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Abstract.  This paper deals with the problem of the global stabilization for a class of tension leg platform 

(TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP 

subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding 

system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we 

give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we 

consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel 

distributed compensation (PDC) controller, we prove that this class of systems can be globally 

asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm 

called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main 

result. 
 

Keywords:  linear matrix inequality; automated design; fuzzy logic model and control; Evolved Bat 

Algorithm 

 
 
1. Introduction 
 

The wave-structure interaction problem has been investigated by researchers for decades. The 

demands for the products of natural energy resources have been rapidly increasing in recent years 

motivating companies to go to more remote places such as beneath deeper oceans to obtain these 

resources. The tension Leg Platform (TLP) is an artificial structure commonly found in the ocean 

or near the coast, where the natural resources such as the gas and the oil exists (Lee and Juang 

2012). It is particularly suited for drilling at water depths greater than 300 meters. The platform is 

permanently moored by tethers or tendons grouped at each of the structure‟s corners. Regardless 

of whether the TLP is built in the middle of the ocean or near the coast, it is subject to the 

constant impact of wind and waves. A TLP built near the coast not only receives the impact from 
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the waves, but also has to resist the energy from reflection rebounding back from the coast. The 
force caused by the wave effect can be treated as a nonlinear system; and the force generated by 
the reflection effect can be treated as a time-delay problem. Due to the huge investment for the 
development of TLPs, there is interest in the study of the dynamic responses of such structures 
under external wave excitations. The TLP can be damaged if the vibration or the response is too 
strong. This study proposes some structural stability modeling methods for considering the 
influence of external waves on these oceanic structures. The external forces of concern for 
structures such as bridges are wind forces, earthquakes excitation and external disturbances. In 
order to ensure the TLP system is stable in the large, an active stabilizer can be applied to 
generate the resistance force against forces from waves and reflections. Moreover, a fuzzy 
controller can be employed to create the control scheme for holding the TLP in a stable position. 
In this paper, we propose a Neural Network (NN) based fuzzy model to decompose the temporal 
state of the nonlinear system and utilize Evolved Bat Algorithm (EBA) to determine the system 
parameters and the scale of the control force needed for stabilizing the TLP system. In the 
stabilization analysis, the Linear Matrix Inequality (LMI) condition is derived by the Lyapunov 
theory to guarantee the system stability and produce an automated design for a nonlinear system. 
Base on the stability analysis, the stability of an oceanic TLP structure can be proved 
theoretically. The fuzzy and neural network modeling methods are proposed for decomposing the 
nonlinear system at the beginning. Moreover, the stability criterion can be derived from the 
decomposed time-delayed TLP system via the Lyapunov theory with the LMI conditions. In 
addition, the swarm intelligence method called the EBA is used to find feasible solutions and the 
proper controller force under the stability criteria derived above. Finally, the displacement decay 
due to the use of the proposed NN modeling design and controllers are demonstrated in a 
numerical simulation. 

 
 

2. Literature review 
 

Several method for evaluating stability designs have been successfully applied (Loria and Nesic 
2003, Mazenc et al. 1999, Panteley and Loria 1998, Sontag 1988, Sontag and Wang 1995). 
Computational intelligence approaches such as neural networks and fuzzy systems have also been 
used to model dynamic phenomena and applications in different areas. These tools have proven to 
be powerful and effective. Several of the more recent works using these approaches can also be 
seen. On the other hand, algorithms in swarm intelligence are also widely used to construct the 
simulation model of a system or to provide optimal solutions for problems in manufacturing, 
scheduling, and logistics in business, finance, and engineering. For instant, Cat Swarm 
Optimization (CSO) is utilized to develop a set of population based learning rules for an Infinite 
Impulse Response (IIR) system (Panda et al. 2011) and can also be used to solve multiple 
objective problems (Pardhan and Panda 2012). In addition, CSO has been utilized to optimize the 
information hiding results (Wang et al. 2012); Interactive Artificial Bee Colony (IABC) is 
successfully used to improve the recognition rate of the continuous authentication system (Tsai et 
al. 2012) and to forecast the trends of the foreign exchange rate (Chang et al. 2014); and Evolved 
Bat Algorithm (EBA) has been employed to illustrate its usability in providing the optimal 
recommended stock portfolio (Chang et al. 2014). 

Although there have been many successful applications of intelligent computation, there are still 
some drawbacks to using them in any control scheme. To the best of our knowledge, the analysis 
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of stability of TLPs with the NN-fuzzy model has not yet been discussed. For this reason, a fuzzy 
Lyapunov method as well as a NN-fuzzy model for dealing with the stability problem of TLPs 
(Lam 2009, Lee et al. 2001, Liu and Zhang 2003, Park et al. 2003, Tanaka et al. 1994, Wang et al. 
1996) is given at the beginning. From this we study suitable mathematical modeling for the TLP 
system and discuss the interaction between a deformable floating structure and surface wave 
motion by virtue of a partial differential equation as well as fuzzy logic theory. 

Egresits et al. professed intelligence is strongly connected with learning adapting abilities, 
consequently such capabilities are considered as indispensable features of intelligent 
manufacturing systems (Chu and Tsai 2007). A number of approaches have been portrayed to 
apply different machine learning techniques for manufacturing problems, starting with rule 
induction in symbolic pattern and domains recognition techniques in numerical, sub symbolic 
domains. Artificial neural network (ANN) based learning is the dominant machine learning 
technique in manufacturing in recent years. It can not only be used in classification, and 
estimation, but can also be employed for stability analysis. For example, the nonlinear Markov 
jump standard genetic regulatory network model can be constructed using the recurrent neural 
networks (Zhu et al. 2013). However, mainly these solutions have limited industrial acceptance 
because of the ‘black box’ nature of ANNs. The integration of neural and fuzzy techniques is 
treated and former solutions are analyzed in (Egresits et al. 1998). Narendra et al. (1998) portrayed 
an intelligent current controller for the fast and flexible control using ANN and Fuzzy Logic 
paradigms (Lian et al. 1998). Two methods of adjusting the learning parameters are presented: A 
heuristic approach to evaluate the learning rate as a polynomial of an energy function is considered 
and learning parameters are discussed; on the other hand, Fuzzy logic, genetic algorithms and 
neural networks are three popular artificial intelligence techniques which are used in many 
applications widely (Lian et al. 1998). Owing to their distinct properties and advantages, they are 
being investigated and integrated to form new models or strategies in the areas of system control 
currently. A linear mapping method is used to encode the GA chromosome, which comprises the 
center and width of the membership functions, and also the weights of the controller. Dynamic 
crossover and mutation probabilistic rates are also applied for faster convergence of the GA 
evolvement. Kuo and Xue endeavored to develop an intelligent sales forecasting system which can 
consider the quantitative factors as well as the non-quantitative factors (Kuo and Xu 1998). The 
proposed forecasting system comprises data collection, general pattern model, special pattern 
model, and decision integration. A feed forward neural network with error-back propagation 
(EBP) learning algorithm is employed to learn the time series data, or quantitative factors in the 
general pattern model. This paper utilized fuzzy logic which is capable of learning to learn the 
experts' knowledge considering the effect of promotion on the sales. In recent years, the research 
interest regarding GRNs is also increasing (Lee and Juang 2012, Lewandowski et al. 2012). By 
using a constellation of artificial intelligence technologies, electronic Warfare (EW) Support 
Measures (ESM) systems are evolving rapidly toward unmanned status (Sciortino 1997). The 
implementation and applications techniques, for which adaptive self-governing non-cooperative 
target recognition is useful or necessary, form the focus of this discussion. Military and civilian 
applications abound for fixed site, ship borne, and airborne systems. These systems could control 
and manage other interactive systems normally needing manual inputs. Simoes et al. portrayed the 
control strategy development, experimental performance, and design e evaluation of a 
fuzzy-logic-based variable-speed wind generation system that uses a cage-type induction generator 
and double-sided pulse width-modulated converters (Simoes et al. 1997). The system can feed a 
utility grid maintaining unity power factor at all conditions or can supply a self-governing load. 
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The fuzzy-logic-based control of the system helps to optimize efficiency and improve 
performance. In metal processing industries, Grauel et al. compared three computer-aided systems 
used for quality monitoring and on-line process (Grauel et al. 1997). From which significant 
quality statements are extracted in a running manufacturing process measurement data are taken. 
For this they applied on one hand an artificial neural network, which learns to categorize the data 
adequately by using given exemplary process states. Besides, they presented investigations of 
fuzzy clustering techniques to acquire information about the process. Furthermore, topology 
optimization by evolutionary algorithms is considered to acquire optimal structures of the 
multilayer perception used. On to the next hierarchical level, the quality features extracted are then 
passed, where they are processed within the framework of an integrated manufacturing and quality 
control system. Yen proposed to design and to evaluate an on-board intelligent health assessment 
tool for rotorcraft machines, which is capable of discovering, recognizing, and accommodating 
expected system degradations and unanticipated catastrophic failures in rotorcraft machines under 
an adverse operating environment (Yen 1996). A fuzzy-based neural network paradigm with an 
on-line learning algorithm is developed to execute expert advising for the ground-based 
maintenance crew. Hierarchical fault diagnosis architecture is advocated to perform on-board 
needs and the time-critical in different levels of structural integrity over a global operating 
envelope. In modern process automation, intelligent control has become a question of primary 
importance as it provides the prerequisites for the task of fault detection (Tyan et al. 1996). The 
ability to detect the faults is important to improve reliability and security of a complex control 
system. During recent years, parameter estimation methods, state observation schemes, statistical 
likelihood ratio tests, rule-based expert system reasoning, pattern recognition techniques, and 
artificial neural network approaches are the most common methodologies developed actively. 
Tyan et al. described a completed feasibility study demonstrating the merit of employing pattern 
recognition and an artificial neural network for error diagnosis through back propagation learning 
algorithm and making the use of fuzzy approximate reasoning for fault control via parameter 
changes in a dynamic system (Tyan et al. 1996).  

Some references of damage assessment and uncertainty analysis were published to mitigate the 
threaten of casualty, in which the fuzzy theory has received considerable attention recently in 
structural engineering. Various approaches have been developed for detecting damage based on 
various methods (Egresits et al. 1998, Hammami 2001, Ignaciuk and Bartoszewicz 2010, Korkmaz 
2011, Kuok et al. 2012). 

For intricate dynamical systems, in designing controllers there are needs that are not 
sufficiently addressed by conventional control theory (Tyan et al. 1996). These relate mainly to the 
problem of environmental uncertainty and often call for human-like decision making needing the 
use of heuristic reasoning and learning experience. Learning is needed complexity of a problem or 
the uncertainty thereof prevents a priori specification of a satisfactory solution. Such solutions are 
then only possible through gathering information about the problem and using this information to 
dynamically generate an acceptable solution. Such systems can be referred to as intelligent control 
systems. Buss and Hashimoto tried to summarize the field of intelligent control for 
human-machine systems from a subjective point of view (Buss and Hashimoto 1996). From 
integrating mechanical, software and electrical intelligence in minimum space, mechatronic 
components have become intelligent, certainly an important step. With a bright future, taking this 
and recent successes using artificial neural networks, fuzzy logic and genetic algorithms, so called 
soft computing, the field of IC is exciting. This article attempts to expect this future and discusses 
directions of research to approach the realization of more intelligent systems. 
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(a) (b) 

Fig. 1 A differential element for the development of the conservation of mass equation 
 
 
2. Mathematical formulation 

 
2.1 Initial boundary value problem for fluid–structure interaction 
 
Fig. 1(a) shows a drawing of a stationary cubical element. The mass inside a fixed surface 

bounding a closed volume will increase if mass flows into the volume and decrease if it flows out. 
The inflow and outflow processes are shown in Fig. 1(b). For incompressible fluids the fluid 
density is constant throughout the flow field. Thus 

0V                                   (1) 

Here, the fluid is considered inviscid, and the flow is assumed to move from rest so that it is 
irrotational. Therefore, the fluid velocity V can be described by the gradient of the velocity 
potential Ф(x,z,t)  in the fluid domain, i.e.,  tzx ,,V  . The governing equation for this 
problem satisfies the Laplace equation for the velocity potential, i.e. 

  0,,2  tzx                               (2) 

The derivations for the fluid domain equations are based on the following assumptions: 
1. The fluid is considered inviscid. 
2. The flow is incompressible and irrotational, so surface tension effects can be neglected. 
3. The flow can be described by the scalar velocity potential satisfying the Laplace equation 

within the fluid domain.  
4. No breaking waves occur on the sea surface. 
Consider a wave-induced flow field system in which a Cartesian coordinate system oxz is 

employed. As shown in the sketch of a 2D numerical wave flume, a plane z=0 coincides with the 
undisturbed still water level and the z-axis is directed vertically upward. The vertical elevation of 
any point on the free surface can be defined by the function z=η(x,y,t), in which the surface tension 
is negligible. As depicted in Fig. 2, −∞<x<−b, where the total velocity potential ФI in Region I 
consists of incident waves Фi , scattered waves ФIS and motion radiation waves ФIW. In Region II,  
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Fig. 2 Sketch defining a deformable tension leg platform subjected to the wave force 

 
 

−b<x<b, and in Region III, b<x<∞; the total velocity potentials ФII and ФIII consist of both 
scattered ФIIS and ФIIIS and radiated waves ФIIW and ФIIIW. Subscript S denotes the scattering 
problem and subscript W denotes the wave-maker (i.e., primitive radiation) problem induced by 
the platform surge motion. Displacement of the surge motion with an unknown amplitude S is 

given by tiSeX   and platform deformation on the x-axis is defined as S. 
It is assumed that there is no flow across any fluid interface, in other words, fluid particles can 

only move in a direction tangential to the fluid interface. The required kinematic boundary 
conditions are as follows 

x

η

x

Φ

λ

a

z

Φ

t

η















 on the free surface                     (3) 

nU
n

Φ





 on the rigid boundaries                       (4) 

where a<<λ for small-amplitude waves and we can neglect the non-linear convective term; and n is 
the outward normal to the boundary. Furthermore, the application of the linearized condition at z=0 
instead of z=η results in the kinematic boundary condition ∂η/∂t=w, suggesting that the vertical 
velocity component of the fluid at the interface must be equal to the interface velocity. When the 
rigid boundaries are stationary on the seabed, the normal velocity component Un becomes zero. 

The dynamic boundary condition on the free surface is utilized to calculate the dynamic 
pressure and horizontal fluid velocity. The dynamic conditions on the free surface are derived 
based on the conservation of linear momentum. Briefly, the discontinuity in the normal stress is 
proportional to the mean curvature of the free surface caused by surface tension 
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where C is the Bernoulli constant. When the atmospheric pressure is zero, term P will also be 
equal to zero. In free-surface problems, nonlinearity in the potential flow problem is only derived 
from free-surface boundary conditions when inviscid and incompressible fluid and irrotational 
flow assumptions are made. For small amplitude waves, the high order terms in the free surface 
boundary conditions given by Eqs. (3) and (5) are ignored, and the resulting conditions are applied 
at the undisturbed water level: z=0 with C=0. The following expression is obtained 

t

Φ

g
η





1

                                (6) 

The Sommerfeld radiation condition is utilized as the outflow boundary condition with no 
interference inside the computational domain 

0
1

lim 



 

  t

 Φ

c x

 Φ IS/IIISIS/IIIS

x 
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                        (7) 

 
2.2 Boundary value problem for each region 
 
Based on this description we obtain the governing equations and boundary conditions for the 

three regions. 
 

2.2.1 Region I 
Governing equations  
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Kinematic boundary conditions 
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Dynamic boundary conditions 
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Radiation condition 
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2.2.2 Region II 
Governing equations 
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Kinematic boundary conditions 
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Dynamic boundary condition 
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2.2.3 Region III 
Governing equations  
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Kinematic boundary conditions 













 t

η

 z

 Φ
 t

η

 z

 Φ

IIIWIIIW

IIISIIIS













 on 0z                         (20) 














0

0

 z

 Φ
 z

 Φ

IIIW

IIIS







 on hz                           (21) 

































dzh     
x

Φ

x

Φ

dzh       
x

Φ

x

Φ

zd
 t

ξ

 x

Φ

zd   
 x

Φ

IIWIIIW

IISIIIS

IIIW

IIIS













0

00

 on bx                      (22) 

Dynamic boundary conditions 
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Radiation condition 
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In the following, the LDI representation representing the TLP system will be introduced and the 
stability criterion derived. 
 

2.3 Swarm intelligence method: Evolved Bat Algorithm (EBA) 
 
The field of swarm intelligence includes various algorithms inspired by tinny intelligent from 

creatures in the Mother Nature. Several algorithms in swarm intelligence are proposed one after 
another. Most of the algorithms are developed by imitating behaviors or the particular survival 
skills of creatures. For example, Tsai et al. proposes a newly developed swarm intelligence 
algorithm called Evolved Bat Algorithm (EBA) in the late 2011 (Tsai et al. 2012). EBA is an 
algorithm inspired by the theory of the bat echolocation in the natural world. Different from other 
swarm intelligence algorithms such as Particle Swarm Optimization (PSO) (Eberhart and Kennedy 
1995), Artificial Bee Colony (ABC) optimization (Karaboga 2005, Karaboga and Basturk 2008), 
or Cat Swarm Optimization (CSO) (Chu and Tsai 2007, Chu et al. 2006), only one parameter, the 
medium, should be determined before employing EBA. The chosen medium determines the step 
size of the movement of the artificial agent in the solution space. In general, the step size has a 
direct influence on the search results. Properly select the parameter results in the suitable step size 
for the artificial agents to move in the solution space. It implies that the accuracy of finding the 
near best solutions is raised and the possibility of trapping in the local optimum is reduced. In our 
experiment, the chosen medium is air for the reason that air is the original existence medium in the 
natural environment in where bats live. The operation of EBA is briefly reviewed as follows: 
Step 1. Initialization: the artificial agents are spread into the solution space by randomly 

assigning coordinates to them. 
Step 2. Movement: the artificial agents are moved according to Eqs. (26)-(27). A random number 

is generated and then it is checked whether it is greater than the fixed pulse emission rate. 
If the result is positive, the artificial agent is moved using the random walk process, as 
defined by Eq. (28). 

Dxx t
i

t
i  1                               (26) 

where t
ix  indicates the coordinate of the ith artificial agent at the tth iteration, 1t

ix  represents the  
coordinate of the ith artificial agent at the last iteration, and D is the moving distance that the 
artificial agent goes in this iteration. 

TD                                  (27) 

where γ is a constant corresponding to the medium chosen in the experiment, and ΔT∈ [−1.1] is a 
random number. γ=0.17 is used in our experiment because the chosen medium is air. 

 t
ibest

t
i xxx R   ,  1 ,0                        (28) 
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where β is a random number; xbest indicates the coordinate of the near best solution found so far  
throughout all artificial agents; and Rt

ix  represents the new coordinates of the artificial agent after  
the operation of the random walk process. 
Step 3. Evaluation: the fitness of the artificial agents is calculated by the user defined fitness 

function and updated to the stored near best solution. 
Step 4. Termination: the termination conditions are checked in order to decide whether to go 

back to step 2 or terminate the program and output the near best solution. 
The fitness function used in the evaluation process is a set of user defined criteria. In other 

words, the fitness function is a mathematical representation of the solution space, for which the 
user wants to solve the problem or to get the optimum solution. Hence, a fitness function is 
designed in the paper to find the common symmetric positive definite matrix and the control force 
of the controller. 

 
 

3. Fuzzy modeling of a TLP system by NN-based representation 
 
The momentum equation obtained from the motion of the floating structure is extensively 

derived from Newton's second law. Assume that the momentum equation of a TLP system can be 
characterized by the following differential equation 

     )()( trMtXM                               (29) 

where n
n RtxtxtxtX  )]()(),([)( 21   is an n-vector; )(  ),(  ),( tXtXtX  are the acceleration, 

velocity, and displacement vectors, respectively. This is only a static model and M is the mass of 
the system; )(trM  is a wave-induced external force which can be expressed as follows 

TXwx FFtrM )(                             (30) 

where Fwx is the horizontal wave force acting on the both sides of the structure; and FTx is the 
horizontal component of the static (or the pre-tensioned) tension applied by the tension legs. The 
static tension is given by FTx=fξ. 

For controller design (Hammami 2001, Jankovic et al. 1996, Seibert and Suarez 1990, 
Sepulchre 2000, Sepulchre et al. 1997, Sontag 1989, Sun and Zang 2003), the standard first-order 
state equation is obtained from Eq. (31) assuming the equation of motion for a shear-type-building 
modeled by an n-degrees-of-freedom system controlled by actuators and subjected to an external 
force ϕ(t)  

)()()( tEtAXtX                            (31) 

where  











)(

)(
)(

tx

tx
tX


, 










  CMKM

I
A 11

0
, 











r

E
0

, 

in which n
n RtxtxtxtX  )]()(),([)( 21   is an n-vector; )(  ),(  ),( tXtXtX   are the 

acceleration, velocity, and displacement vectors, respectively; matrices M, C, and K are (nn) 
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mass, damping, and stiffness matrices, respectively; r  is an n-vector denoting the influence of 

the external force; ϕ(t) is the excitation with a upper bound )()( ttup   ; U(t) corresponds to the 

actuator forces (generated via active a tendon system or an active mass damper, for example). This 
is only a static model and X(t) is a 2n state vector; A is a 2n2n system matrix (Kawamoto et al. 
1992a, b, Ma and Sun 2001, Takagi and Sugeno 1985).  

A neural-network-based model can is described as follows 

))))))(((((()( 1122211   tWWWWtX SSSSS          (32) 

where ΛT(t)=[XT(t)  UT(t)], with  XT(t)=[x1(t)  x2(t) ... xδ(t)]. We assume S layers and each layer 
has Rσ (σ=1,2,...,S) neurons, in which x1(t)~xδ(t) and u1(t)~um(t) are the input variables. The 
notation Wσ denotes the weight matrix of the σth (σ=1,2,...S) layer. The transfer function vector of 
the σth layer is defined as Ψσ (v)≡[T(v1)  T(v2) ... T( R

v )]T. 

An LDI system can be described in the state-space representation (Hu 2008; Liu and Li 2010) 
as follows 

),())(()( tYtaAtY    



r

i
ii AtahtaA

1

))(())((                   (33) 

where r is a positive integer; a(t) is a vector signifying the dependence of hi(∙)on its elements, i.e., 
hi(a(t))≡hi(a1(t), a2(t)..., an(t)), a(t)=[a1(t), a2(t),..., an(t)]

T (In general, a(t) coincides with the state 

vector X(t); iA  (i=1,2,...,r) are constant matrices; and Y(t)=[y1(t)  y2(t) ... yj(t)]
T. 

According to the interpolation method and Eq. (32), we can obtain 
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where  
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Finally, based on Eq. (33), the dynamics of the NN model (29) can be rewritten as the 
following LDI state-space representation 

)()()(
1

tEthtX
r

i
ii  



                             (35) 
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where hi(t)≥0;  1)(
1




r

i
i th ; r is a positive integer; and iE  is a constant matrix with an 

appropriate dimension associated with 
E . The LDI state-space representation (30) can be 

further rearranged as follows 





r

i
ii tXAthtX

1

)}(){()(                          (36) 

where Ai is the partitions of Ei corresponding to the partition Λ(t). 
Based on the above modeling schemes for the NN-based approach, the nonlinear structural 

system (31) can be approximated as an LDI representation (36). The LDI representation follows 
the same rules as the T-S fuzzy model, which combines the flexibility of fuzzy logic theory and the 
rigorous mathematical analysis tools of a linear system theory into a unified framework. To ensure 
the stability of the TLP system, the T-S fuzzy model and the stability analysis are recalled. First, 
the ith rule of the T-S fuzzy model, representing the structural system, can be represented as 
follows:  

Rule i : IF ippi Mt xMtx   is  )( and  and    is )( 11   

THEN )()()()( tEtXAtXAtX iii                     (37) 

where i=1,2,...,r and r is the rule number; X(t) is the state vector; Mi p (p=1,2,...,g) are the fuzzy 
sets and x1(t)~xp(t) are the premise variables. Through using the fuzzy inference method with a 
singleton fuzzifier, product inference, and center average defuzzifier, the dynamic fuzzy model 
(36) can be expressed as follows 
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with 
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
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p
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where Mip (xp(t)) is the grade of membership of xp(t) in Mip. It is assumed that 

0)( twi                                 (42) 

 0)(
1
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i
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 0)(
1




r

i
i th                                 (44) 

for all t. Eq. (38) can be easily reformulated as Eq. (39) by defining Eqs. (40)-(41). The delay in 
the mathematical formula implies the reflection of the wave in the real world. 

Definition 2 (Hu 2008): The solutions of a dynamic system are said to be uniformly ultimately 
bounded (UUB) if there exist positive constants β and κ, and for every δ∈(0, κ) there is a positive 
constant T=T(δ), such that 

Ttttxtx  00  ,)(    )(  .                     (45) 

According to the stability concepts above, a stability condition is derived below to guarantee 
the stability of the system (39). 

Before a typical stability condition for fuzzy system (39) is proposed, some useful inequalities 
are given: 

Lemma 1 (Hu 2008): For any A, B∈Rn and for any symmetric positive definite matrix 
G∈Rn×n or R, we have −2ATB≤ATGA+BTG-1B. 

Theorem 1: The time-delay NN-fuzzy system (39) is stable in the large if there exist common 

positive definite matrices P1, P2,..., Pr and positive constant η such that inequality  )(th  is 

satisfied and 
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with 0 T
ii PP , for rlji  ,2, ,1 ,,  .    

Proof: Using the fuzzy Lyapunov function candidate for the fuzzy system (39)  
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The time derivative of V is 
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Based on Lemma 1 and the equation listed above, we get  
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Based on Theorem 1, the proof is thereby completed. 
The above condition implies that the TLP system is UUB stable under arbitrary excitation. 

 
 

4. The experiment design and the simulation result 
 
As the same as other nonlinear time-delay systems, a TLP system can be modeled by the NN 

based fuzzy rules. Moreover, the system parameters including the common positive defined matrix 
P and the control force matrix K are obtained simultaneously using EBA in the next stage. The 
obtained system parameters must ensure that the whole system is stable in the large. An inverted 
pendulum system is taken as an example of the nonlinear system in the simulation. In order to 
decrease the design complexity, the number of employed rules is minimized. The system is 
revealed in Fig. 3, where Ф(t) denotes the rotation angle of the pendulum, and u(t) represents the 
control force from the controller. 

The system is able to be modeled by Eq. (50) from the dynamics 
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1                      (50) 

where x1 is the radius of the pendulum vertically, x2 represents the rotation velocity, and r indicates 
the demand output angle. A set of NN based fuzzy rules is employed to describe the temporary 
state of the nonlinear system. Similar operations can be found in previous studies (Liu and Lin 
2012, Liu and Lin 2013, Liu and Zhang 2003). By combining the whole set of fuzzy rules, the 
approximation of the nonlinear system is completed. Thus, the fuzzy model approximated inverted 
pendulum nonlinear system can be described as follows 
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Fig. 3 An inverted pendulum system 

 
 

     Rule 1: IF 
31


x  (rad), THEN uBxAx 11

~   (51)

     Rule 2: IF 
901


x  (rad), THEN uBxAx 22

~   (52)
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According to theorem 1 described in section 3, it provides a useful criterion in Eq. (46) that 
ensures the system response is stable in the large. Base on theorem 1, selecting the proper 
common positive definite matrix P and the control force K becomes the key problem to be dealt 
with. In this paper, we use EBA to discover the proper solutions. In this case, the obtained 
solutions can be classified into two categories: feasible and infeasible. It means that desiging the 
fitness function in a binary operation form is a simpler way to answer to the need of this 
application. In this paper, the fitness function is designed based on the stability criterion derived 
from the LMI conditions via the Lyapunov function approach. The AND logical operation is 
employed in the fitness function for examining the solutions to produce the binary classification 
results on the discovered solutions. The fitness function is formulated as follows 



 


                       otherwise.,0

.0 and 0 if,1 TPP
F                       (53) 

where F is the fitness value and Θ is given as follows. 

)()( KBAPPKBA ii
T

ii                        (54) 

The matrix P is always constrained to be symmetric when using EBA to adjust the elements  

Φ(t)

)(tu

0∘


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Table 1 Parameters for EBA 

Boundary condition for matrix P and K  [−3, 3] 

Medium Material Air 

Number of Run 30 

Population size 16 

Number of Iteration 500 

 
 

inside it. In addition, a boundary condition is used at the initialization process for both matrices P 
and K. The matrix P is kept influencing by the same range of boundary conditions for producing 
feasible solutions in a suitable range. However, the limitation is not applied for the matrix K 
because the total effect contributed to the whole system by the control force is relatively small. All 
parameters used in our experiment for EBA are listed in Table 1. 

Like other swarm intelligence algorithms and evolutionary methods, EBA requires the 
recursive operation to find the near best solutions. Thus, the same experiment should be repeated 
many times to test whether the convergence results are consistent. The number of run listed in 
Table 1 aims to provide a series of experimental results for examining by statistical methods. In 
this paper, we choose a fixed iteration number to be the termination criterion. The media material 
for the transmission of the sound wave is chosen to be air because it fits the natural environment of 
which the bat lives in. In addition, the population size indicates the number of artificial agents 
simultaneously exist in the solution space in every iteration. A large population size provides a 
larger chance for the algorithm to find the near best solutions. However, a larger population size 
requires more memory resource and computation power. Hence, we set the population size to be 
16 in the experiment. The number of feasible solutions obtained by EBA in different runs are 
shown in Fig. 4. 

 
 

 
Fig. 4 Number of feasible solutions obtained by EBA in 30 runs 

401



 
 
 
 
 
 

Pei-Wei Tsai, T. Hayat, B. Ahmad and Cheng-Wu Chen 

 

Table 2 Statistical analysis of the obtained feasible solutions 

Mean 7502 
Minimum 6950 
Maximum 7758 

Mode 7404 
Standard Deviation (STD) 180.7580 

 
Table 3 Samples of the obtained feasible solutions by EBA with system eigen values 

 Matrices P and K 
Eigen Values 

with A1, B1 with A2, B2 

Set 1 









9971.06081.0

6081.02641.3
P , 












1151.0

4172.1TK  










1826.2

1912.8
 











7674.1

2384.9  

Set 2 









0645.13773.0

3773.08752.3
P , 












2747.0

6726.1TK  










6175.1

9525.12  










9006.1

6539.7  

Set 3 









3880.06328.0

6328.09862.3
P , 












2633.0

6705.1TK  










9422.1

1133.9
 











0776.1

5002.6
 

Set 4 









5086.03250.0

3250.04095.3
P , 












0744.0

4341.1TK  










0886.2

9977.2
 











3777.2

3554.3
 

Set 5 









7700.06311.0

6311.06075.4
P , 












3754.0

4033.1TK  










9219.3

0082.9  










9625.2

8969.6
 

Set 6 









4047.16361.0

6361.04938.4
P , 












7790.0

4631.1TK  










0169.3

3484.29  










2598.2

5857.11
 

Set 7 









9208.00864.0

0864.00719.3
P , 












9464.1

4645.1TK  










5657.0

6258.39
 











2100.0

3168.6
 

Set 8 









3832.02748.0

2748.07318.2
P , 












4559.1

3799.1TK  










1711.1

1626.13
 











8329.1

8163.2
 

Set 9 









3884.04420.0

4420.01372.2
P , 












9665.0

7609.1TK  










4539.1

6180.13
 











0774.1

9761.4  

Set 10 









4373.01138.0

1138.09452.1
P , 










0301.0

3655.1TK  










8623.0

2705.1
 











8972.0

6596.2  

 
 
The statistical analysis of the results obtained by EBA over 30 runs is given in Table 2. 

Although the STD of the obtained feasible solution in every run is a bit large, the number of found 
feasible solutions is still much more than enough to decide the system parameters in the 
application. 

According to the experimental results, EBA produces 7,502 feasible solutions in average. 
Assuming that every artificial agent allocates a feasible solution successfully in all iterations, the 
maximum number of feasible solutions that can be found in one run is 8,000. This implies that the  
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Fig. 5 The angle and the velocity response of the inverted pendulum system without control 

 

 
Fig. 6 The controlled inverted pendulum system response by the designed controller 
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success rate for utilizing the EBA to find feasible solutions is 93.77% in average. The solutions 
found by the EBA are determined as feasible if the eigen values of Eq. (54) are all negative, 
because the negative eigen values result in the control system staying stable in the large. Table 3 
shows 10 samples from overall feasible solutions found by EBA with the corresponding eigen 
values. 

Fig. 5 shows the changes of the angle and the velocity of the inverted pendulum system without 
any control force. The initial angle is set to π/6 (rad) with 0 initial velocity. The simulation time is 
6 seconds. 

Fig. 6 gives the simulation result controlled by the designed controller. As shown in Fig. 5, 
without any control, the inverted pendulum would drop to 180∘and directly pointing to the 
ground. On the other hand, the controller maintains the system to be held in the stable state. 

 
 

5. Conclusions 
 

Currently, fuzzy logic control utilizing artificial intelligent methodology is being actively 
investigated in for application in the area of robotics. Neural networks (NN) with their powerful 
learning capability are being sought to create the foundation for many adaptive control systems 
where on-line adaptation algorithms can be implemented. Fuzzy logic control on the other hand 
has been proved useful in many rather popular control system applications to provide a rule-based 
structure. In this article we reviewed the intelligent and robotic algorithm approaches and the 
proposed a novel neural-network based approach for TLP systems. For the stability analysis, linear 
matrix inequality (LMI) conditions are derived via fuzzy Lyapunov theory to guarantee the 
stability and automated design of a TLP system. EBA is utilized to determine the system 
parameters for the controller. A simulation of the nonlinear inverted pendulum system is given at 
the last. The experimental result indicates that EBA with our proposed fitness function presents a 
93.77 % success rate in average for finding the feasible solutions. 
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