is no more than 5% and the 

second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters 

is presented. In this optimization process, the radial basis function (RBF) response surface was applied, 

instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) 

algorithm was used to solve the optimization problems. By considering the uncertainties of the structural 

parameters and seismic ground motion input parameters for the optimization of the bearing design, convex 

set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty 

parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into 

first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the 

upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site 

soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the 

optimization parameters, are investigated. 
 

Keywords:  seismic isolated structure; optimal design; lead-core rubber bearing (LRB); stochastic analysis; 

convex sets 

 
 
1. Introduction 
 

By providing a seismic bearing between a building and the ground, a base isolation system can 

reduce the seismic response of the upper structure and therefore block seismic ground motion from 

passing into the upper structure. Through decades of application, base isolation has become the 

most widely used technique for controlling and reducing the seismic responses of structures. 

Generally, an isolation bearing must have a lower lateral stiffness to prolong the resonance period 
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and reduce the lateral seismic action. In addition, an isolation bearing needs to have appropriate 
energy dissipation and high restoration ability to avoid excessive bearing displacement and 
instability. Numerous studies have shown that the mechanical properties of a bearing will greatly 
affect its seismic abilities. Thus, in recent years, the optimum design of mechanical parameters for 
isolation bearings has attracted the attention of researchers in a series of studies. 
  The following studies are representative of some of the previous work. Constantinou and 
Tadjbakhsh (1984) studied the optimal design of isolated structures containing a mixture of rubber 
bearings and friction bearings, and their study revealed that a small number of friction units can 
effectively increase the performance of isolated structures. Park and Otsuka (1999) calculated a 
linear variation function of optimized yield strength for the bearings in bridge isolated structures 
facing an intense earthquake, targeting the maximum energy response of the bearing. However, 
this function was calculated based on a single seismic wave, and thus, it is not suitable for bearing 
isolated structure optimization design for situations involving different frequencies of ground 
motions. Zou (2008) proposed a method for optimizing the design values of a concrete base 
isolated structure based its isolation performance. To obtain the most economical design for the 
reinforced concrete isolated structure, they simultaneously optimized the upper part of the 
structure and the seismic isolation devices as a whole, and they used the total cost of the isolated 
structure under multi-level seismic ground motion as the objective function and specified the 
maximum inter-story displacement of the upper structure and the bearing horizontal displacement 
to be less than a certain limit as a constraint. Iemura et al. (2007) discussed optimal design of a 
resilient sliding isolation (RSI) system for the protection of equipment inside buildings. The study 
found that in the context of minimizing bearing displacement and floor acceleration, greater input 
peak ground acceleration or smaller optimal bearing stiffness after yielding leads to greater 
optimal yield strength. Using the maximum isolator displacement (MID) and maximum isolator 
force (MIF) as targets, Diclel and Karalar (2011) conducted many nonlinear time history (NLTH) 
analyses on representative bridges. They obtained an analytical formula for optimum bearing 
strength and optimal stiffness after yielding by nonlinear fitting analysis methods. This analytical 
formula included the effects of bearings, bridge structures and input seismic ground motion 
characteristics. Using this formula, by selecting the appropriate bearing mechanical parameters, 
designers can obtain economical and robust design of bridge seismic isolation. Islam et al. (2012) 
provided incorporation of lead rubber bearing and high damping rubber bearing as base isolators, 
nonlinear dynamic time domain analyses were performed for both isolated and non-isolated 
buildings under site specific bi-directional earth-Bi-directional earthquake. The study reveals that 
for medium rise building construction, isolation can significantly reduce seismic response in soft 
to medium stiff soil. In accordance with Pareto-type optimization principles that solve 
multi-objective functions with competing objectives, Bucher (2009) optimized the design 
parameters of the bearings in a frictional isolated structure based on probability. The objective 
function can be expressed as the cost function of maximum bearing displacement, residual bearing 
displacement, and maximum upper structure inter-story displacement. The optimization process 
used the moving least squares (MLS)objective function as a response surface, based on Latin 
hypercube sampling, to explicitly express the objective function. Pourzeynali and Zarif (2008) 
optimized the design of upper-level isolated structures using multi-objective optimization. In this 
design, the base mass, stiffness, and damping ratio were used as design variables, and the 
minimization of the displacement of the top portion of the structure and the minimization of 
bearing displacement were used as objectives. Because these two objective functions are mutually 
contradictory, a fast and efficient Non-dominated Sorting Genetic Algorithm (NSGA-II) was used 
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to solve the Pareto optimization problem. Ultimately, the optimum values of the design variables 
for the seismic isolated structure under a deterministic earthquake ground effect were obtained. 
Ozbulut and Hurlebaus (2011) studied the optimal design of super-elastic friction seismic isolation 
for continuous girder bridges. Using the isolation girder natural frequency, the yield displacement 
of Shape Memory Alloy (SMA) devices, and the friction coefficient of the sliding bearings as 
design variables, they used sensitivity analysis on the bearing design parameters to obtain the 
optimal values of the parameters. Jangid (2008) studied parameter optimization for lead-rubber 
bearings (LRB) and a friction pendulum system (FPS) of isolation girder bridges under random 
white noise excitation from the ground. Using the minimum an-squared value of acceleration on 
the bridge surface as the objective function, the author proposed analytic formulas for the 
calculation of optimal bearing yield strength or optimum friction coefficients. The formula is a 
function of the power spectral density constant, the damping ratio of the structure and the 
post-yielding stiffness of the bearing. Furthermore, the parameter values of the seismic isolation 
bearings of LRB and FPS structures under the influence of near-field ground motions were 
calculated (Jangid 2005, 2007). The results showed that under the influence of near-field ground 
motions, the optimum bearing yield strength or bearing friction coefficient should be 10%-15% of 
the total mass of the structure. Baratla and Corbi (2004) simulated the input seismic ground motion 
using a stationary stochastic process with the Kanai-Tajimi power spectral density function, and 
they explored the optimal design of multi-storey structures using frequency-domain analysis of 
random vibration. Using the elastic stiffness of the bearings and foundation mass as optimization 
design variables and the minimum energy absorbed by the upper structure as the objective 
function, they calculated the optimal values for isolated structure bearing stiffness for different 
categories of site soil. However, the limitation of this paper is the use of linear elements to 
simulate isolation bearings, non-linear elements are more commonly used for isolation bearings in 
actual projects. 

All of the aforementioned studies do not take into account the effects of structural parameter 
uncertainties on the optimal design of isolated structures. Existing literature suggests that the 
interaction between the uncertainty of structural parameters and the uncertainty of the load will 
significantly affect the structural dynamic response (Jensen 2005) and safety of a structure 
(Chaudhuri and Chakraborty 2004), as well its optimal design(Schueller and Jensen 2008). Mishra 
and Chakraborty (2013), Mishra et al. (2013) took into account the combined effect of the 
uncertainties of structural parameters and input ground motion, and they used a reliability-based 
optimization method for the optimized design of isolated structures. Based on a matrix 
perturbation method and the first-order Taylor expansion, they applied the total probability theory 
to determine the structural response to a stochastic earthquake, with consideration of the 
uncertainty of the structural parameters. Subsequently, by minimizing the non-conditional 
probability of failure of the upper structure, they obtained the optimal value of the normalized 
yield strength of the isolation bearing. Recently, they also applied this method for the 
multi-objective stochastic optimization design for friction isolated structures with SMA devices 
(Gur and Mishra 2013). 

In this paper, a non-stationary Clough-Penzien random seismic model is used to describe 
earthquake ground excitation. Furthermore, using a stochastic direct integration method combined 
with the equivalent linear method, a solution for the non-stationary seismic response of a 
lead-rubber bearing (LRB) system under the effects of a stochastic earthquake is proposed. Two 
parameters are adopted for the development of an optimal bearing design: post-yielding stiffness 
and normalized yield strength. Using the minimum value of the maximum energy response level of 
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the upper structure subjected to an earthquake as an objective function, and with the constraints 
that the bearing failure probability should be no more than 5% and the second shape factor of the 
bearing should be less than 5, the optimal values are calculated for the two design parameters. In 
this optimization process, the radial basis function (RBF) is used instead of the implicit objective 
function and constraints, and a sequential quadratic programming (SQP) algorithm is used to solve 
the optimization problems. With consideration of the uncertainties of the structural parameters and 
seismic ground motion input parameters in the optimization of the bearing design, convex set 
models (such as the interval model and ellipsoidal model) are used to describe the uncertainty 
parameters. Subsequently, the optimal bearing design parameters were expanded at their median 
values into first-order Taylor series expansions, and a Lagrange multiplier method was used to 
determine the upper and lower boundaries of the parameters.  

 
 

2. An input seismic ground motion model 
 

A non-stationary Clough-Penzien stochastic seismic model (Clough and Penzien 1977) is used 
to describe earthquake excitation ag(t) 
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where xg (t) and xf (t)are the responses of the filter, ω f, ω g are the characteristic frequencies of the 
filter, ξf and ξg are the filter damping ratios, w(t) is the white noise when the power spectral 
intensity is S0, a(t) is the time modulation function given by the following equation (Marano et al. 
1968) 
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The peak acceleration of ground motion PGA  is 
ga3 , so the relationship between S0 and  

PGA can be written as (Marano et al. 2011) 
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(3) 

Table 1 lists values of these seismic model parameters in different field types. 
 
 
3. The motion equation 
 

The nonlinear motion equation for the multi-degree-of-freedom lead-rubber bearing system 
under horizontal seismic excitation ag(t) can be written as 
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Table 1 Values of seismic model parameters in different field types. 

Field type vsm (m/s)* ωg (rad/s) ξg ωf (rad/s) ξf t1 (s) t2 (s) C 

I vsm>500 31.42 0.64 4.71 0.64 6.8 12.8 0.12 

II 250< vsm≤500 20.92 0.72 3.14 0.72 7.0 13.5 0.11 

III 140< vsm≤250 15.71 0.80 2.36 0.80 7.5 14.5 0.11 

Ⅳ vsm<140 9.67 0.90 1.45 0.90 8.0 15.5 0.10 

* vsm : soil equivalent shear wave velocity 
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where M s, C s and K s are the mass, damping and stiffness matrices of the upper structure, mi is the 
mass of the i-th floor, Xs=[x1,...,xn]′ is the displacement of the upper structure relative to the base, 
mb is the mass of the base, I=[1,...1]′, ( , )Q b bF x x  is the hysteretic restoring force of the lead- 
rubber bearing and xb is the displacement of the base relative to the ground. 

In this paper, ( , )Q b bF x x  is treated as a bilinear model (dashed line in Fig. 1). Because the  
pre-yielding stiffness of the LRB is 10 - 15 times its post-yielding stiffness, under the condition of 
equal hysteresis area, the bilinear restoring force model simplifies to a rigid-plastic model (solid  
line in Fig. 1). Thus, ( , )Q b bF x x

 
can be expressed as (Jangid 2008) 

( , )= (1 ) sign( )Q b b b b y bF x x N k x N f x   
                   

(6) 

where N is the total number of isolation bearings, kb is the pre-yielding stiffness of the bearing, fy is 
the yield force of the bearing and α is the ratio of pre-yielding and post-yielding stiffness. 

Based on a random equivalent linearization method, Eq. (6) can be replaced with a linear 
equation, that is (Jangid 2008) 

( , )= (1 ) ( )Q b b b b y e bF x x N k x N f c t x   
                     

(7) 

where ce(t) is the equivalent time-varying damping coefficient, which can be calculated as 

1 2
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e
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In Eq. (8), ( )
bx t   

is the time-varying standard deviation of bx . 
Eq. (7) is substituted into Eq. (5) to yield the following equation 
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Fig. 1 Hysteretic restoring force model of lead-rubber bearings 
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Combining Eq. (10) with Eq. (1), which is a differential equation describing seismic excitation, 

and introducing a state variable,  , , , , ,f g f gx x x x    Y X X , the state equation can be obtained as 

( ) ( ) ( ) ( )et t t t Y A Y F                           (11) 

The formulae of F(t) and Fe(t) are described in the Appendix. 
 

 
4. Stochastic analysis method 
 

With consideration of the time-varying character of Ae(t) in Eq. (11), time t is subdivided into 
a finite number of equally spaced moments separated by Δt: t=0, Δt,..., nΔt, (n+1)Δt,.... Within the 

FQ 
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fy 
αkb
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n-th time period τ∈[nΔt, (n+1)Δt], Ae(τ) is assumed to be approximately constant. In addition, let 
Ae(τ)=Aeτ(τ)=rAe(n)+(1−r)Ae(n+1), where r represents the relative weight of Ae(n). Assuming that 

the external load exhibits linear variation, i.e., 
( 1) ( )

( ) ( ) ( )
n n

n n t
t

  
   


F F

F F , the state equation, 

Eq. (11), can be simplified within this period to 

( ) ( ) ( ) ( )e n   Y A Y F                          (12) 

Solving Eq. (12), Y(n+1) within (n+1)Δt could be obtained as 
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To obtain the mean response, the average on both sides of Eq. (13) is taken 
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Because E[Y(n−1)FT(n)] and E[F(n−1)FT(n)] are zero, the above equation becomes 

3E[ ( ) ( )]= ( 1) [ ( )]Tn n n R nY F B F                        (17) 

Similarly 

3E[ ( ) ( )]= [ ( )] ( 1)T Tn n R n n F Y F B                       (18) 

Substituting Eq.s (17) and (18) into Eq. (16) gives 
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In the above equation, the 2(n+3)×2(n+3)-th element of R[F(n)] and R[F(n+1)] has a value of 
2πS0a

2(n)/Δt and 2πS0a
2(n+1)/Δt respectively, but all other elements are zero. With the initial 

condition R[Y(0)]=0, R[Y(t)] can be calculated for different time points. Note that when r=1, Eq. 
(19) does not need to be solved iteratively, when r≠1, an iterative solution is needed. 
 
 
5. Optimal bearing designs with deterministic structural parameters 

 
Based on Eq. (9), it can be seen that ωb and μ determine the post-yielding stiffness and yield 

force. Therefore, ωb and μ are use as optimization parameters in this study. The objective function 
is set to minimize the ratio of the maximum energy responses in the upper structure with and 
without seismic isolation under the influence of an earthquake. The mathematical expression is 
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In this equation, 2 ( , )b ix t  is 2[ ( )]iE x t  when the base is seismically isolated, and 2 ( , )f ix t
 

is 
2[ ( )]iE x t  when the base is fixed; both values can be calculated by using stochastic direct  

integration. 
While satisfying the above objective function, the following two constraint conditions also 

need to be satisfied: 
Constraint condition 1: The probability of the horizontal displacement of the isolation bearing 

exceeding the allowable limit under the seismic effect is less than 5%. Mathematically, this is 
expressed as 

[0, ]
( , ) 1 min ( ) 5%b

b t T
r t 


  F

                         
(21) 

In this equation,  0
( )= exp 2 ( , )

t t
br t v b d  , and ( , )t

bv b   is expressed as follows (Vanmarcke 1975) 
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Here, b is the allowable displacement limit. According to the seismic code of China, b=min[0.55D, 
300%ntr], where D is the bearing diameter, ntr is the total thickness of the rubber in the bearing, 

2( )= [ ( )]
bx bt E x t , 2( )= [ ( )]

bx bt E x t    and q(t) is a bandwidth parameter that can be expressed as 

follows: 

2
1

0 2

( )
( )= 1

( ) ( )

t
q t

t t


 

  

In this expression, 2
0 ( )= [ ( )]bt E x t , 1( )= [ ( ) ( )]b bt E x t x t  , and 2

2 ( )= [ ( )]bt E x t  . 

As shown in the following equation, ntr is related to the second stiffness, k2=αkb, of a single 
bearing 

2 /Nk GA ntr                               (23) 

Here, N is the total number of isolation bearings, G is the shear modulus of the rubber, A=Pd/[σb] is 
the total area of all bearings, Pd is the total vertical design load, and [σb] is the allowable stress of 
the bearing design, usually 10-15 MPa. 

By substituting A=Pd/[σb] into Eq. (23) gives: 

2 [ ]
d

b

GP
Nk

ntr 
  

Then, after dividing both sides of the above equation by the total mass of the structure, the 
following equation is obtained 

2

[ ] [ ] [ ]
d d

z z b z b b

GP GP gNk G g

M ntr M ntr G ntr


  

  
                   

(24) 

Here, Gz=Mzg is the representative value of gravity load in the structure, and β=Pd/Gz is a number 
greater than 1. 

Because 22
b

z

Nk

M
 , Eq. (24) can be converted to 

2[ ]b b

G g
ntr


 


                              

(25) 

Based on Eq. (25), it can be seen that b in Eq. (22) is a function of ωb, and when ωb is 
determined, the total rubber thickness in the bearing, ntr, is also determined. 

Constraint condition 2: To prevent instability under a vertical load, it is required that the 
second shape factor, S2, of the bearing should be greater than a limiting value m (m usually has a 
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value of 4 - 6): 

2

D
S m

ntr
   

By substituting Eq. (25) into the above equation gives 

2

2

[ ]
( , ) b b

b

DD
S m

ntr G g

  


  
                       

(26) 

Combining Eqs. (20), (21) and (26), a mathematical model of optimized bearing parameters 
can be obtained as 

2

,

min ( , )

. . ( , ) 5%

( , )

b

obj b

b
b

b

Find

f

s t

S m

 
 

 
 




F

                           

(27) 

In the process of solving Eq. (27), because f obj (ωb, μ) and Fb
 (ωb, μ) are implicit functions of 

ωb, μ, the computational efficiency would be very low if it is solved directly, resulting in not 
only long computation times but also non-convergent results. To improve the computational 
efficiency, an RBF response surface is used to make fobj(•) 

and Fb(•) explicit (Fang and 
Horstemeyer 2006, McDonald et al. 2007). Here, fobj(•) is taken as an example: 

1

( ) ( ) (|| ||)
n

j
obj obj j

j

f f  


  x x x x
                    

(28) 

In this equation, x=[x1, x2]=[ωb, μ], n is the number of interpolation sample points, xj is j-th 
interpolation sample point vector, λj is the coefficient to be solved for, φ(||x−xj||) is the RBF and 
||x−xj|| is the distance between any x and the j-th interpolation point and is given by the following 
expression: 

2 2
1 1 2 2|| || = ( ) ( )j j jx x x x   x x  

For the convenience of expression, let roj=||x−xj|| and rij=||x−xj||. 
If there are n interpolation sample points, then, based on Eq. (28), ( )objf x  can be expressed 

as 

1

( ) ( ) ( 1, 2, )
n

i ij
obj j

j

f r i n 


  x
                    

(29) 

Where φ(•) is the RBF, and let it to be Gaussian in this paper: 
2

( ) crr e  . 
Eq. (29) is a set of linear equations for λj (j=1,2,...n). Values of λj can be obtained by solving 
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Eq. (29).Substituting λj into Eq. (28), an approximate explicit expression of fobj(x) and ( )objf x  can 

be obtained. Similarly, the approximate explicit expression of Fb(x) in the constraint condition 1, 
( )bF x , can also be obtained. After replacing fobj(•)and Fb(•) in Eq. (27) with ( )objf   and ( )b F  

and using an SQP algorithm, the two optimal parameters ,opt opt
b   can be obtained. 

Specifically, the calculation steps are the following: 
1) A set of interpolation sample points ( , ), ( 1, 2, )i i i

bx i n     is selected. 
2) The objective response values ( )i

objf x  and constraint response values ( )b iF x  at every  
sample point are calculated. 

3) By substituting ( )i
objf x  into Eq. (29), the set of linear equations can be solved to obtain λj, 

and ( )objf x  can then be obtained by substituting λj into Eq. (28); similarly, ( )bF x  can also be  
obtained. 

4) After the substitution of ( )objf x  and ( )bF x  into Eq. (27), the SQP algorithm is used to  
solve the optimization problem. In the process of obtaining the solution, the interpolation sample 
point that satisfies the constraint conditions and has the smallest object response value is selected 
as the initial point for SQP. 

5) The convergence tolerance is detected. Solving is completed if the convergence tolerance is 
satisfied; otherwise, the current optimization result is used as an initial point and, as a new sample 
point, is added to the original sample points to re-build and re-solve a new model. The process is 
repeated until the current result and the results of previous iterations satisfy the convergence  
tolerance criteria. Finally, the optimized bearing parameters [ , ]opt opt opt

b x  are obtained. 
 
 

6. Optimal bearing design with the consideration of parametric uncertainty 
 

6.1 Description of uncertainty parameters 
 

In actual engineering practice, there are uncertainties associated with structural parameters 
and input seismic ground motion parameters. These uncertainties will affect the optimal design 
of the isolation bearing. Models describing parametric uncertainty include the probabilistic 
model, which is established based on statistics, and the non-probabilistic convex model, which 
has been developed in recent years and is based on convex set theory. The probabilistic model 
requires a large number of samples, or relies on the repeatability of events, to obtain complete 
information about the probability distribution. However, in practice, it is usually difficult to 
obtain a large amount of statistical data. In contrast, even if there is a small amount of 
uncertainty information available, with an unknown probability distribution function, the 
non-probabilistic convex model can identify the amplitude or the boundaries of the parameter 
uncertainties based on the available information. Furthermore, this model can describe the 
boundaries using convex sets, such as the interval set or ellipsoidal set (Ellishakoff 1995, 
Ben-Haim 1994, Qiu and Wang 2010). In this paper, the uncertainties of structural parameters 
and seismic ground motion input parameters are described by the interval model and ellipsoidal 
model. Specifically, the uncertainty vector is X=[Ks, Ms, mb, ωf, ξf, ωg, ξg, S0]=[x1,...x8]. 
According to convex set theory, xi∈X can be expressed as 

(1 ) c
i i i i  x x                               (30) 
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Table 2 Chart of uncertainty variables 

Uncertainty 
variable 

Average value Deviation rate (%) 
Standardized 

variable 
Convex model 

description 

K cK  0-10 δ1 
2 2

1 2 1    M M c 0-10 δ2 

mb 
c
bm  0-10 δ2 

ωg 
c
g  0-10 δ3 

2 2 2
3 4 5 1      

ωf 
c
f  0-10 δ3 

ξg 
c
g  0-10 δ4 

ξf 
c
f  0-10 δ4 

S0 0
cS  0-10 δ5 

 
 

where 
+

=
2

u l
c i i
i

x x
x  is the average value of xi and γi is the deviation rate of xi. The values u

ix and 

l
ix  are the upper and lower bounds of xi, respectively, and [ 1,1]i    is a standardized 

variable. 
Table 2 lists the properties of the uncertainty variables. Table 2 shows that Ms and mb are 

fully correlated and expressed by the same standardized variable δ2. ωf 
and ωg, as well as ξf 

and 
ξg are also fully correlated and expressed as standardized variables: δ3 and δ4, respectively. 
Therefore, the vector of non-fully correlated standardized variables is δ=[δ1, δ2,... δ5]. If the 
interval model is used to define δ, δ can be expressed as 

2{ : 1, 1, 2, 5}iE i                             (31) 

If the restrictive relationship among a portion of the uncertainty parameters is taken into 
account, and if the ellipsoidal model can be used to define δ, then 

3
1

1 2 3 4 5 4
2

5

: { , } 1, { , , } 1E




     




  
            
    

  

 

              

(32) 

As shown in Eq. (32), there are correlations between structural parameters and between 
seismic ground motion parameters, but the structural parameters are independent of the seismic 
ground motion parameters.  

 
6.2 Bearing design optimization with the consideration of uncertainty 

 
If the uncertainties of structural parameters are taken into account, the optimization parameters 

opt
b and opt of the bearings become functions of δ. Because δ varies within the convex domain of 

Eq. (31) or (32), both ( )opt
b  and μopt (δ) should be variables with boundaries and given by the  

following equation 
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,max max

,min min

sup{ ( )}, sup{ ( )}

inf{ ( )}, inf{ ( )}

opt opt opt opt
b b

E E

opt opt opt opt
b bE E

 

 

   

   
 

 

 

 

 

 
                  

(33) 

Where max
opt
b ， and max

opt , and min
opt
b ， and min

opt  are the upper and lower bounds of opt
b and opt ,  

respectively. 

Therefore, ( )opt
b  and ( )opt  are variables with a limited range: 

min max min max( ) [ , ], ( ) [ , ]opt opt opt opt opt opt
b b b， ，         

A solution of Eq. (33) can be obtained by solving the following constrained optimization 

problem (used for solving for min max,b b  , for example) 

       (34) 

In solving Eq. (34), because μopt (δ) is an implicit function of δ, the computational efficiency 
will be very low if it is solved directly. Taking into account the fact that the deviation rates of 
uncertainty variables are usually within 10%, μopt (δ) can be expanded into a Taylor series at δ=0, 
that is 

5

1

( )
( ) ( ) ( )

opt
opt opt opt

i
i i

0
0

   



   

 
                  

(35) 

In Eq. (35), 
( )opt

i

0



  

can be solved by expressing it in a difference form 

( ) ( )( ) opt optopt
i

i i

00  
 

 


 


                       
(36) 

Where Δδi=[0,...,Δδi,...0], and Δδi is the mini-increment. 
In Eqs. (35) and (36), μopt (Δδi) and μopt (0) can be obtained by using the deterministic bearing 

parameter optimization calculation method mentioned in the previous section. 
When using an interval model to simulate uncertainty variables, substitute Eq. (35) into Eq. 

(34) and the following expressions for min
opt  and max

opt  can be obtained: 

5

min
1

5

max
1

( )
= ( ) ( )

( )
= ( ) ( )

opt
opt opt

i i

opt
opt opt

i i

abs

abs

0
0

0
0

 


 



















                       

(37) 

（Ellipsoidal model） 

（Interval model） 

min max

2

2 2 2 2 2
1 2 3 4 5

min ( ( )), max ( ( ))

. . 1 ( 1,2, 5)

. . 1, 1

opt opt opt opt

i

Find

or

s t i

s t

   



    

 

 

    





 
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If the ellipsoidal model is used to simulate uncertainty variables, substitute Eq. (35) into Eq.  
(34) and the analytical expressions for min

opt  and max
opt  can be obtained by using a Lagrange  

multiplier method: 

2 2
2 5

min
1 3

2 2
2 5

max
1 3

( ) ( )
= ( )

( ) ( )
= ( )

opt opt
opt opt

i ji i

opt opt
opt opt

i ji i

0 0
0

0 0
0

  
 

  
 

 

 

    
        

    
        

 

 
                

(38) 

 
 

7. A calculation example 
 

7.1 Structure description and optimized bearing design 
 

Taking a five-story office building made of reinforced concrete as an example, the plan of the 
standard floor is rectangular, the short side (x-direction) is 36 m and the long side (y-direction) is 
51m, as shown in Fig. 2. The building is located on a type II field (as shown in Table 1). The 
earthquake ground motion enters in the x-direction, and the ground motion parameters are listed in 
Table 1. Two conditions are considered for the peak ground acceleration: PGA=0.5 g and PGA=0.8 
g. The basic period of the fixed base in the x-direction is 0.42s, and the lumped mass and the 
inter-story stiffness of every level in the x-direction are listed in Fig. 2(b). The isolation bearing 
layout is shown in Fig. 2(a), with a total of 40 lead-core rubber bearings that have a diameter (D) 
of 0.7 m. If the bearing rubber has a shore hardness of 45 degrees, and the shear modulus G is 0.54 
MPa, then the second shape factor of the bearing is S2≥m=5. With β=1.3, the average stress of the 
bearing is σ=Pd/A=βMzg/(40Ab)=10.6 Mpa (40 is the total number of isolation bearings, Ab is the 
area of a single bearing). 

This base-isolated structure is modeled as 2-D frame, as shown in Fig. 2(b), and the 
non-stationary seismic responses are calculated. Fig. 3(a) shows the contour map of constraint  
condition 1, ( , )b

bF   , when PGA=0.5 g. The thick dashed line indicates the contour line of  
Fb(ωb, μ)=5%, and the shaded area is the region in which constraint condition 1 is satisfied. Fig.  
3(b) is the contour map of the objective function ( , )obj bf   , the thick dashed line in the figure is  

the boundary of constraint condition 1. The dotted dashed line is the boundary of constraint 
condition 2, and the shaded portion is the region where both conditions are satisfied. The ‘●’ is the 
optimal point  of the parameters;  the values of the optimized parameters are
[ , ] [2.110, 4.776%]opt opt

b   .It can be seen in the figure that the optimal point is at the boundary 

of constraint condition 2, where the bearing has a value of S2=5. Because 2 =
D

S
ntr

, the total 

thickness of the rubber is ntr=D/5=0.14 m. In addition, 
(1 ) opt

yopt

z

N f

M g





 , so the optimal yield 

force of a single bearing is 150kNopt
yf  .When the yield stress of lead is 8.83 MPa, it is found 

that the diameter of the lead core is 7.3 cm. Fig. 4(a) shows the variation curve of the objective  
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(a)Variation curve of ( , )opt
obj bf    with respect to μ (b) Variation curve of ( , )opt

obj bf    with respect to ωb

Fig. 6 Variation curves of ( , )opt
obj bf   with respect to μ and ωb 

 

 
(a) Effect on μopt (b) Effect on opt

b  (c) Effect on fobj 

Fig. 7 Effects of field soil type on μopt, opt
b , and fobj 

 
 

condition 1, above constraint condition 2, i.e., where S2>5. According to Eq. (25), the total 
thickness of the rubber is 0.128 m, the optimal yield force of a single bearing is opt

yf =296 kN and 
the diameter of the lead core is 10 cm. Figs. 6 (a) and (b) show the variation curves of the  
objective function ( , )obj bf   when opt

b b   and μ=μopt

 with respect to μ and ωb, respectively. 
When opt  , ( , )opt

obj bf   reaches its minimum value. The objective function ( , )opt
obj bf     

monotonically decreases with decreasing ωb, but when ωb<
opt
b , constraint condition 1 is not 

satisfied, indicating that an excessive displacement of the bearing will occur. 
 

7.2 Impat of various factors on the optimal parameters of the bearing 
 

7.2.1 Field soil type 
The conditions are set as follows: the input seismic ground motion is PGA=0.5 g, the bearing 

rubber has a shore hardness of 45 degrees, the shear modulus is G=0.54 MPa, the bearing diameter 
is D=0.7 m and the m value for constraint condition 2 is 5, i.e., S2≥5. Figs. 7(a)-(c) show the  
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(a) Effect on μopt (b) Effect on opt

b  (c) Effect on fobj 

Fig. 8 Effects of PGA on μopt, opt
b , and fobj 

 
 

optimal bearing parameters opt
b  and μopt and the objective function value fobj 

for different site  
soil types (see Table 1 for the corresponding seismic ground motion parameters associated with 
various field soil types). Based on the figure, it can be seen that the softer the field, the greater the  
optimal yield force of the bearing, μopt. However, the opt

b of the bearings in all types of soil has  
the same value: 2.110. This indicates that the corresponding second shape factor of the bearing is 
S2=5. Based on Fig. 7(c), it can be seen that the isolation performance of the isolated structure in a 
hard field is superior to that in a soft field. 

 
7.2.2 PGA value 
The conditions are set as follows: the bearing rubber has a shore hardness of 45 degrees, the 

shear modulus is G=0.54 MPa, the bearing diameter is D=0.7 m, the field soil is type II and the m 
value for constraint condition 2 is 5, i.e., S2≥5. Figs. 8(a)-(c) show the effects of PGA of ground  
motion on opt

b and μopt and on the objective function value fobj. It can be seen that the value of 
opt
b is 2.110 when 0.7PGA g , and the corresponding second form factor of the bearing is S2=5. 

When PGA>0.7 g, opt
b increases with increasing PGA, and μopt increases monotonically with  

increasing PGA. That is, the higher the PGA value is, the higher the optimal bearing yield force. 
Based on Fig. 8(c), it can be seen that the isolation effect decreases as PGA increases. 
 

7.2.3 M value 
The conditions are set as follows: the input seismic ground motion is PGA=0.5 g, the bearing 

rubber has a shore hardness of 45 degrees, the shear modulus is G=0.54 MPa, the bearing diameter  
is D=0.7 m and the field soil is type II. Figs. 9(a)-(c) show the optimal bearing parameters opt

b  
and μopt, as well as the objective function value fobj, for different values of m. Based on the figure, it  
can be seen that opt

b , μopt and the value of objective function decrease as m decreases. This  
indicates that the lower the minimum limit of S2 is, the better the isolation performance of the 
isolated structure. Therefore, to improve the isolation results, one can try to increase the stability 
of the bearing and thus decrease the value of m. 

 
7.2.4 Bearing diameter 
The conditions are set as follows: the input seismic ground motion is PGA=0.5 g, the bearing  
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(a) Effect on μopt (b) Effect on opt
b  (c) Effect on fobj 

Fig. 9 Effects of m on μopt, opt
b , and fobj 

 

 
(a) Effect on μopt (b) Effect on opt

b  (c) Effect on fobj 

Fig. 10  Effects of bearing diameter on μopt, opt
b , and fobj 

 
 

rubber has a shore hardness of 45 degrees, the shear modulus is G=0.54 Mpa, the field soil is type 
II and the m value for constraint condition 2 is 5, i.e., S2≥5. Figs. 10(a)-(c) show the impact of 

bearing diameter D on opt
b , μopt and fobj, respectively. The figure shows that the values of opt

b , 

μopt and fobj all decrease with increasing D. This indicates that the larger the bearing diameter is, the 
better the isolation effect of the bearing and the smaller the optimal frequency and optimal yield 
force of the isolated structure. Therefore, in actual engineering projects, one should try to choose a 
diameter of the bearing that is as large as possible.  

 
7.2.5 Shore hardness of the rubber 
The conditions are set as follows: the input seismic ground motion is PGA=0.5 g, the bearing 

diameter is D=0.7 m, the field soil is type II and the m value for constraint condition 2 is 5, i.e.,  
S2≥5. Figs. 11(a)-(c) show the effects of shore hardness on opt

b , μopt and fobj, respectively. Based 
on the figure, it can be seen that opt

b , μopt and fobj decrease as the Shore hardness of the rubber  
increases, indicating that the softer the rubber is, the better the isolation effect of the isolated 
structures and the smaller the optimal frequency and optimal yield force. Thus, it is recommended 
that softer rubber should be used when the vertical stiffness of the bearing meets the requirement.  
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(a) Effect on μopt (b) Effect on opt

b  (c) Effect on fobj 

Fig. 11 Effects of shore hardness on μopt, opt
b , and fobj 

 
 

Fig. 12 Value range of μopt when the deviation rate γ varies between 0 and 10% 
 
 

7.3 Impact of uncertainty on the optimization of bearing parameters 
 

The uncertainties of the earthquke ground motion parameters and structural parameters are 
listed in Table 2.The averages of the peak values of acceleration of the ground motions are all 0.5g.  
The field soil is type II, and the corresponding values of c

g , c
f , c

g  and c
f  

are listed in Table  

1.The values of structural parameters Kc, Mc and cmb  are shown in Fig. 2(b). The bearing 

diameter is 0.7 m, the rubber shore hardness is 45 degrees, the shear modulus is 0.54 MPa and  
m=5 for constraint condition 2. As is discussed above, the optimal opt

b value is found at the  
boundary of constraint condition 2, i.e., S2=m=5. Therefore, the total rubber thickness is 
ntr=D/S2=0.14 m. Taking into account only the effects of uncertainty parameters on μopt and using 
Eq. (35), the following Taylor expansion of μopt(δ) at δ=0 can be obtained: 

1 2 3 4 5( )=4.776 0.00864 0.00897 0.0221 0.233 0.494opt            
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In the above equation, the value of the coefficient 
( )opt

i

0





 reflects the different effects of the 

uncertainties of different parameters on μopt. It can be seen that μopt increases as δ1 and δ5 increase, 
and it decreases with increasing δ2, δ3, δ4. The parameter δ5 has the greatest effect on μopt, followed 
by δ4, δ3, δ2 and δ1.Therefore, the uncertainties of the seismic ground motion parameters have a 
greater impact than the uncertainties of the structural parameters. Substitution of the above  
equation into Eq. (34) allows us to obtain the value range of μopt, min max[ ]opt opt ， , by either using the  
interval model or the ellipsoidal model. Fig. 12 shows the value range of μopt when the deviation 
rate between 0 and 10%. The figure shows that the value range of μopt increases with increasing 
parameter deviation. Because the ellipsoidal model takes into account the partial correlation 
between the uncertainties of parameters, the resulting range of μopt is narrower than that derived 
from the interval model. In actual design practice, when the parameter uncertainties are  
considered, one should choose the upper limit of μopt ( max

opt ) as a design value. 
 
 
 
7. Conclusions 
 

In this paper, an optimization method is proposed for mechanical parameters for the design of 
lead-core rubber bearings system subjected to non-stationary earthquake ground motions. In this 
method, the post-yielding stiffness and normalized yield force are used as design variables, the 
minimum value of the maximum energy response level of the upper structure during an earthquake 
is used as an objective function, and the constraint conditions include the probability of bearing 
failure not exceeding 5% and the second shape factor of the bearing being less than 5. By 
combining the RBF response surface method and the SQP algorithm, the optimization problem 
could be solved, and the optimal values could be provided for the design variables. Furthermore, 
an interval model and ellipsoidal model can be applied to describe the uncertainties of structural 
and seismic ground motion parameters. Subsequently, the upper and lower limits of the optimal 
values for the bearing design parameters can be determined by using a first-order Taylor series 
expansion and the Lagrange multiplier method. Through the calculation of an example, the 
following results can be obtained: 

(1) When the PGA of the input seismic ground motion is relatively small, i.e., PGA≤0.7 g, the  
optimal second shape factor of the bearing is 2

optS m (m is the minimal value required to prevent  
bearing vertical instability, usually in the range of 4 - 6). When PGA is relatively large, i.e.,  
PGA>0.7 g, 

2
optS  is slightly greater than m. Moreover, the optimal normalized yield force μopt  

increases with increasing PGA. 
(2) The field soil type affects the optimal normalized yield force of the bearing (μopt). The softer 

the field is, the higher the value of μopt. Isolated structures in soft fields have worse isolation 
performance than they do in hard fields. 

(3) The larger the bearing diameter is, the lower the value of μopt and the better the isolation 
performance of the isolated structure. Therefore, bearings with larger diameter are recommended 
in actual engineering projects. 

(4) The lower the shore hardness of the rubber in the bearings is, the smaller the value of μopt 
and the better the isolation performance of the isolated structures. Therefore, softer rubber is 
recommended in practice. 
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