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Abstract.  In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is 

proposed. In order to introduce the size influences, the Eringen’s nonlocal elasticity theory is utilized. 

In addition, the theory considers both shear deformation and thickness stretching effects by a 

trigonometric variation of all displacements within the thickness, and respects the stress-free boundary 

conditions on the top and bottom surfaces of the plate without considering the shear correction factor. 

The advantage of this theory is that, in addition to considering the small scale and thickness stretching 

effects (εz≠0), the displacement field is modelled with only 5 unknowns as the first order shear 

deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale 

plates are illustrated, and the computed results are compared with the available solutions in the 

literature and finite element model using ABAQUS software package. The influences of the nonlocal 

parameter, shear deformation and thickness stretching on the vibration behaviors of the 

micro/nanoscale plates are examined. 
 

Keywords:  trigonometric shear deformation theory; nanoplates; nonlocal elasticity theory; navier solution; 

stretching effect; vibration 

 
 
1. Introduction 
 

Nanostructures have large kinds of applications due to their high mechanical, thermal, and 

electrical characteristics. These characteristics allow manufacture of small devices that were, 

previously impossible to realize. Recently, the nano-structures such as nanoplates, which are made 

from nano-materials, have shown significant potential applications in various fields of modern 
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nanotechnology (Kiani 2013a, Kiani 2013b). Nanoplates are being used in the fields of energy 

storage and conversion  (Ma et al. 2008), nano and electromechanical systems (Fritz et al. 2000), 

biological sensors (Yguerabide and Yguerabide 2001), solar cells (Aagesen and Sørensen 2008), 

sensors, actuators, switchers, ultra thin films (Ma and Clarke 1995), and nanovehicle transporters 

(Kiani 2011b, Kiani 2011c). 

Two approaches are employed for mechanical investigation of nanostructures, the molecular 

dynamic model and continuum models. It has been confirmed in several works that continuum 

models can be utilized effectively for investigating of nanostructures (Reddy and Pang 2008, 

Benzair et al. 2008, Heireche et al. 2008, Aghababaei and Reddy 2009, Amara et al. 2010, 

Janghorban and Zare 2011, Janghorban (2012), Nami and Janghorban 2013, Nami and Janghorban 

2015, Berrabah et al. 2013, Benguediab et al. 2014, Besseghier et al. 2015, Larbi Chaht et al. 

2015, Zemri et al. 2015, Adda Bedia et al. 2015, Aissani et al. 2015).  

All these studies were carried out in the context of the nonlocal continuum theory of Eringen 

(Eringen and Edelen 1972, Eringen 1983). According to this theory, the state of the stress at a point 

of a nanostructure does not only depend on the stress state of that point but also on the stresses of 

other points (Kiani 2015, Tounsi et al. 2013abc). Such a dependency is incorporated into the 

constitutive equations of the nanostructure through a so-called small-scale parameter, commonly 

presented by e0a. Choice of e0a (in dimension of length) is crucial to ensure the validity of 

nonlocal models. This parameter was determined by matching the dispersion curves based on the 

atomic models (Eringen and Edelen 1972, Eringen 1983). For a specific material, the 

corresponding nonlocal parameter can be estimated by fitting the results of atomic lattice dynamic 

and experiment (Aksencer and Aydogdu 2011). There are several studies that deal with the 

magnitude of the small-scale parameter for the problems of nanoplates (Malekzadeh et al. 2011, 

Zhang et al. 2015, Belkorissat et al. 2015). 

Recently, considerable interests have been devoted to experimental and theoretical works of the 

mechanical response of nanoscale structures. Since, controlling the experimental conditions is not 

evident for nanoscale structures, theoretical models become necessary. 

Liu and Rajapakse (2010) presented a general model incorporating surface energy for the 

investigation of the response of nano-beams with arbitrary cross sections. Based on Timoshenko 

beam model, Wang and Feng (2009) discussed the stability and vibration of nano-wires. Phadikar 

and Pradhan (2010) presented finite element formulations for non-local elastic Euler–Bernoulli 

beams and Kirchoff plates. They employed non-local differential elasticity theory and the Galerkin 

finite-element method. By using the generalized Kirchhoff and Mindlin plate theory. Nami and 

Janghorban (2014) presented the strain gradient elasticity formulation and the non local elasticity 

theory for analysis the resonance behaviors of functionally graded rectangular micro/nano plates 

using Kirchhoff plate theory. Lu et al. (2006) investigated the influence of other surface 

characteristics and explained the size-dependent mechanical response of nano-plates. Sheng et al 

(2010) studied the 3D elasticity of nano-plates, incorporating their surface characteristics, by 

employing the theory of laminated structures. By employing the non-local continuum theory, 

(Murmu and Pradhan 2009, Murmu and Pradhan 2010) analyzed the vibration behavior of nano-

plates by use of non-local continuum theory. Murmu and Adhikari (2011) presented an analytical 

formulation to compute the natural frequencies of the non-local double-nanoplate system. They 

obtained explicit closed-form expressions for natural frequencies for the case in which all four 

ends are simply supported. Kiani (2011a) studied the small scale effect on the vibration response 

of elastic thin nano-plates subjected to a moving nano-particle. Mohammadi et al. (2013) analyzed 

the free vibration response of circular and annular graphene sheet by employing the non-local 
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elasticity theory. Huang (2008) investigated size-dependent bending, buckling, and vibration of 

nano-plates by employing the non-linear Kirchhoff plate theory and Von-Karman non-linearity 

assumptions. By using the non-local plate model, Babaei and Shahidi (2010) discussed the 

buckling behavior of the quadrilateral nano-plates. Pradhan and Murmu (2009) studied the 

stability of rectangular single-layered graphene sheets (SLGSs) under biaxial compression by use 

of the non-local elasticity. Sobhy (2014) investigated the free vibration, mechanical buckling and 

thermal buckling analyses of multi-layered graphene sheets (MLGSs) by the use of new non-local 

two-variable plate theories.  

Due to the widespread employ of micro/nano-plates in micro/nano-electro-mechanical systems 

(MEMS/NEMS) components, mechanical behavior of them is of a considerable interest. Recently, 

new quasi-3D shear deformations theories were developed (Belabed et al. 2014, Bessaim et al. 

2013, Bourada et al. 2015) and to the best of authors’ knowledge, most of these theories have not 

been employed for studying nanostructures yet. So it may be useful to develop a new model based 

on one of these new theories for micro/nano-plates. In the work discussed in this research, the free 

vibration behavior of micro/nano-plates is studied on the basis of quasi-3D trigonometric plate 

theory in conjunction with Eringen’s nonlocal elasticity theory. The displacement field is proposed 

based on a trigonometric variation of in-plane and transverse displacements through the thickness. 

By partitioning the deflection into the bending, shear and thickness stretching parts, the number of 

unknowns of the theory is reduced, thus saving computational time. Equations of motion are 

obtained from Hamilton’s principle based on the nonlocal constitutive expressions of Eringen. 

Analytical solutions for natural frequency are determined for simply supported plates, and the 

computed results are compared with the existing solutions and finite element model using 

ABAQUS software package to check the accuracy of the present model. 

 

 

2. Nonlocal plate model 
 

2.1 Kinematics 

 

A rectangular nano-plate (length a, width b and thickness h) is considered with coordinates x, y 

along the in-plane directions and z along the thickness direction. The plane z=0 coincident with the 

mid-surface of the nanoplates. The plate is made of isotropic material. The displacement field of 

the present theory is chosen based on the following assumptions (Hamidi et al. 2015, Bennai et al. 

2015, Bousahla et al. 2014, Fekrar et al. 2014, Hebali et al. 2014, Zidi et al. 2014, Tounsi et al. 

2013d, Houari et al. 2013) : (1) The transverse displacement is composed by a three parts namely: 

the bending, shear and thickness stretching components; (2) the in-plane displacement is divided 

into extension, bending and shear components; (3) the bending parts of the in-plane displacements 

are similar to those given by classical plate theory (CPT); and (4) the shear parts of the in-plane 

displacements give rise to the trigonometric variations of shear strains and hence to shear stresses 

through the thickness of the plate in such a way that the shear stresses vanish on the top and 

bottom surfaces of the plate. Based on these assumptions, the following displacement field 

relations can be obtained 
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(1) 

where u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 

mid-plane of the plate; wb and ws 
are the bending and shear components of the transverse 

displacement, respectively; and the additional component displacement θ due to the normal stress 

(stretching effect).  

In this study, the shape functions f(z) and g(z) are chosen based on the trigonometric function as 
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


































































s
xy

s
y

s
x

b
xy

b
y

b
x

xy

y

x

xy

y

x

k

k

k

zf

k

k

k

z )(
0

0

0













,  

















0

0

)(
xz

yz

xz

yz
zg








,  0 )(' zz zg     (3) 

where 





























































x

v

y

u
x

v
x

u

xy

y

x

00

0

0

0

0

0







, 





























































yx

w

y

w
x

w

k

k

k

b

b

b

b
xy

b
y

b
x

2

2

2

2

2

2

, 





























































yx

w

y

w
x

w

k

k

k

s

s

s

s
xy

s
y

s
x

2

2

2

2

2

2

, 














































xx

w

yy

w

s

s

xz

yz








0

0

,  0
z

(4a)
 

and 

        dz

zdg
zg

)(
)('   (4b)

 

 
2.2 Equations of motion 

 
The Hamilton’s principle is utilized for the free vibration problem of nanoscale plate. The 

Hamilton’s principle is expressed as (Mahi et al. 2015, Al-Basyouni et al. 2015, Ait Yahia et al. 

2015, Ait Amar Meziane et al. 2014, Draiche et al. 2014, Ould Larbi et al. 2013, Benachour et al. 

2011, El Meiche et al. 2011) 

        

  

T

dtKU

0

  0   (5)
 

where δU is the virtual strain energy; and δk is the virtual kinetic energy.  
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The virtual strain energy of the plate is expressed as 
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where AA is the top surface and the stress resultants N, M, and Q are defined by 
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The virtual kinetic energy of the plate can be written as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 

and (I0, I1, J1, I2, J2, K2) are mass inertias defined as  
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Substituting the Eqs. (6), and (8) into Eq. (5) and integrating by parts, and collecting the 
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coefficients of δu0, δv0, δwb, δws and δθ, the following equations of motion of the plate are 

obtained 
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2.3 Constitutive relations 

 
The nonlocal theory considers that the stress at a point is related not only on the strain at that 

point but also on strains at all other points of the body. Such dependencies are related to the inter-

atomic bonds between an atom and its neighboring atoms (Kiani 2013b). According to the 

nonlocal continuum theory (Eringen and Edelen 1972, Eringen 1983), the nonlocal stress tensor ζ 

at a point is expressed as 

          21  (11) 

where 
2 

is the Laplacian operator in two-dimensional Cartesian coordinate system; η is the 

classical stress tensor at a point related to the strain by the Hooke’s law; and μ=(e0a)
2

 
is the 

nonlocal parameter which includes the small scale effect, a is the internal characteristic length and 

e0 is a constant appropriate to each material. 

For an isotropic micro/nanoscale plate, the nonlocal constitutive relation in Eq. (11) takes the 

following forms. 
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where Cij are the three-dimensional elastic constants given by 
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  E and ν are the elastic modulus and Poisson’s ratio, respectively. By utilizing Eqs. (3), (13) and 

(7), the stress resultants can be written in terms of displacements as 
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where the stiffness coefficients Aij and Bij,… etc., are defined as 
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2.4 Equations of motion in terms of displacements 

 

The nonlocal equations of motion of the present formulation can be written in terms of 

generalized displacements (u0, v0, wb, ws and θ) by using the linear differential operator (1−μ
2
) on 

Eq. (10) 
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(17e) 

It is observed from Eq. (17) that the in-plane displacements (u0, v0) are uncoupled from the 

transverse displacements (wb, ws and θ). Thus, the equations of motion for the transverse response 

of the plate are reduced to Eqs. (17c)-(17e). 

 

 

3. Analytical solution of simply supported nanoplate 
 

In this work, we are concerned with the exact solutions of Eq. (17) for a simply supported 

nanoplate. The following boundary conditions are imposed at the side edges 
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Following the Navier solution procedure, we assume the following solution form for wb, ws and 

θ that satisfies the boundary conditions given in Eq. (18) 
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where Wbmn, Wsmn 
and Φmn are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with (m, n)th eigenmode, and α=mπ/a and β=nπ/b. 

  Substituting Eq. (19) into Eq. (17), the analytical solutions can be obtained from 
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4. Validation and comparison of results 
 

In this section, the accuracy of the presented quasi-3D trigonometric plate theory for the free 

vibration of the nanoplates is demonstrated by comparing the analytical solution with those of 

other available results in the literature. In addition, the influences of the nonlocal parameter, shear 

deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are 

investigated. 

As a first example, in Table 1, a comparison of the first non-dimensional natural frequency 

parameters ̂   is carried out for the isotropic rectangular plate (μ=0), with the solution of Liew 

et al. (1993) and Alibeigloo (2011). It can be observed that the results of the three-dimensional 

Ritz method developed by Liew et al. (1993) and the three-dimensional elasticity solutions 

developed by Alibeigloo (2011) are in a good agreement with the present results of quasi-3D 

trigonometric plate theory.  

In the second example, the validation of the solution of the proposed quasi-3D trigonometric 

plate model is carried out by comparing the obtained results with those computed via finite 

element model using ABAQUS software package with considering the mesh convergence study to 

optimize the results. The FEM solution of abaqus software is obtained by using “S4R” shell 

elements. 

The analysis of a FEM using ABAQUS software package was performed and results are 

tabulated in Table 2 and plotted in Fig. 1. The following parameters are used for numerical 

computations: a=10h, E=1, v=0.3, ρ=1. As clearly shown in Table 2 and Fig. 1, the convergence  
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Table 1 Comparison of dimensionless first natural frequency   Dha  22ˆ 
 

of the isotropic 

rectangular plate, μ=0, (D=Eh
3
/12(1−v

2
)), (a/b=1.5) 

Theory 
a/h

 

5/2 10/3 5 10 100 

3D Ritz method 

Liew et al. (1993) 
1.0954 1.2088 1.3209 1.4096 1.444 

Elasticity 3D 

Alibeigloo (2011) 
1.0940 1.2075 1.3200 1.4096 1.444 

Present (εz≠0) 1.0996 1.2122 1.3237 1.4120 1.446 

 
Table 2 Number of elements used to achieve optimum mesh for isotropic plates “S4R” 

Approximate Global Size Number of Mesh Frequency Gh   1111   

0.2 50×50 0.089425 

0.1 100×100 0.089390 

0.05 200×200 0.089381 

0.04 250×250 0.089380 

0.025 400×400 0.089380 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The natural frequency against mesh number «S4R» 

 

 

begins from 50×50 mesh number with highest non-dimensional frequency 0.089425 and fully 

converges at 400×400 with lowest non-dimensional frequency 0.089380, but 250×250 mesh 

number with lowest non-dimensional frequency 0.089380 was chosen for the comparison, in order 

to reduce the number of nodes and elements in the analyses. 

The dimensionless natural frequencies corresponding to different quasi-3D vibration modes are 

provided for isotropic square plates. For the modes (m, n), the integers m and n denote the number 

of half-waves in the x and y directions, respectively. The comparison of the dimensionless 

frequencies of isotropic square plates for three different planar half-wave numbers (i.e., m and n) 

are presented in Tables 3. The dimensionless natural frequencies   obtained by the finite 

element model are approximately equal to those of the present quasi-3D trigonometric plate model     
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Table 3 Natural frequencies Gh     of an isotropic plate with v=0.3, a/h=10
 
and a/b=1 

(m, n) Present εz=0 Present εz≠0 Abaqus FEM Error (%) 

(1,1) 0.0930 0.0931 0.08938 4,16 

(1,2) or (2,1) 0.2220 0.2226 0.21678 2,68 

(2,2) 0.3406 0.3421 0.32894 4,00 

 

Table 4 Non-dimensional first mode frequency Gh  
 

of simply supported square plate (a=10, 

E=30×10
6
, v=0.3, ρ=1) 

μ (nm
2
)
 

 
Aghababaei and Reddy 

(2009): TSDT 

Lee et al. (2012): 

TSDT 

Present without 

Stretching effect (εz=0) 

Present Stretching effect 

(εz≠0) 

0 0.0935 0.0930 0.0930 0.0933 

1 0.0854 0.0850 0.0850 0.0853 

2 0.0791 0.0788 0.0788 0.0790 

3 0.0741 0.0737 0.0737 0.0740 

4 0.0699 0.0695 0.0695 0.0698 

5 0.0663 0.0660 0.0660 0.0662 

 

 

(Table 3).  

  The measurement of a “relative error” is defined by the relationship 

 
 

%100% 



m

mc

M

MM
error

                        

(22) 

  Where Mm is the natural frequencies given by the discrete finite element model, and Mc that of 

present quasi-3D trigonometric plate theory. The errors can be seen in Table 3. It is observed that 

the present quasi-3D trigonometric plate theory is in a good agreement with the finite element 

solution. 

  To illustrate the influence of nonlocal parameter μ on the vibration response of the nanoplates, 

the non-dimensional natural frequency parameters are computed and compared with the solution 

of Aghababaei and Reddy (2009) and Lee et al. (2012) using the third shear deformation plates 

theory (TSDT) with respect to various non-local parameters. The following parameters are 

employed to obtain the numerical values: a=10h, E=30×10
6
, v=0.3, ρ=1. The non-dimensional 

frequencies   of a simply supported nanoplates are presented in Tables 4 for various values of 

the small scale parameter μ. A good agreement is demonstrated between the present results and 

those of Aghababaei and Reddy (2009) and those of Lee et al. (2012) and this whatever the value 

of the nonlocal parameter μ. Since the quasi-3D model of the present formulation includes the 

thickness stretching effect, the non-dimensional natural frequency parameters are slightly raised 

with respect to other frequencies documented in Table 4. Thus, the inclusion of thickness 

stretching effect makes the nanoplate stiffer. 

In the next example, the nondimensional natural frequency parameters 


 of a simply 

supported nanoplate are presented in Table 5 for various values of thickness ratio a/h and scale 

parameter μ. For this end, the geometric and the material properties of nanoplates are taken as 

E=1.02 TPa, v=0.16 and ρ=2.250 kg/m
3
. A value of h=0.34 nm is assumed for the thickness of 

SLGS (Kitipornchai et al. 2005). For the FSDT solutions the shear correction factor k=5/6 is  
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Table 5 Nondimensional fundamental frequency 


of simply supported square plates (h=0.34 nm, E=1.02 

TPa, ρ=2.250 kg/m
3
, v=0.16) 

(a/h)
  nm  

Frequency   Eha  2
  

FSDT TSDT Present (εz=0) Present (εz≠0) 

5 

0 5.1759 5.1767 5.1774 5.1897 

0.5 3.1456 3.1461 3.1465 3.1539 

1 1.8497 1.8500 1.8502 1.8546 

1.5 1.2794 1.2795 1.2797 1.2828 

2 0.9726 0.9726 0.9729 0.9752 

10 

0 5.5997 5.599 5.5999 5.6050 

0.5 4.6878 4.6878 4.6880 4.6922 

1 3.4031 3.4031 3.4032 3.4063 

1.5 2.5448 2.5448 2.5449 2.5472 

2 2.0011 2.0011 2.0012 2.0030 

20 

0 5.7275 5.7275 5.7275 5.7300 

0.5 5.4444 5.4443 5.4444 5.4468 

1 4.7948 4.7948 4.7948 4.7969 

1.5 4.0906 4.0905 4.0906 4.0924 

2 3.4808 3.4808 3.4808 3.4823 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The variation of non-dimensional natural frequency parameters 


 against the nonlocal 

parameter with different the aspect of thickness ratio (a/h) of the simply supported square nanoplates 

 

 

adopted. It can be seen that the results of present theory without the thickness stretching (i.e., εz=0) 

are in excellent agreement with those predicted by (TSDT) and (FSDT) for all values of scale 

parameter even, for of nanoplates having different thickness ratios a/h. The inclusion of thickness 

stretching effect (i.e., εz≠0) leads to an increase in frequency. 

In general, it can be concluded from Tables 4-5 that the inclusion of thickness stretching effect 

(i.e., εz≠0) makes a beam stiffer, and hence, leads to increase of frequency. This effect is 

considerable for deep nanoplates. Furthermore, the local theory overestimates the natural  
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Fig. 3 The variation of non-dimensional natural frequency parameters 


 against the nonlocal 

parameterwith different the aspect of ratio (a/b) of the simply supported square nanoplates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The variation of non-dimensional natural frequency parameters 


 against the aspect of 

thickness ratio (a/h) with different nonlocal parameter of the simply supported square nanoplates 

 

 

frequencies of the nanoplates compared to the nonlocal one, and the difference between local and 

nonlocal theories is significant for high value of the scale parameter. This is due to the fact that the 

local theory is unable to capture the small scale effect of the nanoplates. 

The effects of the nonlocal parameter together with the influence of aspect thickness ratio on 

the first nondimensional natural frequency parameters 


 of the simply supported square 

nanoplates are shown in Fig. 2. It can be seen that the first nondimensional natural frequency 

parameters decrease monotonically by increasing the nonlocal parameter. 

The impacts of aspect ratio (a/b) in conjunction with the nonlocal parameter on non-

dimensional natural frequency parameters of the nanoplates are displayed in Fig. 3. The results 

show that increasing the aspect ratio, the non-dimensional natural frequency parameters of the 

nanoplates reduces. This is due to the reduction in the stiffness of the nanoplates. In addition, it is 


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found that the non-dimensional natural frequency parameters decrease with increase of the 

nonlocal parameter for all aspect ratio considered. For smaller aspect ratios of the nanoplates, the 

non-dimensional natural frequency parameters decrease in a linear way with nonlocal parameter.     

However, for higher aspect ratios of the nanoplates, the variation of the non-dimensional natural 

frequency parameters is smoother and follows a slightly nonlinear way with nonlocal parameter. 

The influence of the aspect thickness ratio (a/h) and the nonlocal parameter on the non-

dimensional natural frequency parameters is shown in Fig. 4 for a square plate. It can be seen that 

as the aspect of thickness ratio (a/h) of the plate increases, the fundamental frequency tends to 

increase. And as nonlocal parameter decreases, the fundamental frequency increases. 

 
 
5. Conclusions 
 

A quasi-3D trigonometric plate theory for micro/nanoscale plates is developed for the vibration 

of nanoplates. The present model is capable of capturing small scale, shear deformation and 

thickness stretching effects of nanoplates, and satisfies the zero traction boundary conditions on 

the top and bottom surfaces of the nanoplates without considering the shear correction factor. 

Based on the nonlocal differential constitutive relation of Eringen, the nonlocal equations of 

motion of the proposed theory are derived from Hamilton’s principle. Results show that the 

inclusion of thickness stretching effect (εz≠0) makes a nanoplates stiffer, and hence, leads to 

increase of the natural frequency. However, it is observed that the inclusion of the small scale and 

shear deformation effects lead to a reduction of the natural frequencies of nanoplates. This work is 

expected to be useful to design and analyze the vibration responses of nanoscale physical devices. 

The formulation lends itself particularly well to functionally graded plates (Khalfi et al. 2014), free 

vibration response of a single-layer graphene sheet embedded in an elastic medium (Samaei et al. 

2014), and also combining surface effects and non-local plate theories on the buckling and 

vibration of nanoplates (Karimi et al. 2015), which will be considered in the near future. 
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