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Abstract.  A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) 

algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good 

robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection 

mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. 

Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective 

function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are 

studied to investigate the efficiency and correctness of the proposed method. The simulation results show 

that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary 

algorithms, even with noise corruption. 
 

Keywords:  damage detection; Chaotic Artificial Bee Colony algorithm; modal assurance criteria; coupled 

double-beam system 

 
 
1. Introduction 
 

Inspection of the structural components for damage is important for making decision on the 

maintenance program of the structure. Over the past few decades, vibration-based structural 

damage identification methods on the basis of the changes in modal parameters (such as natural 

frequencies, mode shapes, etc.) have been developed (Cawley and Adams 1979, Rizos et al. 1990, 

Pandy et al. 1991, Ratcliffe 1997, Hassiotis 1999). Shi and Law (1998) employed the modal strain 

energy and flexibility to identify damage location and severity. He and Zhu (2015) presented an 

adaptive-scale damage detection strategy based on a wavelet finite element model for thin plate 

structure. Li et al. (2015) applied vibration measurements and power spectral density to assess 

damage in shear connectors. 

Structural damage identification problem can also be formulated as an optimization problem in 

which an objective function, for example the error between the actual measured structural response 

and the estimated response of a model, is defined. The parameters of such models are obtained by 

optimizing (Usually to maximize or to minimize) the objective function (Franco 2004). Variety 

intelligence optimization methods were utilized to solve the problem. Wu et al. (1992) adopted BP 
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Neural network to solve the damage detection of a three-layer shear frame structure. Mares and 
Surace (1996) used residual force and genetic algorithm to estimate the structural damage, while 
Wang (2009) developed a hybrid genetic algorithm with the Gauss-Newton method, to identify 
both linear and nonlinear structural system. Dimou (2010) applied an enhanced particle swarm 
optimization to the identification of Bouc-Wen hysteretic systems. The works done by Tang et 
al.(2008) exhibit that the differential evolution algorithm performs well in parameter identification 
of structural systems with and without pollution. Franco et al. (2004) also presented a parameter 
estimation technique based on evolutionary strategy algorithm for parametric identification. All 
these methods have generally achieved satisfactory results in solving the multi-modal optimization 
problem in structural damage detection. 

Apart from the above mentioned heuristic algorithms, Artificial Bee Colony (ABC) algorithm 
is another swarm intelligence technique, which was proposed by Karaboga (2005) to solve 
numerical optimization problems. This algorithm is motivated by the bee colony’s behavior of 
seeking high quality food source. ABC is a population based stochastic algorithm with 
implementation simplicity because the only common control parameters are the colony size and 
termination condition. It has the benefits of simple structure, ease of use, and high stability. 
Meanwhile, compared with genetic algorithm, particle swarm optimization, differential evolution 
algorithm and particle swarm inspired evolutionary algorithm (PS-EA), the global optimal ability 
of the ABC is more excellent and competitive (Karaboga and Basturk 2009). Recently, several 
researchers have extended the application of ABC to the civil engineering. Kang et al. (2009) 
constructed a hybrid algorithm combining Nelder-Mead simplex method and ABC to solve the 
inverse problems in concrete dam structures. Sonmez (2011) combined ABC with an adaptive 
penalty function approach to minimize the weight of truss structures with both continuous and 
discrete variables. Omkar et al. (2011) developed a generic model for multi-objective design 
optimization of laminated composite components based on Vector Evaluated ABC. Sun et al. 
(2013) introduced a non-linear factor for convergence control to the ABC algorithm and used the 
modified ABC to solve structural parameter identification problem. Ghashochi-Bargh and Sadr 
(2014) also presented a kind of elitist-ABC algorithm for optimization of smart FML panels. 

In this study, the ABC algorithm is employed to deal with the structural damage detection 
problem based on modal parameters, that is, the residual of frequencies and modal assurance 
criteria (MAC) are used to form the objective function. However, similar with other swarm 
intelligence algorithm, the convergence rate of ABC is slow at latter iteration (Gao et al. 2013). In 
order to develop a more powerful optimization technique, some improvements are made on the 
original ABC algorithm, in which the tournament selection strategy is adopted instead of roulette 
wheel to enhance global search capability of the algorithm, and the chaotic search mechanism is 
introduced to the scout bee phase to improve the global search capability further. The performance 
of the improved algorithm is illustrated in two kinds of structures, i.e., a simple supported beam 
system and a coupled beam system. Final results show that the proposed ABC can acquire a better 
identified results compared with ABC and other evolutionary algorithm, even with noise pollution. 
 
 
2. Mathematical model 
 

2.1 Parameterization of damage 
 
After finite element discretization, modal parameters of a structural system can be obtained  
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Fig. 1 The process of damage detection as an optimization problem 
 
 

from the eigenvalue equation 

0)( 2  ii ΦMK                               (1) 

where K and M are the global stiffness and mass matrices, respectively. ωi is the ith natural 
frequency and Фi is the associated mode shape. 

According to continuum damage mechanics, damage can be expressed through a scalar variable 
αi with value between 0 and 1 (Perera and Ruiz 2008). αi=0 represents the i th element is intact 
while αi=1 indicates that it is completely damaged. The global stiffness matrix Kd of the damaged 
structure can be expressed as 

                  i
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                            (2) 

where kei denotes the ith elemental stiffness matrix and nel denotes the total number of finite 
elements. 
 

2.2 Objective function based on the vibration data 
 
Structural damage will lead to changes of natural frequencies and mode shapes of the structure, 

on the other hand, we can use these modal data to formulate the objective function for damage 
identification. Usually, the residual of natural frequencies and modal assurance criterion (MAC) 
are used to establish the objective function 
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where wωi is a weight factor corresponds to ith natural frequency, while wФi corresponding to ith  
MAC. C

iΦ and M
iΦ are the ith calculated and measured mode shapes. NF and NM are the numbers 

of natural frequencies and mode shapes used in calculation, respectively. It should be pointed out 
that the calculated natural frequency C

i and mode shape C
iΦ  are related to damage parameters  

[α1, α2... αnel]. In the inverse problem, the damage vector is identified to indicate the damage extent 
of structure. In this study, for simplicity, all the factor values are taken as 1. Meanwhile Fig. 1 
presents the process of damage detection as an optimization problem.  
 
 
3. Algorithm for damage detection 
 

3.1 Artificial Bee Colony algorithm 
     

The bees colony are divided in three groups when they commence to find food. The first group 
contains employed bees. These bees have a food source position in their mind when they leave 
from the hive and they share the information (including the quality and quantity about the food 
resource) on the dancing area in the hive. Some of the bees watch the dances of the employed bees 
and then decide the food source to exploit. This group of the bees named onlookers. In the 
algorithm, onlookers select the food sources in a probability that corresponding to the qualities of 
the food sources. After onlookers choosing the food source, then they will become the employed 
bees, going to the selected food source and exploiting the better source in the neighborhood around 
the destination. If they find a better place, they will give up the primary selected place (“greedy 
selection rule”). The last bee group is called scout bees. Regardless of any information of other 
bees, a scout finds a new food source and start to consume it, then it continues its work as an 
employed bee. Hence, while the known resources are consuming, at the same time exploration of 
the new food sources is provided. At the beginning of the search (initialization phase), all 
employed bees start with random food sources, in further cycles, when the food sources are 
abandoned, the employed bee related to the abandoned resource becomes a scout. In the algorithm, 
a parameter, limit is used to control the abandonment problem of the food sources. For every 
solution, the trial number of improvement is taken, in each cycle of the solution which has the 
maximum trial number and its trial number is compared with the parameter limit. If the limit value 
is reached, this solution is considered fully exploited and continues with a randomly produced new 
solution. 

In ABC algorithm, a food source position is defined as a possible solution and the nectar 
quality of the food source matches the fitness of the related solution in optimization process. 
Because each employed bee is associated with only one food source, the number of employed bees 
is equal to the number of food sources. 

The general structure of algorithm is introduced as follows. 
 

Initialization phase 
Location of a food source, xm, is expressed as Eq. (6) in a random way 
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))(1,0(, iiiim lurandlx                           (6) 

where m is an arbitrarily solution in the search space and ui, li represent the upper bound and lower 
bound of the parameter xm,i respectively. 
 

Employed bees phase 
The scope of the employed bee is to find a better food source in the neighbor-hood of the food 

source (xm). It leaves the hive and finds the target point, beginning the food exploitation. Eq. (7) is 
used to simulate its behavior 

)( ,,,,, ikimimimim xxxV                             (7) 

where xk is a food source, φm,i is a random number in [−1, 1] and i is a randomly chosen dimension. 
After producing a new candidate source, Eq. (8) is adopted to calculate the fitness of the food 
source (the solution xm as an example), given as below 

))(1(1)( mm xfxfit                             (8) 

After acquiring the fitness, the “greedy selection rule” is applied between xm and Vm. 
 
Onlooker bees phase 
The employed bees return home and share their food source information with the onlooker 

bees. They select the food source to exploit relying on the probability value pm (roulette selection 
strategy) 

)()(
1 


SN

m mmm xfitxfitp                           (9) 

where SN denotes the number of employed bees. (The quantity of employed bees is the half of the 
initial colony size.) After selecting a food source, onlooker bees will fly there to exploit a better 
food source. In the original ABC algorithm, the behavior is simulated by Eq. (7). Then fitness 
value is calculated applying the greedy selection to produce better food source. 

 
Scout bees phase 
At the end of every cycle, the trial counters of all solutions are examined. Abandonment of the 

solution is determined as follows. If the solution couldn’t improve after limit times, the solution is 
abandoned and Eq. (6) is used to produce a new food source to replace the abandoned one. The 
limit parameter is given as in (Karaboga and Busturk 2009) 

 
2

DCS
l


                                (10) 

where D is the dimension of the problems, CS is the initial colony size. 
 
3.2 Chaotic Artificial Bee Colony Algorithm 
 
3.2.1 Tournament selection strategy 
The Tournament Selection Strategy is adopted instead of roulette wheel to enhance the global 
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search ability. The Tournament Selection Strategy first makes the two comparisons of the fitness of 
each solution (including comparing with itself, that is, the worst solution can acquire at least one 
point), the bigger one will get one point, then finish comparison, each solution xm will acquire its 
total point am and such total points will be used to calculate the selection probability based on Eq. 
(14).  

                         SN

m mmm aap
1

                            (14) 

where am denotes the total points of a solution xm, compared with the roulette wheel, this strategy 
ensures that all solutions have a finite probability of selection, so those solutions with big fitness 
values do not overwhelm the search strategy. Thus the global search ability of algorithm is 
enhanced. 
 

3.2.2 Chaotic search mechanism 
Chaos is a kind of characteristic of non-linear systems, which is a bounded unstable dynamic 

behavior that exhibits sensitive dependence on initial conditions and includes infinite unstable 
periodic motions. It should be distinguished here so-called random and chaotic motions. The 
former is reserved for problems in which one really does not know the input forces or one only 
knows some statistical measures of the parameters, while chaotic has its own characteristics, such 
as randomness, ergodicity (chaos can traverse all states nonreduntant within limit), regularity 
(chaos comes from some ascertained iteration). Among these characters, ergodicity can be utilized 
as an effective way to help the algorithm to get rid of trapping local minima (Tavazoei and Haeri 
2007). Based on this property, Liu et al. (2005) improved the PSO combined with chaos and 
acquired a more satisfied result, compared with the standard PSO algorithm. Meanwhile, Yuan et 
al. (2002) also incorporated chaos into the GA to construct a hybrid chaotic genetic algorithm, 
which can overcome premature and increase the convergence speed. In this study, chaotic search 
mechanism is introduced to the scout bees phase. Because in scout phase, as mentioned above, if 
the solution couldn’t improve after limit times, the solution is abandoned. However, for the 
abandoned solution, also the solution trapped in the local minima use to produce chaotic sequence 
and the best solution will be replaced the original solution (will be abandoned) in CABC. Via such 
change, the solution ceased exploitation (will be abandoned) can continue to local search, which 
can increase the convergence rate and accuracy of the algorithm. 

The chaotic sequence can usually be produced by the following well-known one-dimensional 
logistic map defined by 

                   ,...2,1,0),1,0(),1(1  kZZZZ kkkk                  (15) 

where Zk is the value of the variable Z at the kth iteration, for certain values of the parameter μ, of 
which μ=4 is one, the above system exhibits chaotic behavior. 

Supposing the ceased solution is xk=(xk1, xk2,...xkD), xk,i∈[li, ui]. First, map the xk into the 

domain of Logistic equation and obtain )......,( 000
2

0
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0
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Fig. 2 The flow chat of the ABC and the CABC algorithm 

 
 

Second, Eq. (15) is utilized to generate chaotic sequence n
kZ  ( max,...,2,1 Cn  , maxC  

denotes the maximum cycle number of the chaotic local search). Third, transfer the chaotic 
sequence into the original search space by inverse map based on Eq. (17), given below 

                            n
kiiiiki Zlulx  )('                             (17) 

After acquiring ),...,,( ''
2

'
1 kDkk xxx'

kx , calculate its fitness and the “greedy selection rule” is 
applied between xk and '

kx . Finally, repeat the chaotic local search process until meet the Cmax. 
The flow chat of the ABC algorithm and the CABC algorithm is shown in Fig. 2.  

1229



 
 
 
 
 
 

H.J. Xu, Z.H. Ding, Z.R. Lu and J.K. Liu 

 
Fig. 3 The simply supported beam (Kang et al. 2012) 
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Fig. 4(a) The evolution process of the objective function of the supported beam (Nil) 

 
 
4. Numerical simulations 

 
4.1 A simply supported beam 
 
In order to make comparison with other methods, the simply supported beam studied by Kang 

et al. (2012), shown in Fig. 3, is adopted to verify the effectiveness of the proposed algorithms. 
The total numbers of elements and nodes are 20 and 21. The basic material parameters are: 
Young’s modulus E=70 GPa, ρ=2700 kg/m3, cross section area A=3×10-4 m2, Poisson’s ratio μ=0.3. 
The same damage case is introduced, assuming that element 2 and 9 has 10% reduction in Young’s 
modulus while element 16 has 15% reduction in Young’s modulus. That means α2=0.1, α9=0.1 and 
α16=0.15. For the original ABC and CABC algorithms, the colony size is 40 and maximum cycle 
number is 200. Meanwhile, for the CABC, the maximum chaotic local search number is taken as 
10. The first three frequencies and associated mode shapes are applied in the identification, which 
are the same as Kang et al. (2012). Moreover, to ensure fairness in comparison of the robustness of 
the examined algorithms, for each problem the analysis is repeated 10 times with a different initial 
random seed. The averages are presented in graphical form. Fig. 4(a) presents the evolution 
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Fig. 4(b) The evolution process of the damage parameters based on CABC (Nil) 
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Fig. 4(c) The final results of the simply supported beam case 

 
 

process of the objective function of the best solution based on the mentioned techniques, it is 
observed that the objective function value from CABC algorithm is closer to zero, indicating that 
the identified results from CABC algorithm are closer to the true damage extents. From Fig. 4(b),  
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Fig. 5 The coupled-beam system 

 
Table 1 The natural frequencies of the coupled double-beam system (Hz) 

Mode Order Strongly coupled beam Weakly coupled beam 

1st 72.4 72.4 
2nd 289.7 88.4 
3th 652.2 289.7 
4th 1160.7 294.1 
5th 1817.7 652.2 
6th 2627.9 654.1 

 
 
it can be seen that the damage parameters of element 2, element 9, element 16 quickly converge to 
0.09972, 0.09995 and 0.14897, which is very close to the assumed value and more competitive 
than those obtained by ABC. Moreover, the result is also better than those acquired by genetic 
algorithm, differential evolution algorithm, particle swarm optimization, and immunity enhanced 
particle swarm optimization (0.09958, 0.09989 and 0.14734) (Kang et al. 2012). To include the 
uncertainty in the measured data and to study the sensitivity of proposed method to noise, 1% 
uniformly distributed random noise is added to the natural frequencies and 10% uniformly 
distributed random noise is added to the mode shapes (Kang et al. 2012). In this scenario, the 
maximum error acquired by CABC is 4.35%, occurring in 15th element, however, the immunity 
enhanced particle swarm optimization obtained the maximum error is over 10%, which can 
sufficiently the better robustness of CABC. Final results are presented in Fig. 4(c). 

 
4.2 A coupled-beam system 
 
The coupled beam system is employed as the second simulation example and the initial 

geometry of the coupled beam is shown in Fig. 5. The total numbers of elements and nodes are 20 
and 22, respectively. The basic material parameters of structures are: Young’s modulus E1=E2=210 
GPa, density ρ1=ρ2=7800 kg/m3 length l1=l2=10 m, Cross-section A1=A2=1.25×10-2 m2, Poisson’s 
ratio μ1=μ2=0.3. The coefficient of the weakly coupling spring is taken as Kr=105 N/m while the 
strongly coupling spring is taken as Kr=109 N/m. The damage case is also multiple damage 
scenario, assuming that element 2 has 15% reduction in Young’s modulus, element 3 has 20% 
reduction in Young’s modulus meanwhile element 12 and 17 has 10% reduction in Young’s 
modulus. That means α2=0.15, α3=0.2, α12=0.1 and α17=0.1. The first six natural frequencies (as 
listed in Table 1) and the associated mode shapes are adopted in the damage identification. For the  
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Fig. 6(a) The evolution process of the objective function of the strongly coupled beams 

 
Table 2 Identified damage parameters based on ABC and CABC in coupled beam system 

Element number 

    2nd 3rd 12th 17th 

  Assumed value 0.15 0.2 0.1 0.1 

Strongly coupled 

ABC results 0.1345 0.1646 0.0854 0.035 

ABC std. 0.0292 0.0215 0.0226 0.0339 

CABC results 0.1472 0.1647 0.0921 0.0831 

CABC std. 0.0075 0.0187 0.0122 0.0204 

Weakly coupled 

ABC results 0.1164 0.1706 0.0472 0.0429 

ABC std. 0.0344 0.037 0.0276 0.0322 

CABC results 0.1307 0.1736 0.0742 0.0795 

CABC std. 0.0158 0.0127 0.0135 0.0207 

(std. denotes the standard deviation) 

 

 
algorithm implemented, the colony size is 50 and the maximum cycle number is 500 and for the 
CABC, the maximum chaotic local search number is 10. Further, 1% uniformly distributed random 
noise is added to the natural frequencies and 10% uniformly distributed random noise is added to 
the mode shapes. Moreover, for each problem the analysis is also repeated 10 times with a 
different initial random seed. 

 
Strongly coupled beam system 
The evolutionary process of the objective function value is presented in Fig. 6(a), one can find  
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Fig. 6(b) The evolution process of the damage parameters (strongly coupled, ABC) 
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Fig. 6(c) The evolution process of the damage parameters (strongly coupled, CABC) 

 
 

the results obtained by CABC is closer to zero. Fig. 6(b) and 6(c) provide the evolution process of 
the damage parameters based on the two methods mentioned, it can be clearly seen that the 
convergence rate and accuracy based on CABC is better. The CABC algorithm converges in 
approximately 100 cycles while the original ABC algorithm needs 300 cycles for convergence. 
Final identified results are presented in Fig. 6(d) and Table 2. For the damaged elements, CABC  
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Fig. 6(d) The final results of the strongly coupled beams case 
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Fig. 7(a) The evolution process of the objective function of the weakly coupled beams 

 
 
obtained a more accuracy estimated outcome with less standard deviation. 

 
Weekly coupled beam system 
The evolutionary process of the logarithmic best objective function value is exhibited Fig. 7(a) 

and the evolution process of the damage parameters are shown in Fig. 7(b) and 7(c), similar to Fig.  
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Fig. 7(b) The evolution process of the damage parameters (weakly coupled, ABC) 
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Fig. 7(c) The evolution process of the damage parameters (weakly coupled, CABC) 

 
 

6(b) and 6(c), CABC can still acquire a better result with faster convergence rate. Fig. 7(d) and 
Table 2 present the final identification results, which can illustrate the good robustness and 
excellent global search ability of CABC further. 
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Fig. 7(d) The final results of the weakly coupled beams case 

 
 
 
5. Conclusions 
 

A structural damage identification method based on original ABC algorithm and CABC 
algorithm using vibration data is investigated in this work. In the modified algorithm, the 
tournament selection mechanism is chosen instead of roulette mechanism, chaotic search 
mechanism is also introduced to improve the algorithm’s convergence rate and accuracy. Two 
numerical simulations are utilized to investigate the applicability of this proposed technique to 
damage detection. In the case of supported beam, for the damage element, the maximum errors of 
CABC are 0.028% better than that acquired by immunity enhanced particle swarm optimization 
(0.042%), meanwhile the corresponds error obtained by ABC is 5.35%. When the modal data is 
polluted by the uniform distributed noise, the maximum error from CABC is 4.35%, occurring in 
element 15, however, the immunity enhanced particle swarm optimization recieved the maximum 
error over 10%, which can sufficiently the better robustness of CABC. In the case of the strongly 
coupled beam, the maximum identified errors of CABC is 3.53%, smaller than 6.5% acquired by 
ABC algorithm. When the beam is weakly coupled, the maximum estimated error of CABC is 
2.64% while the ABC is 5.71%. Further, in all cases, the standard deviation of CABC are smaller 
than those got by ABC, which illustrates that the identified results from CABC are more stable. To 
sum up, the simulation results show that the proposed CABC algorithm can produce excellent 
damage estimation with small errors. 
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