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Abstract.  While most of researches on system identification of building structures are aimed at finding 

modal parameters first and identifying the corresponding physical parameters by using the transformation in 

terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods 

have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are 

restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is 

performed on the influence of wind disturbances on stiffness identification of building structures using 

micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness 

identification of building structures using micro-tremor at limited floors is restricted in case of using 

time-series data for low-rise buildings and does not cause serious problems. 
 

Keywords:  system identification; micro-tremor; wind disturbance; physical parameter; limited 

observation 

 
 
1. Introduction 
 

The research on system identification of building structures has been progressed recently in 

response to the need of the development of techniques for damage detection (Agbabian et al. 1991, 

Yao and Natke 1994, Doebling et al. 1996, Masri et al. 1996, Barroso and Rodriguez 2004, 

Nagarajaiah and Basu 2009, Hernandez-Garcia et al. 2010, Ji et al. 2011, Kuwabara et al. 2013) 

and structural health monitoring in order to manage the business continuity plan and upgrade the 

earthquake resilience of building structures (Hart and Yao 1977, Safak 1989, Ghanem and 

Shinozuka 1995, Hjelmstad et al. 1995, Lus et al. 2004, Housner et al. 1997, Takewaki et al. 

2011). Most of researches are aimed at finding modal parameters first and identifying the 

corresponding physical parameters by using the transformation in terms of transfer functions and 

cross spectra, etc. (see Fig. 1(a)). While this approach seems to be reliable and stable, the 

appropriateness of employed models (shear building model, shear-bending model, frame model) is 

closely related to the accuracy of the identification of physical parameters (Minami et al. 2013). 

On the other hand, some methods have been developed which identify the physical parameters 

directly from a set of earthquake records at limited floors. Udwadia et al. (1978) proposed a theory 

on system identification of shear buildings using earthquake records at the upper and lower floors  
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(a) Conventional method                     (b) Proposed method 

Fig. 1 Conventional method and proposed method with compensation algorithm 

 

 

of the object story. Takewaki and Nakamura (2000) reformulated the method in terms of Fourier 

transforms and showed that the damping can also be identified by using the zero-frequency limit 

(see Fig. 1(b)). They also showed that the proposed method can work well in actual situations. The 

method has been extended to a shear-bending model and the ARX (Auto Regressive eXogenous) 

model has been introduced to overcome the difficulty arising from noise issues (Takewaki and 

Nakamura 2005, 2009, Kuwabara et al. 2013, Minami et al. 2013, Ikeda et al. 2014a). 

Some other methods have also been proposed for identifying the story stiffnesses or damages of 

shear building models by using an iterative method (Zhang and Johnson 2012, 2013a, b, Johnson 

and Wojtkiewicz 2014, Mei and GülNovel 2014). However its applicability to actual buildings has 

never been presented. 

Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to 

earthquake records or forced vibration data. However, earthquake records and forced vibration 

data are difficult to obtain in a timely manner. In this situation, it is believed that the micro-tremor 

is suitable (Ikeda et al. 2014b). In dealing with micro-tremors, the problems of SN ratios and 

influence of external disturbances, e.g. wind loading, have to be resolved. It is well known 

theoretically that the cross spectra between the base and building roof can remove the noise due to 

wind loading. However the applicability of such technique to the direct physical parameter system 

identification may not be clear. 

The purpose of this paper is to theoretically investigate the influence of wind loading on 

stiffness identification of building structures using micro-tremors at limited floors. It is concluded 

that the influence of wind loading on stiffness identification of building structures using 

micro-tremors at limited floors is restricted to a lower frequency range for rather low-rise 

buildings in which the response of the building structure is not employed in the identification 

because of the small power of responses derived from the time-series data resulting from the 

nonexistence of eigenvibrations in that region. 
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(a) Shear building model   (b) Shear building model under micro-tremor and wind load 

Fig. 2 Shear building model under micro-tremor and wind disturbance 

 

 

2. Stiffness identification of shear buildings under micro-tremor and wind loading 
using limited observation 
 

2.1 Governing equation 
 

Consider an N-story shear building model, as shown in Fig. 2(a), with viscous and material 

dampings (Nashif et al. 1985, Inaudi and Kelly 1995) in parallel. Although material damping is not 

used afterward, it is included here to make the formulation general. Numbering of the nodes and 

elements is made from the top. This is because this numbering enables the smooth connection with 

the previous formulation and makes the manipulation systematic. The jth node and the jth element 

from the top are called the “node j” and the “element j”, respectively. Let mj and kj denote the mass 

of the node j and the story stiffness of the element j. Let cj and βj be the viscous damping 

coefficient and the material damping ratio in the element j. The complex stiffness of the element j  

is described as )21(* ikk jjj   where i is the imaginary unit. 

This shear building model is subjected both to the horizontal base acceleration ( )z t  as a  

micro-tremor and wind loading w(t)={w1...wj...wN}
T
 (wj: horizontal wind loading at node j) as 

shown in Fig. 2(b). ( )
T
 denotes the vector transpose. The equations of motion of this model in the 

frequency domain may be expressed as 

         2 i Z         M C K U F W                 (1) 

where U(ω), Z(ω) and W(ω) are the Fourier transforms of the absolute horizontal nodal 
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displacements u(t), the base displacement z(t) and wind loading w(t), respectively. The mass, 

stiffness and damping matrices M, K, C and the vectors W(ω), F(ω) are defined by 

 1 2 Ndiag m m mM                        (2) 

* *
1 1

* * * *
1 1 2 2

* * *
1 1N N N

k k

k k k k

k k k 

 
 
   

  
 
   

K                    (3) 

1 1

1 1 2 2

1 1N N N

c c

c c c c

c c c 

 
 
  
 
 
 

  

C                    (4) 

   1 2

T

NW W W W                       (5) 

   *0 0
T

N Ni c k  F                      (6) 

Eq. (1) can be expressed in a compact form as 

       Z   A U R                           (7) 

where 

 

   

   

 

   

1 1

1 2

1

1

N

N N

a b

b a

b

b a

 

 




 





 
 
 
 
 

  

A                (8) 

        *
1 2

T

N N NW Z W Z W Z i c k   R              (9) 

In Eq. (8), aj(ω) and bj(ω) can be expressed as 

 

   

2 * *
1 1

2
1

j j j j j j

j j j

a m i c k i c k

m b b

   

  

 



     

   　 　 　
                  (10) 
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  *
j j jb i c k                                (11) 

The vector R(ω) in Eq. (9) related to wind loading can be expressed as follows. 

   

 

*
1 2

1 2

T

N N N

T

N

D D D i c k

R R R

   



R

　 　

                  (12) 

where 

i
i

W
D

Z
                                  (13) 

For the necessity in a later formulation, the frequency-domain wind loading at node i is 

assumed to have the following property. 

   2 3
co
i

iW i W O                             (14) 

where co
iW  is the coefficient. In this case, the following relation is satisfied. 

2 2
co

0
lim( / ) 2 i

id W d W





                          (15) 

The constraint (14) indicates that the frequency-domain wind loading has zero value and zero 

first-order sensitivity at zero frequency. This property corresponds to the across-wind direction 

loading. This condition is used in Eqs. (39) and (47) later. Since the across-wind direction loading 

has a zero-mean property, the zero static (frequency=0) term may be acceptable. It is also true that 

the property around zero frequency of the Fourier spectrum of the across-wind direction loading 

has not been made clear even experimentally (Balendra 1993). Based on this fact, the assumption 

of Eq. (14) seems acceptable. Furthermore, since the power of micro-tremor and its influence are 

small in a lower frequency range, the constraint (14) does not seem to cause a serious problem for 

the reliability and stability of the proposed identification theory. 

 

2.2 Identification of Nth-story stiffness 
 

Let us derive Uj(ω) in this section. By conducting the mathematical manipulation, U(ω) can be 

derived from Eq. (7). 

 
 

 
   

det

adj
Z  

A
U R

A
                         (16) 

where adj(A) is the adjugate matrix (transpose of the cofactor matrix) of A. After the introduction 

of definition of adj(A), Eq. (16) leads to 

   
 
 1

det
1

det

N
ljl j

j l

l

U R Z




 
 

  
  


A

A
                      (17) 
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where Alj is the matrix deleting the lth row and the jth column. 

Let Δj denote the determinant of the matrix replacing the jth column of the matrix A with R. In 

case of j=N, ΔN can be expressed as 

1 1 1

1 2 2 2

3 2 2 2

2 1 1

1

detN
N N N N

N N N

N N

a b R

b a b R

b a b R

b a R

b R

   

  



 
 
 
 
 

   
  

 
 

  

             (18) 

Cofactor expansion at the jth column of the determinant of the matrix replacing the jth column of 

the matrix A with R provides 

    
1

1 det
N

l j

j jl l

l

R




   A                         (19) 

Due to the symmetry of A, the following relation holds. 

   det detjl ljA A                             (20) 

Eqs. (17), (19) and (20) yield the frequency-domain displacement at node j. 

j
j

N

U Z
P


                                (21) 

where Pj(ω) is the determinant of the principal minor of j×j from the left top of A (P0=1, PN=det 

A). Substitution of Eq. (18) into Δj in Eq. (21) and the relation between Ri and Di in Eq. (12) lead 

to 

 
 1

1

det
1

N
l N lNN N

N l
N Nl

U P
b D

Z P P





 
   

 


A
                 (22) 

Eq. (22) corresponds to Eq. (12) in the reference (Takewaki and Nakamura 2000) and includes the 

effect of wind loading expressed by {Dj}. 

Cofactor expansion of det AN-1N
 
at (N-1)th row provides 

     
1

1 1 2det 1
N N

N N N Nb P
 

    A                    (23) 

Substitution of Eq. (23) into Eq. (22) and expansion of the summation procedure lead to 

   1 2 0
1 1 1 2 1 1

N N N
N N N N N

N N N

U P P P
b D b D b b b D

Z P P P

 
                (24) 
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Fig. 3 Dynamic equilibrium at node j 

 

 

Let us define the quantity Qj(ω) which represents the Fourier transform of the story shear force 

in the element j by multiplying −iωUj+1 (ω) (Takewaki and Nakamura 2000). From the internal 

equilibrium, the following relation holds. 

 1 1j j j j jb U U i U Q                            (25a) 

Substitution of j=N into Eq. (25a) leads to 

 1 1N N N N Nb U U i U Q                          (25b) 

Dividing both sides of Eq. (25b) by UN+1(=Z), the following relation can be drawn. 

1N N
N

b U
Q

i Z

 
  

 
                           (25c) 

Substituting Eq. (22) into Eq. (25c), QN can be derived as follows. 

 
 1

1

det
1 1

N
l N lNN N

N N l
N Nl

b P
Q b D

i P P





   
     

   


A
              (26) 

Eq. (25) and the dynamic equilibrium at node j (see Fig. 3) provide 

 
2

1 1j j j j j j ji U Q i U Q i m U D Z                         (27) 

where Dj is defined in Eq. (13). Division of both sides of Eq. (25) by iωUj and multiplication by Qj 

on the resulting equation yield 

1

1

j j
j

j
j

j j
j

j

b U
Q

i U
Q

b U
Q

i U













                             (28) 
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Fig. 4 Relation among story shear −iωUNQN-1, inertial force −(iω)
2
mNUN and wind load  DNZ(=WN) 

 

 

Eqs. (27) and (28) lead to the expression of Qj in terms of Qj-1. 

1

1

j
j j

j j
j

j j
j j

j

D Z
Q i m

b i U
Q

b D Zi
Q i m

i i U







 





 



  

                      (29) 

Eq. (29) corresponds to Eq. (8) in the reference (Takewaki and Nakamura 2000) and includes 

the effect of wind loading expressed by {Dj}. Substitution of Eq. (29) in case of j=N into QN in Eq. 

(26) provides 

 
  1

1

1
1

det
1 1

N
N NN

l N lNN N
N l

N NN Nl
N N

N

D Z
Q i m

P i U
b D

b D ZP P
Q i m

i i U





 







 
 

    
    


A

      (30) 

Deletion of bN(PN-1/PN) from Eq. (30) using Eq. (22) leads to 

1

1N N

N N
N N

N

U b

b D ZZ i
i m Q

i i U




 




  

                    (31) 

Slight modification of Eq. (31) yields 

 

 

2

1
2

N N

N NN
N

N

i U b

Q D ZZ U
m

i i U



 






 

                     (32) 

Eq. (32) corresponds to Eq. (19) in the reference (Takewaki and Nakamura 2000) and includes 

the effect of wind loading expressed by {Dj}. In fact, the denominator of the right-hand side of Eq. 

(32) multiplied by (iω)
2
UN  consists of three parts, i.e., inertial force of node N, story shear force 
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of (N-1)th element and wind load at node N. This is illustrated in Fig. 4. 

In the previous stiffness identification theory (Takewaki and Nakamura 2000) using the 

identification function, the limit manipulation ω→0 is necessary in the expression of the left-hand 

side of Eq. (32). For this reason, the limit manipulation is considered in the denominator of the 

right-hand side of Eq. (32). The following relation holds. 

   
1 1

2 20 0 0
lim lim limN N N N

N N

N N

Q D Z Q D Z
m m

i ii U i U    

 

  

       
         

       

       (33) 

From Eq. (26) the second term in Eq. (33) can be expressed as follows. 

 
 11 1 2

1 sum20 0 0 0
1

lim lim lim 1 lim NN N N
N

N

Q b P
b D

i Pi    

  


   


      
              

          (34) 

where 
1

sum
ND 

 is expressed as 

 1 2 3 0
sum 1 2 2 1 2 2 1

1 1 1

N N N
N N N N

N N N

P P P
D D b D b b b D

P P P

  
   

  

             (35) 

Let us expand Pj(ω) at ω→0. 

   1 2
0 0

lim limj jP b b b
 


 

                          (36) 

Substitution of Eq. (36) into Eq. (35) leads to the limit value of 1
1 sum

N
Nb D 
 . 

   1
1 sum 1 2 1

0 0
lim limN

N N Nb D D D D
 


  

 
                    (37) 

Substitution of Eq. (36) into Eq. (34) yields 

 
1 2

1 1 2 120
1

lim 1N N
N N

N

b P
b m m m

Pi 

 
 




   
     

   

               (38) 

The wind loading Wi in Eq. (14) can be re-expressed as 

 
2 3co ( )

i

i

W
D i O

Z
                             (39) 

The second term in the second parenthesis in Eq. (34) can be reduced to the following form using 

Eqs. (37) and (39). 

 

1 2 1
11 co co co

sum20
0 0 0

lim
lim lim lim

N
NNb W W W

D
Z Z Zi

  






  

 
     
 
 

                (40) 
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0
lim 0Z


  is assumed here.  

Furthermore, from the property of the transfer function, the following relation holds.  

0
lim 1

N

Z

U

 
 

 
                             (41a) 

Substitution of Eqs. (39) and (41a) into the third term in Eq. (33) provides 

 
co

20
0

lim
lim

N
N

N

D Z W

Zi U





  
 

  

                         (41b) 

These expressions will be used in the following. 

The equation for identifying the story stiffness of a shear building model under micro-tremor 

and wind loading is shown next. 

Substitution of Eqs. (33), (38), (40) and (41b) into Eq. (32) provides 

 
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                  (42) 

where 

1 2
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0 0 0
lim lim lim

N
N W W W

W
Z Z Z

    

                           (43) 

Define G(ω) by Eq. (44) in view of Eq. (42). 

    
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N

N N
l N

N l

i U
G m W k

Z U 
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
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     

     

             (44) 

It can be observed that the real part of the limit of G(ω) at ω→0 provides the story stiffness kN. 

sum
NW  indicates the sum of wind loads at all the nodes as shown in Fig. 5. 

 

 

3. Accuracy and reliability investigation of proposed method using frequency- 
domain simulation 
 

3.1 Comparison of floor response under micro-tremor with actual floor response 
 

The comparison of simulated floor responses under actual micro-tremor without wind loading 

with actual floor responses is shown in this section for investigating the influence of wind loading 

on floor responses under micro-tremor. 
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Fig. 5 Meaning of compensation term 
sum
NW  

 

  
Fig. 6 Five-story steel building and installed velocity meter (Ikeda et al. 2014b) 

 

 

The micro-tremor at the base measured in a 5-story steel building at Uji Campus of Kyoto 

University in 2013 is used as input here (see Figs. 6 and 7). Measured velocity data are 

transformed into acceleration data. Those velocity and acceleration data are shown in Figs. 8 and 

9. Fig. 10 shows a simulated top-floor response under this micro-tremor without wind loading with 

the corresponding actual floor response. It can be observed that the influence of wind loading is 

significant under micro-tremor. 

 

3.2 Accuracy investigation of proposed identification method using frequency-domain 
simulation 
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Fig. 7 Frame dimension and its shear building model (Ikeda et al. 2014b) 
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Fig. 8 Ground velocity as micro-tremor 
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Fig. 9 Ground acceleration evaluated from velocity 
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Fig. 10 Roof acceleration (measured one and simulated one to micro-tremor only) 
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Fig. 11 Two-story shear building model under micro-tremor and wind load 

 

 

The validity of the theory for micro-tremor and wind loading developed in Section 2 is 

investigated here. The frequency-domain simulation is used in this section. 

Consider a two-story shear building model as shown in Fig. 11. The model parameters are 

shown in Table 1. The fundamental and second natural circular frequencies are 24.2 and 63.5 

(rad/s). The input micro-tremor is the measured one in a 5-story steel building at Uji Campus of 

Kyoto University stated above. The same band-limited white noise is used as simulated wind 

loadings at two floor levels. In the proposed method, ground micro-tremor is used and the 

corresponding wind disturbance is not the strong wind, but the weak wind. It is well known that, 

while the strong wind exhibits a peculiar character, the weak wind possesses a rather random 

character. Such random character may be well represented by white-noise-like inputs. A 

band-limited white noise with null around zero frequency satisfying the constraint (14) is used in  
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Table 1 Parameters of 2-story shear building model 

 Mass (×10
4
 kg) Story stiffness (×10

4
 kN/m) Damping coefficient (×10

2
 kN∙s/m) 

First story 2.6 4.0 5.0 

Second story 2.6 4.0 5.0 
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Fig. 12 Floor inertia force and wind load 

 

 

the actual numerical simulation. 

The level of band-limited white noise with null around zero frequency is scaled so as to be 

approximately equivalent to the inertia forces (floor mass×base acceleration due to micro-tremor). 

The standard deviation of the band-limited white noise as wind loading is 300(N). The inertia 

force and the wind load are shown in Fig. 12. 

 

3.3 Identification equation for story stiffness 
 

The floor displacement response in the frequency domain can be expressed as 

1 11

2 2

U R
Z

U R

   
   

   
A                             (45) 

Rearrange the second component of Eq. (45) as 

2 1 1 1 2

1 2 1 1

U b R a R

Z a a b b





                             (46) 

In Eq. (44), it has been shown that the real part of the limit of G(ω) at ω→0 provides the story 

stiffness kN. In order to investigate in detail the property of G(ω), the following function is defined. 

 
 

 
2

sum
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N N
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N l

i U
E m W
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   
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    
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where   
0

lim NE k





  and sum( )NW   is defined by 
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       sum 1 2
N

NW W W W                          (48) 

In Eq. (48),  iW   indicates 

 
 

   
2

i
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W
W

i Z




 
                            (49) 

Eq. (47) represents the ‘modified identification function for micro-tremor and wind loading’. 

It is possible to evaluate the story stiffness from the limit value of Eq. (47) in the case of the 

input of micro-tremor and wind loading. On the other hand, the function for the case without wind 

loading can be expressed as 

 
 

2

ori

1

Re
N

N
l

N l

i U
E m

Z U






 
 
 
 

                        (50) 

It can be understood that the original case without wind loading can be obtained by substituting 

sum( ) 0NW    in Eq. (47). 

 

 

3.4 Comparison between characteristic functions E(ω) and Eori(ω) for wind loading of 
various levels 

 

The comparison is shown here between the characteristic functions E(ω) and Eori(ω) for wind 

loading of various levels larger than the inertia forces. E(ω) and Eori(ω) are shown in Figs. 13 and 

14. The simulated frequency-domain floor response data for the case under micro-tremor and wind 

loading have been used for evaluating E(ω) and Eori(ω). The standard deviation of the wind loads 

has been changed from 500 (n) to 5000 (N) which is larger than the inertia force. 
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Fig. 13 Story stiffness identification under wind loading of various levels larger than inertia 

force using Eori(ω) 
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Fig. 14 Story stiffness identification under wind loading of various levels larger than inertia force using E(ω) 
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Fig. 15 Story stiffness identification under wind loading of level equivalent to inertia force 

using E(ω) and Eori(ω) 

 

 

It can be observed from Fig. 13, since the influence of wind loading is not reflected in Eq. (50), 

the function Eori(ω) deviates greatly especially in a lower frequency range. On the other hand, it is 

seen from Fig. 14, because the influence of wind loading is reflected appropriately in Eq. (47), the 

deviation of the function E(ω) in a lower frequency range is small and converges to the theoretical 

value 4.0×10
4
 kN/m at ω→0. 

It can be concluded that the function E(ω) and the corresponding proposed theory in Section 2 

and Section 3 enable one to identify the story stiffness reliably even under wind loading in the 

identification for micro-tremor input. 

The comparison between the characteristic functions E(ω) and Eori(ω) for wind loading of the 

level equivalent to inertia forces is shown here. As in Section 3.4, the simulated frequency-domain 

floor response data for the case under micro-tremor and wind loading have been used for 

evaluating E(ω) and Eori(ω). Fig. 15 shows E(ω) and Eori(ω) for the simulated frequency-domain 

floor response data. It can be observed that E(ω) exhibits a stable property and even Eori(ω) shows  
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Fig. 16 Absolute value of  2
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Fig. 17 Role of compensation function in correction of contaminated identification function 

 

 

a relatively stable property. Furthermore the small deviation of Eori(ω) is restricted to a lower 

frequency range. This reason will be investigated next. 

The absolute value of the compensation term  2
sumW   in Eq. (47) is shown in Fig. 16. It can 

be seen that the absolute value of  2
sumW   is very small compared to the corresponding mass  

5.2×10
4
 kg especially in a higher frequency range. For this reason, even if the level of wind 

loading is almost equivalent to the level of inertia forces, the influence of wind loading is 

restricted to a lower frequency range. This supports the effectiveness of the proposed identification 

theory including Eq. (47) under micro-tremor and wind loading. 

Fig. 17 illustrates the role of the proposed compensation function in the correction of 

contaminated identification functions. The contamination in the lower frequency range is removed 

by the compensation function. Furthermore the present identification function has a large power in  
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Fig. 18 Ground velocity as micro-tremor (duration=40s) 
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Fig. 19 Wind load (standard deviation=300N) 

 

 
a higher frequency range due to the existence of eigenvibration in that frequency range. 

A compensation term  sum
NW   has been introduced in order to show that the effect of wind  

loading on the accuracy of stiffness identification is not significant. Therefore it is unnecessary to  

compute the compensation term  sum
NW   in the actual identification of story stiffness via the 

proposed identification method. 

 

 

4. Accuracy and reliability investigation of proposed method using time-domain 
simulation 
 

4.1 Simulation model 
 

The time-domain simulation is performed in this section. The two-story shear building model 

as shown in Fig. 11 (parameters shown in Table 1) is subjected to the micro tremor as shown in 

Fig. 18. The wind loading as a band-limited white noise (standard deviation is 300 N) with the 

level equivalent to inertia forces is considered. The wind load is shown in Fig. 19. 

The time-history response analysis has been conducted by using the Newmark-beta method. 

The time-history displacement data have been Fourier transformed and substituted into Eqs. (47) 

and (50). 
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Fig. 20 Evaluation of first-story stiffness from E(ω) (=Eori(ω)) without wind loading 
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Fig. 21 Evaluation of first-story stiffness from E(ω) and Eori(ω) with wind loading 
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Fig. 22 Compensation term  2

sumW   for wind loading 
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4.2 Identification of story stiffness without wind loading 
 

The function E(ω) (=Eori(ω)) for the first story without wind loading is shown in Fig. 20. The 

theoretical value is 4.0×10
4
 kN/m. It can be observed that, when the wind loading does not exist, 

the stiffness can be evaluated approximately by using the previous method. However the power in 

a lower frequency range is small due to the property of micro-tremor. This is a remarkable 

difference between the frequency-domain simulation (Section 3) and the simulation using the 

time-series data (actual situation). 

 

4.3 Identification of story stiffness with wind loading 
 

The functions E(ω) and Eori(ω) for the first story with wind loading are shown in Fig. 21. The  

absolute value of the compensation term  2
sumW   is shown in Fig. 22 and is quite small  

compared to the corresponding mass 5.2×10
4
 kg especially in a higher frequency range. This 

figure corresponds with Fig. 16 obtained by the frequency-domain simulation. It can be concluded 

that the influence of wind loading on the stiffness identification is restricted to the lower frequency 

range due to the property of micro-tremor and the frequency characteristic of the proposed 

identification method, i.e., the frequency characteristic of the characteristic functions E(ω) and 

Eori(ω) derived from the time-series data. Since the time-series data are used in the actual situation, 

this characteristic plays an important role. For this reason, it may be said that the proposed 

stiffness identification method has reliability even under wind loading. However the present 

discussion may apply to rather low-rise buildings with a high fundamental natural frequency. The 

investigation for middle-rise and high-rise buildings should be made in the future. 

 

4.4 Identification result of story stiffness from previous research 
 

For additional information, Ikeda et al. (2014b) used the same micro-tremor data measured in 

the 5-story steel building at Uji Campus in Kyoto University as stated in Section 3.1 (see Figs. 6 

and 7) and identified the story stiffness by using the method employing the identification function, 

the ARX model and filtering techniques. 
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Fig. 23 Examples of real part of identification function (4th and 5th stories) (Ikeda et al. 2014b) 
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Table 2 Identified story stiffnesses via previous method (long-span direction) (Ikeda et al. 2014b) 

 
Preliminary 

static analysis 

Identified 

value 

story stiffness 

×10
4
 (kN/m) 

1st story 5.12 6.038 

2nd story 4.55 5.402 

3rd story 4.51 4.912 

4th story 4.47 4.612 

5th story 4.44 4.424 

 

 

Fig. 23 shows two examples of the real part of identification functions (4th and 5th stories) 

(Ikeda et al. 2014b). The identification function, Eq. (50), without the compensation function has 

been used. It is found that, although some deviations are observed in the identification function 

after filtering only (black line), an acceptable identification may be possible after the further 

application of the ARX model (red line). This may result from the property of the method using 

the identification function and the fact that the influence of wind disturbances is restricted to a 

lower frequency range (see Figs. 16 and 22). On the other hand, in a higher frequency range where 

a large power exists due to the existence of eigenvibrations of the building, the ARX model and 

filtering enable the stabilization of the identification function. However, the determination of the 

ARX order and filtering parameters requires cumbersome tasks. It is expected that the stabilizing 

property shown in Figs. 13 and 14 further supports the reliable identification using the 

identification function even under wind disturbances. 

Table 2 shows the mean value of the identified stiffnesses using the method proposed in the 

reference (Ikeda et al. 2014b). The result by the preliminary static analysis has also been presented 

for comparison. 

 

 

5. Conclusions 
 

(1) The inclusion of the effect of wind loading on direct stiffness identification of building 

structures is possible by imposing a constraint on the property of wind loading. The constraint 

indicates that the frequency-domain wind loading has zero value and zero first-order sensitivity at 

zero frequency. This property corresponds to the across-wind direction loading. 

(2) The effect of wind loading on direct stiffness identification of building structures can be 

expressed by a „compensation function‟ which indicates the difference from the identification 

function without wind loading. 

(3) The validity of the present theory has been confirmed by the frequency-domain and 

time-domain simulations. 

(4) The influence of wind loading on stiffness identification of building structures using 

micro-tremor at limited floors is restricted to a lower frequency range in which the response of the 

building structure is not employed in the identification because of the small power of responses in 

time-series data resulting from the nonexistence of eigenvibrations in that region. 

(5) The facts stated in (1)-(4) may apply to rather low-rise buildings with a high fundamental 

natural frequency. The investigation for middle-rise and high-rise buildings should be made in the 

future. In that case, a shear-bending model should be introduced. The identification of bending 

stiffness may be a difficult issue in that model (Minami et al. 2013, Fujita et al. 2015). 

313



 

 

 

 

 

 

Ryuji Koyama, Kohei Fujita and Izuru Takewaki 

Acknowledgments 
 

Part of the present work is supported by the Grant-in-Aid for Scientific Research of Japan 

Society for the Promotion of Science (No. 24246095, 15H04079). This support is greatly 

appreciated. The authors are grateful to Miss A. Ikeda of Kyoto University for providing the 

analysis result for actual micro-tremor inputs. 

 

 

References 
 
Agbabian, M.S., Masri, S.F., Miller, R.K. and Caughey, T.K. (1991), “System identification approach to 

detection of structural changes”, J. Eng. Mech., ASCE, 117(2), 370-390. 

Balendra, T. (1993), Vibration of Buildings to Wind and Earthquake Loads, Springer-Verlag, London. 

Barroso L.R. and Rodriguez, R. (2004), “Damage detection utilizing the damage index method to a 

benchmark structure”, J. Eng. Mech., ASCE, 130(2), 142-151. 

Doebling S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), “Damage identification and health 

monitoring of structural and mechanical systems from changes in their vibration characteristics: A 

literature review”, Los Alamos National Laboratory Report LA-13070-MS. 

Fujita, K., Ikeda, A., Shirono, M. and Takewaki, I. (2015), “System identification of high-rise buildings 

using shear-bending model and ARX model: Experimental investigation”, Earthq. Struct., 8(4), 843-857. 

Ghanem, R. and Shinozuka, M. (1995), “Structural-system identification I: Theory”, J. Eng. Mech., ASCE, 

121(2), 255-264. 

Hart, G.C. and Yao, J.T.P. (1977), “System identification in structural dynamics”, J. Eng. Mech. Div., ASCE, 

103(EM6), 1089-1104. 

Hernandez-Garcia, M.R., Masri, S.F., Ghanem, R., Figueiredo, E. and Farrar, C.R. (2010), “An experimental 

investigation of change detection in uncertain chain-like systems”, J. Sound Vib., 329(12), 2395-2409. 

Hjelmstad, K.D., Banan, M.R. and Banan, M.R. (1995), “On building finite element models of structures 

from modal response”, Earthq. Eng. Struct. Dyn., 24, 53-67. 

Housner, G.W. et al. (1997), “Structural control: past, present, and future”, J. Engng. Mech., ASCE, 123(9), 

897-971. 

Ikeda, A., Minami, Y., Fujita, K. and Takewaki, I. (2014a), “Smart system identification of super high-rise 

buildings using limited vibration data during the 2011 Tohoku earthquake”, Int. J. High-Rise Build., 3(4), 

255-271. 

Ikeda, A., Fujita, K. and Takewaki, I. (2014b), “Story-wise system identification of shear building using 

ambient vibration data and ARX model”, Earthq. Struct., 7(6), 1093-1118. 

Inaudi, J.A and Kelly, J.M. (1995), “Linear hysteretic damping and the Hilbert transform”, J. Eng. Mech., 

ASCE, 121(5), 626-632. 

Ji, X., Fenves, G.L., Kajiwara, K. and Nakashima, M. (2011), “Seismic damage detection of a full-scale 

shaking table test structure”, J. Struct. Eng., ASCE, 137(1), 14-21. 

Johnson, E. and Wojtkiewicz, S. (2014), “Efficient sensitivity analysis of structures with local modifications. 

II: Transfer functions and spectral densities”, J. Eng. Mech., ASCE, 140(9), 04014068. 

Kuwabara, M., Yoshitomi, S. and Takewaki, I. (2013), “A new approach to system identification and damage 

detection of high-rise buildings”, Struct. Control Hlth. Monit., 20(5), 703-727. 

Lus, H., Betti, R., Yu, J. and De Angelis, M. (2004), “Investigation of a system identification methodology 

in the context of the ASCE benchmark problem”, J. Eng. Mech., ASCE, 130(1), 71-84. 

Masri, S.F., Nakamura, M., Chassiakos, A.G. and Caughey, T.K. (1996), “A neural network approach to the 

detection of changes in structural parameters”, J. Eng. Mech., ASCE, 122(4), 350-360. 

Mei, Q. and GülNovel, M. (2014), “Sensor clustering-based approach for simultaneous detection of stiffness 

and mass changes using output-only data”, J. Struct. Eng., ASCE, 140(10), 04014237. 

314



 

 

 

 

 

 

Influence of wind disturbance on smart stiffness identification of building structure... 

Minami, Y., Yoshitomi, S. and Takewaki, I. (2013), “System identification of super high-rise buildings using 

limited vibration data during the 2011 Tohoku (Japan) earthquake”, Struct. Control Hlth. Monit., 20(11), 

1317-1338. 

Nagarajaiah, S. and Basu, B. (2009), “Output only modal identification and structural damage detection 

using time frequency & wavelet techniques”, Earthq. Eng. Eng. Vib., 8(4), 583-605. 

Nashif, A.D., Jones, D.I.G. and Henderson, J.P. (1985), Vibration Damping, John Wiley & Sons. 

Safak, E. (1989), “Adaptive modeling, identification, and control of dynamic structural systems. I: Theory”, 

J. Eng. Mech., ASCE, 115(11), 2386-2405. 

Takewaki, I. and Nakamura, M. (2000), “Stiffness-damping simultaneous identification using limited 

earthquake records”, Earthq. Eng. Struct. Dyn., 29(8), 1219-1238. 

Takewaki, I. and Nakamura, M. (2005), “Stiffness-damping simultaneous identification under limited 

observation”, J. Eng. Mech., ASCE, 131(10), 1027-1035. 

Takewaki, I. and Nakamura, M. (2009), “Temporal variation of modal properties of a base-isolated building 

during an earthquake”, J. Zhejiang University-Sci. A, 11(1), 1-8. 

Takewaki, I., Nakamura, M. and Yoshitomi, S. (2011), System Identification for Structural Health 

Monitoring, WIT Press, UK. 

Udwadia, F., Sharma, D. and Shah, C. (1978), “Uniqueness of damping and stiffness distributions in the 

identification of soil and structural systems”, J. Appl. Mech., ASME, 45, 181-187. 

Yao, J.T.P. and Natke, H.G. (1994), “Damage detection and reliability evaluation of existing structures”, 

Struct. Saf., 15, 3-16. 

Zhang, D. and Johnson, E. (2012), “Substructure identification for shear structures: cross power spectral 

density method”, Smart Mater. Struct., 21(5), 055006. 

Zhang, D. and Johnson, E. (2013a), “Substructure identification for shear structures I: Substructure 

identification method”, Struct. Control Hlth. Monit., 20(5), 804-820. 

Zhang, D. and Johnson, E. (2013b), “Substructure identification for shear structures with nonstationary 

structural responses”, J. Eng. Mech., ASCE, 139(12), 1769-1779. 

 

 

CC 

315




