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Abstract.  Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space 

covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly 

distributed normal compressional forces acting on the face surface of the covering layer. Two different cases 

where the compressional forces are “dead” and “follower” forces are considered. Three-dimensional 

linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the 

elasticity relations of the materials of the constituents are described through the Murnaghan potential where 

the influence of the third order elastic constants is taken into consideration. The dispersion equation is 

derived and an algorithm is developed for numerical solution to this equation. Numerical results for the 

dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of 

the character of the external compressional forces are presented and discussed. These investigations provide 

some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems 

with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and 

study of the behavior of seismic surface waves propagating under the bottom of the oceans. 
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1. Introduction 
 

Near-surface waves are ubiquitous in various branches of engineering and also in some natural 

sciences such as geophysics. Non-destructive testing of structural or mechanical elements, defects 

and cracks detection in civil engineering infrastructures, material characterization using acoustic 

surface waves or some geophysical applications in the study of fault dynamics and earthquakes are 

typical examples. In many practical applications though, initial stresses are present due to the 

temperature variations or through the manufacturing or assembling processes. Moreover, the 

stresses which appeared under the action of the exploitation load in the members of the 

constructions can also be taken as initial or residual stresses with respect to the additional loading. 

At the same time, in the Earth’s crustal layer initial stresses might occur under the action of 

geostatic and geodynamic forces. These initial stresses significantly affect the dynamical behavior 

                                           

Corresponding author, Ph.D., E-mail: mnegin@itu.edu.tr 



 

 

 

 

 

 

Masoud Negin 

of the systems under consideration. Therefore several studies have been presented so far on the 

influence of the initial stresses in the elements of the constructions as well as in the layered 

medium on the dispersion of the propagated waves. 

Theoretical studies of wave propagation in bodies with initial stresses has been made by many 

researchers and some systematic analysis and summary of those studies can be found in the 

monographs by Biot (1965), Eringen and Suhubi (1975a, b), Guz (2004). Reviews of the certain 

part of those investigations carried out before the year 2007 are given in the papers by Guz (2002, 

2005), Akbarov (2007) as well. However, more recent related investigations can be found in 

papers by Akbarov (2012), Akbarov and Ipek (2010, 2012), Akbarov et al. (2011). Many works 

have been done on the near-surface wave propagation in initially stresses layered half-spaces so 

far, yet, here we will present a few of those numerous studies which were carried out in the last 

twenty years. 

Dowaikh and Ogden (1991) studied the propagation of interfacial waves (Stoneley waves) 

along the boundary between two half-spaces of pre-stressed incompressible isotropic elastic 

material and they obtained the equation for the wave speed propagation along a principal axis in 

respect of general strain-energy functions. In particular they showed that when an interfacial wave 

exists its speed is greater than that of the least of the Rayleigh wave. The propagation of elastic 

interfacial waves along the plane boundary separating two pre-strained compressible half-spaces 

has also been studied by Sotiropoulos (1998) assuming that the half-spaces were subjected to pure 

homogeneous finite strains. Rogerson and Fu (1995) carried out an asymptotic analysis of 

dispersion relations for wave propagation in a pre-strained incompressible elastic plate and 

obtained an asymptotic expansions for the wave speed as a function of wave number and pre-

stress. Generalized Rayleigh wave propagation in a pre-stressed stratified half-plane was 

investigated by Akbarov and Ozisik (2003). It was assumed that complete contact conditions 

between the layer and half-plane were satisfied. Moreover, it was assumed that the initial strains 

were small and the strains and stresses corresponding to the initial state were determined within 

the scope of the classical linear theory of elasticity, corresponding dispersion equation was 

obtained and the dispersion curves which were constructed from the solution to this equation were 

analyzed. Wijeyewickrema et al. (2008) investigated the time-harmonic wave propagation in a 

pre-strained and constrained homogeneous compressible high-elastic layer and the influence of the 

degree of this constraint on the dispersion relations. Ogden and Singh (2011) in the presence of 

initial stresses derived the general constitutive equation for a transversely isotropic hyperelastic 

solid based on the theory of invariants to examine the propagation of both homogeneous plane 

waves and Rayleigh surface waves. Akbarov et al. (2011) investigated the extensional and flexural 

Lamb waves in a sandwich plate with finite initial strains made from compressible highly elastic 

materials. It was assumed that the initial strains were caused by the uniformly distributed normal 

compression forces acting on the face planes of the plate and the cases where the compression 

forces are dead and follower were considered. Gupta et al. (2012) studied the propagation of 

torsional surface wave in an initially stressed non-homogeneous layer over a non-homogeneous 

half-space and they showed that the inhomogeneity parameter and the initial stress play an 

important role for the propagation of torsional surface waves. Zhang and Yu (2013) based on the 

mechanics of incremental deformations investigated the guided wave propagation in unidirectional 

plates under gravity and initial stresses. Shams and Ogden (2014) by applying the theory of the 

superposition of infinitesimal deformations on finite deformations in a hyperelastic material 

studied the propagation of Rayleigh waves in an initially stressed incompressible half-space 

subjected to a pure homogeneous deformation. Zhang et al. (2014) using quasistatic approximation  
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Fig. 1 Geometry of the considered mechanical system 

 

 

and linearity assumption, investigated the propagation of Rayleigh waves in a magneto-

electroelastic half-space with initial stress and obtained the wave propagation velocity for four 

types of electromagnetic boundary. 

In the present paper, the study of Negin et al. (2014), Akbarov and Negin (2015) on 

propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by 

an elastic layer is extended for the case where the initial stresses are caused by the uniformly 

distributed compression forces acting on the face surface of the layered half-space. The three-

dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB) is utilized 

and the plane-strain state is considered. Elasticity relations of the materials are described through 

the Murnaghan potential where the influence of the third order elastic constants is taken into 

consideration. The dispersion equation for this system is derived and a computer algorithm is 

developed for numerical solution to this equation. Numerical results for the dispersion of the 

generalized Rayleigh waves on the influence of the initial stresses and on the influence of the 

character of the external compressional forces are presented and discussed. Two cases are 

considered: 

Case 1: it is assumed that the external forces are “dead” forces. Therefore, in this case the 

external forces only cause the initial stresses and do not constrain the wave propagation in the 

layered half-space. 

Case 2: it is assumed that the external forces are “follower” forces. Consequently, in this case 

the external forces not only cause the initial stresses, but also constrain the wave propagation in 

the system. These distributed external forces, can be caused, for instance, by the weight of the 

liquid on the layered half-space if the system represents as a model for the soil of the bottom of the 

oceans. 

 

 

2. Formulation of the problem 
 

We consider an elastic half-space covered by an elastic layer with thickness h. Fig. 1 shows the 

geometry of the problem. The layer and the half-plane occupy the regions {−∞<x1<+∞, 0≤x2≤h, 

−∞<x3<+∞} and {−∞<x1<+∞, −∞≤x2≤0, −∞<x3<+∞}, respectively. Note that the values related to 
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the layer and half-space are denoted by upper indices (1) and (2), respectively. Furthermore, the 

values relating to the initial state are denoted by the additional upper index 0. We determine the 

positions of the points by the Lagrange coordinates in the Cartesian system of coordinates Ox1x2x3. 

A plane-strain state in the Ox1x2 plane is considered, thus the displacement components along Ox1 

and Ox2 directions, u1 and u2 are non-zero while displacement component u3 along Ox3 direction is 

zero. We assume that the Rayleigh waves propagate in the positive direction of Ox1 axis.  

It is assumed that the considered system is compressed with the uniformly distributed normal 

forces with the intensity P0 along its thickness. The uniformly distributed normal force P0, as 

mentioned before, can be caused for instance, by the weight of the fluid on the stratified half-space 

if the system corresponds as a model for the soil of the bottom of the ocean or of the sea or it can 

also represents as a model of the weight of the bodies which are located on the stratified half-space 

under consideration. 

According to Guz (2004), the equations of the TLTEWISB are obtained from the 

corresponding geometrical non-linear equations of motion by their linearization with respect to the 

perturbations of the stresses, strains and displacements 

     
 

 2 2
11 12 1 1

0 2 2
1 2 2

,

m m m m
mu u

P
x x x t

 


   
  

   
 

     
 

 2 2
12 22 2 2

0 2 2
1 2 2

.

m m m m
mu u

P
x x x t

 


   
  

   
                     (1) 

Now we formulate the boundary conditions. We assume that the following complete contact 

conditions between the layer and half-space are satisfied 

2 2 2 2

(1) (2) (1) (2)

12 0 12 0 22 0 22 0| | , | | ,x x x x         

 2 2 2 2

(1) (2) (1) (2)

1 0 1 0 2 0 2 0| | , | | .x x x xu u u u    
                     

(2) 

As has been noted in the previous section we consider two cases with respect to the boundary 

conditions: 

Case 1: we assume that the external compression forces with intensity P0 are “dead” forces, i.e., 

any magnitude in either direction does not change in the perturbation state. Therefore, in this case 

the boundary conditions are as follow 

 

   

2 2

1 1

12 220, 0.
x h x h

 
 
 

                       

(3) 

Case 2: in this case we assume that the aforementioned forces are “follower” forces. The load is 

said to be “follower” if it is applied normally to the surface of a body and does not change its 

direction and magnitude during deformation, i.e., if it acts normally on the surface in the deformed 

state too. According to this definition of the “follower” forces, we have the boundary conditions 

written below: 

 

2

2

(1)
1 2

12 0

1

,
x h

x h

u
P

x






 


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 

2

2

(1)
1 1

22 0

1

.
x h

x h

u
P

x









                             

(4) 

The expression for the calculation of the “follower” forces acting on the surface, which is also 

used for writing the conditions (4), is given in the monograph by Guz (1999). Moreover, we 

assume that the following decay conditions also are satisfied 

.2,1     ,0     ,0
22

)2()2(   iu xixij                     (5) 

As stated above, we assume that the constitutive relations of the materials of the constituents 

are given by the Murnaghan potential. In fact, experimental data detailed in the monograph by Guz 

(2004) and other references listed therein, show that the absolute values of the influence of the 

initial stretching and the initial compressing stresses on the wave propagation velocity in the pre-

stressed bodies fabricated from the materials such as those which are chosen in this study, differ 

from each other in the quantitative sense. Consequently, in a theoretical sense such experimental 

results can be described only by employing the strain energy potential containing not only the 

second and the square of the first algebraic invariants of Green’s strain tensor, but also the cube of 

the first invariant, the multiplication of the first and second invariants and the third invariant with 

corresponding coefficients, i.e., with the third order elastic constants. The Murnaghan potential can 

be taken as an example of such potential. These third order elastic constants enter into the relations 

of the TDLTEWISB and through these constants the aforementioned effect of the difference 

between the absolute values of the influence of the initial stretching and the initial compressing 

stresses on the wave propagation velocity in the pre-stressed bodies is described and estimated. 

Therefore, in the present investigation we use the Murnaghan potential which is given as follow, 

Guz and Makhort (2000) 

          
 

        
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1
,

2 3 3
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A A A b A A A                (6) 

where λ
(m)

 and μ
(m)

 are Lame’s and a
(m)

, b
(m)

 and c
(m)

 are the aforementioned third order elasticity  

constants. Here  
1

m
A ,  

2

m
A  and  

3

m
A  are the first, second and the third algebraic invariants of  

Green’s strain tensor, respectively. For the case under consideration, the expressions of these 

invariants are 
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1 11 22 ,
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Note that in Eqs. (6)-(8) the upper prime on the symbols ( ) ( ),0 ( )( )m m m
i i iu u u   , 

( ) ( ),0 ( )( )m m m
ij ij ij      and 

( ) ( ),0 ( )( )m m m
ij ij ij      denote the total values of the displacements, 

strains and stresses, respectively. Consequently, in the case under consideration by linearization of 

the non-linear relations (6)-(8) with respect to the perturbations, i.e. with respect to ( )m
iu , ( )m

ij  

and ( )m
ij , the following linearized constitutive relations for the layer and the half-space materials 

are obtained. 

         
11 11 11 12 22 ,

m m m m m
A A   
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In the case where P0=0,
 
this formulation transforms to the corresponding one made within the 

scope of the classical linear theory of elastodynamics.  

 

 

3. Solution procedure 
 

Each displacements component of the considered system are represent as follows 

).cos()(    ),sin()( 12
)(

2
)(

212
)(

1
)(

1 tkxxutkxxu mmmm  
            

(11) 

Substituting presentation (11) into the relations (10) and (9) we obtain the following equations 

for the    1 2

m
x  and    2 2

m
x  from the equation of motion (1) 
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where 
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After some mathematical procedures, we derive the following equation for    2 2

m
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We determine the solution to the Eq. (14) as follows 
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Substituting the expression for 
   2 2

m
x  from (15) into the second equation in (12) we obtain 

an equation with respect to 
   21

m
x  from which we can determine the similar expression for 

   21

m
x . Then using the relations (11), (10) and (9) we can get the expressions of stresses, strains  

and displacements of each constituents of the system. Finally, we can obtain the dispersion 

equation considering the conditions (2)-(5). This dispersion equation after some mathematical 

manipulations can be expressed formally as follows 

            1 1 1 2 2 2

0det ,? ? ? , , , , 0,ij c kh a b c a b cP                      (17) 

where ; 1,2,...,6i j   and 

.c
k


                                    (18) 

In the present paper we study the generalized Rayleigh waves dispersion in the system under 

consideration and as in the works by Tolstoy and Usdin (1953), Eringen and Suhubi (1975b), the 

propagation velocity of the generalized Rayleigh waves is determined within the scope of the 

following assumptions 
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Considering (14) and (17) this is concise way of saying that in order to satisfy the conditions 

(19) the following relations must hold 

(1)
2 0,B     ( 1 )
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The relations (20) hold when 
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The relation (21) guarantee that  2

1R ,  2

2R  always are real and positive, and
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2R  always  

are pure imaginary. Note that the other cases under which the relations (19)-(22) are violated, in 

the present work do not considered. Thus, within the scope of the assumptions (19)-(21) we obtain 

the following expressions for the αij
 
in Eq. (17)
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4. Numerical results and discussion 
 

In the cases where the assumptions (19)-(22) are satisfied the solution (15) corresponds to such 

a wave propagation in the layered half-space that the layer undergoes an oscillatory motion in the 

Ox2
 
direction propagating in the Ox1 direction with velocity c. The disturbances in the layer decay 

exponentially with depth in the half-space and therefore the wave can be considered as a 

generalized Rayleigh wave confined to the pre-stressed covered layer. The dispersion Eq. (17) has 

infinitely many modes unlike ordinary Rayleigh waves, which can propagate only in one mode. By 

ordinary Rayleigh wave we mean the Rayleigh wave that propagated in the homogeneous, 

isotropic, elastic half-space media. Velocity of propagation of this ordinary Rayleigh wave only 

depends on the mechanical properties of the medium and not on the wavenumber of the 

propagated waves, thus this wave is not dispersive and can propagated only in one mode. 

Moreover, the dispersion curves related to each mode has two branches which were denoted by  
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Table 1 Values of the elastic constants of selected materials (according to Guz, 2004) 

Materials 

Density Lame constants Third order elastic constants 

ρ 

(g/cm
3
) 

λ×10
-4

 

(MPa) 

μ×10
-4

 

(MPa) 

a×10
-5

 

(MPa) 

b×10
-5

 

(MPa) 

c×10
-5

 

(MPa) 

Steel 3 7.795 9.26 7.75 −2.35 −2.75 −4.90 

Bronze 7.20 8.16 3.84 1.20 −3.10 4.80 

Brass 59–1 7.20 9.49 4.47 −0.70 2.70 −3.40 

Brass 62 7.20 9.49 4.47 −2.80 −2.10 −3.20 

Plexiglas 1.16 0.404 0.19 2.68×10
-3

 −3.12×10
-2

 −6.77×10
-2

 

 

 

M1n and M2n respectively for the n-th mode. For the first M1n branches the displacement of the 

layer circumscribes the ellipse similar to the ordinary Rayleigh waves, but for the second M2n 

branches leads to an opposite type of motion. Moreover, according to the restriction (20), it must  

be (2)
2 1c c   and (1)

1 1c c  , i.e., the near-surface wave propagated in the system under  

consideration is subsonic in the half-space, but it is supersonic in the covering layer, Tolstoy and 

Usdin (1953). 

In this study we consider two real material pairs, values of the mechanical constants of which 

are given in Table 1 (i.e., the values of the mechanical constants which enter the expression (6) of 

the Murnaghan potential). We select four pairs from these materials. For the I, II, III and IV pairs, 

the material of the covering layer we take as bronze, brass 59-1, brass 62 and Plexiglas, 

respectively, but for all the pairs the material of the half-space we take as steel.  

For estimation of the magnitude of the initial stresses we introduce the parameter 

 
 2

0 /P  .                              (23) 

Moreover, we introduce the notation 

 

0 0

0

c c

c

 




 




 ,                             (24) 

for estimation of the influence of the initial stresses in the constituents, i.e., the influence of the 

parameters ψ on the wave propagation velocity. Thus, through the graphs of the dependencies 

between η (24) and kh constructed for various values of the parameters ψ (23) we analyze the 

effect of the initial stresses in the constituents on the wave propagation velocity.  

Fig. 2 shows the dispersion curves obtained for the first branch of the first mode of the 

generalized Rayleigh wave for the I pair of the materials for both dead and follower forces. Fig. 

2(a) shows the results for the case when the third order elasticity constants are not considered. This 

figure shows that for all values of the kh, under the action of the dead forces the wave propagation 

velocity c
 
decreases with increasing ψ, i.e., with increasing absolute values of the compressional 

forces that cause the initial stresses. However, under the action of the follower forces the behavior 

of the influence of the ψ on the values of c changes completely in the opposite direction, i.e., under 

the action of the follower forces wave propagation velocity increases with increasing ψ. Fig. 2(b) 

shows the results for the case when the third order elasticity constants are not zero. It follows from 

these graphs that considering the effect of third order elasticity constants into account, for both 

dead and follower cases, first of all the behavior of dispersion curves will be similar for dead and  
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(a) a=b=c=0 (b) a,b,c≠0 

Fig. 2 Influence of the compressional “dead” and “following” forces to the dispersion of the generalized 

Rayleigh wave for the I pair of the materials for the first branch of the first mode 

 

  
(a) II pair (b) III pair 

Fig. 3 Influence of the compressional “dead” and “following” forces to the dispersion of the generalized 

Rayleigh wave for the first branch of the first mode when a,b,c≠0 

 

 

follower forces and the second, not only the effect of initial compressional forces increases 

dramatically in this cases, but the behavior of the dispersion curves changes completely. For 

example in the case of dead forces (follower forces) wave propagation velocity increases with 

increasing ψ before some value of the wavenumber, say kh≈2.3 (kh≈3.4 in the case of follower 

forces) and decreases after that value with increasing ψ. 

Fig. 3 shows the dispersion curves obtained for the first branch of the first mode for the II and  
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(a) a=b=c=0 (b) a,b,c≠0 

Fig. 4 Influence of the compressional “dead” and “following” forces to the dispersion of the generalized 

Rayleigh wave for the IV pair of the materials for the first branch of the first mode 

 

 

III pairs of the materials for both dead and follower forces for the case when the third order 

elasticity constants are not zero. As can be seen from these figures for both these material pairs 

and for both cases of the initial stresses the wave propagation velocity increases as the absolute 

values of the compressional forces increase.  

Fig. 4 illustrates the dispersion curves of the first branch of the first mode for the IV pair of the 

materials and influence of the dead and follower forces on the wave dispersion curves for the cases 

when the third order elasticity constants are taken to be zero (a) and when they are considered to 

not to be zero (b). It follows from these graphs that as in the case of the I pair of the materials 

considering the effect of the third order elasticity constants into account the influence of initial 

compressional forces increases dramatically. Furthermore, behavior of the wave propagation 

curves depends on the wavenumbers, for example in the case of follower forces Fig. 4(a) wave 

propagation velocity decreases with increasing ψ before some value of the wavenumber (say kh≈3) 

and increases after that value with increasing ψ. Finally, for this material case the low 

wavenumber limit values of the wave propagation velocity as kh→0 do not depend on the 

character of the initial compressional forces, i.e. dead or follower forces.   

Dispersion curves related to the second branch of the first mode for all four material pairs have 

been shown in Fig. 5 for the case where the third order elasticity constants are considered in the 

analysis. Thus, it follows from Fig. 5 that the dimensionless wavenumber kh has cut off values for 

the second branch of the first mode. Furthermore, low and high wavenumber limit values of the 

wave propagation velocity as kh→0 and kh→∞, respectively, do not depend on the character of the 

initial compressional forces, i.e., on the dead or follower forces. It follows from Figs. 5(b)-(c) that 

in the case of the II and the III pairs of the materials the wave propagation velocity increase 

monotonically as the values of initial compressional forces, i.e. ψ
 
increase. However, in the case of 

the I and the IV pairs of the materials, Figs. 5(a)-(d) respectively, the behavior of the wave 

propagation curves depend on the wavenumbers. For example, in Fig. 5(a) the wave propagation  
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(a) I pair (b) II pair 

  
(c) III pair (d) IV pair 

Fig. 5 The influence compressional “dead” and “following” forces to the dispersion of the generalized 

Rayleigh wave for the second branch of the first mode when a,b,c≠0 

 

 

velocity decreases with increasing the absolute values of ψ after some value of the wavenumber 

(say kh≈4.8) and increases after that value with increasing ψ, or in Fig. 5(d) the wave propagation 

velocity decreases with increasing the absolute values of ψ after some value of the wavenumber 

(say kh≈4.3) and increases after that value with increasing ψ. 

Finally, we consider the graphs given in Figs. 6-7 which illustrate the dependence between η 

and kh constructed for the first and second branches of the second mode for the IV pair of the 

materials. Similar results as previous ones can be obtained here. First of all, it follows from these 

figures that for the first and second branch of the second mode the dimensionless wavenumber kh 

also has cut off values. Fig. 6 shows the results for the case when the third order elasticity 

constants are taken to be zero. This figure shows that for all values of the kh, under the action of 
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(a) first branch of the second mode (b) second branch of the second mode 

Fig. 6 Influence of the compressional “dead” and “following” forces to the dispersion of the generalized 

Rayleigh wave for the IV pair of the materials when a=b=c=0 

 

  
(a) first branch of the second mode (b) second branch of the second mode 

Fig. 7 Influence of the compressional “dead” and “following” forces to the dispersion of the generalized 

Rayleigh wave for the IV pair of the materials when a,b,c≠0 

 

 

the dead forces the wave propagation velocity c
 
decreases with increasing the absolute value of the 

compressional forces that cause the initial stresses. Fig. 7 shows the results for the case when the 

third order elasticity constants are not zero. It follows from these graphs that considering the third 

order elasticity constants into account, has similar effects on both dead and follower cases, and the 

character of the influence of the ψ on the values of wave propagation velocity c changes 

completely. For example in Fig. 7(a) wave propagation velocity decreases with increasing ψ 
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before some value of the wavenumber (say kh≈6.7) and increases after that value with increasing ψ 

for the first branch of the second mode or in Fig. 7(b) wave propagation velocity behavior changes 

after some value of the wavenumber (say kh≈9.3) for the second branch of the second mode. 

 

 

5. Conclusions 
 

In the present paper within the scope of the piecewise homogeneous body model with the use 

of the 3D linearized theory of elastic waves in initially stressed bodies, dispersion of the 

generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is 

investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal 

compressional forces acting on the face surface of the covering layer. Two cases are considered: in 

Case 1 it is supposed that the compressional forces are “dead” forces, while in Case 2 it is assumed 

that the they are “follower” ones. The dispersion equations for each case are obtained and an 

algorithm was developed to do numerical investigations. The basic numerical results for the low 

and high wave number limit values of the wave propagation velocity are presented and discussed. 

Moreover, the numerical results related to different branches of the first and second modes are 

presented and the effect of third order elasticity constants are considered yielding the following 

main conclusions: 

• In the case where the initial stresses in the considered system are caused by the compressional 

“dead” forces which act on the face surface of the covering layer, for all values of kh the 

propagation velocity of the generalized Rayleigh wave decreases with the absolute values of the 

compressional forces (i.e., with decreasing ψ). 

• In the case where the above mentioned forces are the “follower” ones, the behavior of the 

influence of the initial stresses on the wave propagation velocity is more complicated and in 

general depends on the values of kh, (i.e., the velocity of wave propagation before/after some 

values of kh decreases/increases).  

• Taking the third order elastic constants into account the behavior of the influence of the initial 

stresses on the velocity of wave propagation vary for different material pairs and before/after some 

values of kh decreases/increases the velocity of wave propagation.  
These results can be used for study and for characterization of the structure of the soil of the bottom 

of the oceans, study of the dispersion of seismic surface waves propagating under the bottom of the 

oceans and study of the near-surface wave propagation in layered mechanical systems with a liquid 

upper layer. 
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