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Abstract.  A multi-contact tooth meshing model for helical gear pairs considering bearing and shaft 

deformations is proposed. First, to easily incorporate into the system model, the complicated Harris’ bearing 

force-displacement relationship is simplified applying a linear least square curve fit. Then, effects of shaft 

and bearing flexibilities on the helical gear meshing behavior are implemented through transformation 

matrices which contain the helical gear orientation and spatial displacement under loads. Finally, true contact 

lines between conjugated teeth are approximated applying a modified meshing equation that includes the 

influence of tooth flank displacement on the tooth contact induced by shaft and bearing displacements. 

Based on the model, the bearing’s force-displacement relation is examined, and the effects of shaft 

deformation and external load on the multi-contact tooth mesh load distribution are also analyzed. The 

advantage of this work is, unlike previous works to search true contact lines through time-consuming 

iterative strategy, to determine true contact lines between conjugated teeth directly with presentation of 

deformations of bearings and shafts. 
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1. Introduction 
 

Helical gear is applied widely in power transmissions and possesses the advantage of having 

more gradual tooth mesh engagement process than spur gear causing it to run quieter and 

smoother. With the increased use of helical gear towards high power density and high speed 

applications, its inherent multi-contact tooth mesh behavior is increasingly of interest to gear 

engineers and researchers. The relevant studies are described next. 

Kolivand and Kahraman (2011) reconstructed the tooth surface as the function of roll angle,
 
and 

the action surface and roll angle were defined by the positions and normal vectors of points on the 

mating surfaces and gear’s axis vectors as well. For a given of roll angle, the locations and 

orientations of potential instantaneous contact lines between two mating gear surface were 

determined. Hotait et al. (2007) verified a model to predict gear load distribution and 
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recommended the magnitude of lead crown with present of misalignment by a serious of 
experiments which studied the combined influence of shaft misalignments and gear lead crown on 
the load distribution and tooth bending stresses. Zhang and Fang (1999) proposed an approach to 
analyze helical gear tooth contact and load distribution, which includes the effects of tooth profile 
modification, manufacturing error and tooth surface elasticity deformation. Their simulation 
results revealed that the mesh characteristics of the helical gear with small cross angle are similar 
to those of parallel-axis helical gear. Chen and Tsay (2001) analyzed the contact ellipses of an 
involute helical pinion and a modified circular-arc helical gear, and illustrated the effect of double 
crowns on their point contacts and parabolic transmission errors. Litvin et al. (1999, 2003, 2005) 
proposed the computerized approaches to (i) examine the contact behavior of a pair of helical gear, 
(ii) analyzed the influence of misalignment on the shift of the bearing, and transmission of helical 
and double-crowned helical gears, (iii) investigated the point contact of double-crowned pinion 
with a conventional helical involute tooth profile, and (iv) also simulated the use of profile 
modification of helical gear to avoid edge contact, and reduce noise and vibration. Baud and Velex 
(2002) investigated the spur and helical gear tooth loading to validate a finite element code for 
tooth load analysis. The experiment was conducted with high-precision spur and helical, flexible 
shaft and hydrostatic or hydrodynamic bearings. The corresponding model uses an iterative contact 
algorithm to search for tooth flank contact conditions at each integration time step. Hedlund and 
Lehtovaara (2007) established a 3-dimensional finite element model for helical gear to study its 
contact behavior that accounts for tooth bending, shearing and tooth foundation flexibility. It was 
found that tooth foundation flexibility have affect contact load sharing significantly, while contact 
flexibility plays only a minor role. Wink and Serpa (2008) demonstrated the efficiency of direct 
matrix solver based on Cholesky factorization in studying load distribution problems in terms of 
computational effort to solve the load distribution problem and the accuracy of the solution 
comparing to two other solvers: incremental procedure with gradual and iterative load application 
and pseudo-interference. Kar and Mohanty (2008) introduced an algorithm in determining the 
time-varying parameters in a helical gear system. In Kar and Mohanty’s study, the contact line 
variation that is a fundamental gearing parameter is shown to induce other variations such as 
friction force and torque, bearing reaction load, and mesh stiffness and damping variations. Wu 
and Tsai (2009) proposed an approach for modeling loaded tooth contact of skew conical gear 
drivers assuming approximate line contact. The contact behavior was analyzed considering tooth 
contact and bending deformations. Miyoshi et al. (2007) proposed an approach to compute tooth 
contact load distribution of helical gear under any loading condition. In that study, firstly, helical 
gear pair tooth flank deformation given an input torque was calculated. Secondly the distributions 
of both static deformation and load were obtained. Thirdly, the proposed equations were combined 
to find actual tooth contact load distribution. Vinayak and Singh (1998) established a multi-body 
dynamics modeling for external, fixed center helical or spur gear considering gear body 
compliances. They showed that the gear response is governed by a set of non-linear differential 
equations with time-varying coefficients. 

In spite of the vast number of related studies published, it is surprising that there are scarcities 
of published studies on the helical gear multi-contact tooth mesh loads with considering the 
flexibilities of shaft and bearing. This study attempts to address this gap in the literatures by 
examining the contact load distributions of Three-dimensional multi-contact helical gear pair 
including shaft compliance and bearing deformation. In fact, this study represents an extension of 
the work reported in Wang et al. (2012). The shaft deformation includes both torsional and 
bending response. On the other hand, the bearing deformation only includes the shaft radial  
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Fig. 1 Schematic diagram of a typical helical gear pair system 

 
 

displacement. The advantage of the helical gear system modeling proposed in this study is the 
variation of multi-contact load distribution is coupled with shaft and bearing deformation.  
 
 
2. Formulations 
 

A typical helical gear system is shown in Fig. 1. Here, both pinion and gear are supported by 
tapered roller bearings represented by B1, B2, B3 and B4 through shaft 1 and shaft 2 respectively. 
The global coordinate system xyz has its x-axis directed horizontally to gear, y-axis directed 
vertically upward and z-axis directed horizontally along the axis of shaft 1. The position of pinion 
is defined with the local coordinate system x1y1z1 and that of gear with the local coordinate system 
x2y2z2. The lengths of shaft 1 and shaft 2 are equal and labeled by L, which is the sum of l11, b1 and 
l12 for shaft 1 and l21, b2 and l22 for shaft 2. It may be noted that b1 and b2 are widths of pinion and 
gear respectively. The center distance between pinion and gear is denoted by variable a.  

The helical gear system of interest to the present analysis is composed of four bearings, two 
shafts and two gears, which are all assumed to be flexible as shown in Figs. 2(a)-(c). Since the 
bearing allows free rotation about its axis, its transversal translation degrees of freedom are 
denoted by Δxb={Δxbi Δxbi}

T (i=1...4) , where the subscript b refers to the bearing, i refers to the 
number of bearing, and its axial translation degree of freedom is represented by Δzb={Δzbi}

T

 
(i=1…4). The shaft is capable of both bending and torsional deformations. The gear translation 
due to shaft bending deformation is Δx={Δxi Δyi}

T (i=1, 2), and the rotations of pinion and gear 
due to shaft torsional deformation are φ1 and φ2. Finally, the gear title angle owing to shaft bending 
deformation are represented with β={βxi  βyi }

T (i=1…4). 
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maximum roller normal load, α is roller contact angle, and Δrb and Δzb are bearing radial and axial 
displacements respectively. 

From the above set of equations, the bearing radial load Fr and thrust load Fa appear to be 
complex functions of the bearing radial displacement Δrb and axial displacement Δzb. In fact, as it 
is demonstrated below, the bearing loads have a nearly linear relationship with their deformation, 
and thus, a simple relationship between bearing load and deformation can be developed employing 
the least square method. Firstly, the bearing radial displacement Δrb and axial displacement Δzb are 
discretized based on the intervals noted by 

 T

b b1 b2 b... mr r r    r                         (2a) 

 T

b b1 b2 b... mz z z    z                        (2b) 

Substitution of the above values into Eqs. 1(a-g) to yield the corresponding bearing radial load rF
and thrust load aF  whose rows correspond to the variation of the radial displacement br  and 
the columns related to the variation of axial displacement bz ,
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F                          (3a) 

a11 a12 a1
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a
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m

m
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Simultaneously, bearing radial load Fr and thrust load Fa are expressed as linear functions of the 
bearing radial displacement Δrb and axial displacement Δzb given by 

r rr b ra b r0F k r k z F                               (4a) 

a ar b aa b a0F k r k z F                               (4b) 

Since above equations are simple and closely equivalent to Eqs. 1(a-g), they can be easily 
incorporated into the system governing equation. Hence, stiffness krr, kra and Fr0 are given as 

-1
2

rr b b b b b
2

ra b b b b r b

r0 b b 1 1

i i j i im m m m

i j j j ij j
i 1 j 1 i 1 j 1

i j

k r r z r r

k r z z z F z

F r z   

           
                   

              

            (5a) 

Similarly, the stiffness kar, kaa and Fa0 are 
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-1
2

ar b b b b b
2

aa b b b b a b
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i j
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              

           (5b) 

If the bearing reaction loads are decomposed into Fx, Fy and Fz components along the x-axis, 
y-axis and z-axis respectively, the bearing radial reaction load can be written as 

2 2
r x yF F F                                 (6) 

Then, the bearing radial displacement Δrb and axial displacement Δzb are 

1

b rr ra r r0

b ar aa a a0

r k k F F

z k k F F

         
                                       (7) 

Finally, bearing transversal translation degrees of freedom are expressed as 

xb b
b

yb r

Fx r
Fy F

    
        

x                            (8) 

 
2.2 Shaft model 

 
The purpose of shaft is to transmit torque between the components in the system. The loads 

acting on the shaft is shown in Fig. 3. The illustration shows the loads acting on shaft 1, which are 
the distributed contact load P={p1 p2 … pm pm+1 … pn}

T, the reaction load Fb1={Fbx1 Fby1 Fbz1}
Ton 

the shaft 1 at bearing B1 in the transverse plane, and the reaction load Fb2={Fbx2 Fby2 Fbz2}
T at 

bearing B2. Since it is a statically determined system, the bearing reaction load Fb2 and Fb2 may be 
obtained from the equations of static equilibrium 

b1 b2 0   nF F P                             (9a) 

 b1 ( ) 0     nF L P L z                         (9b) 

where n is a matrix that comprises of unit column vectors normal to the tooth surfaces at the 
contact points. Also, L={0 0 L}T and z is a vector storing the z-coordinate of the contact points. 
Solving Eqs. 9(a-b) simultaneously yields 

 b1 ( ) / L   nF P L z                          (10a) 

 b2 ( ) / L     n nF P P L z                       (10b) 

After the bearing reaction loads Fb2 and Fb2 are determined as described above, the shaft 
deformations are examined next. The shafts may have both bending and torsional deformations.  
The bending deformation of shaft 1 can be expressed as 
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where Es is the modulus of elasticity of the shaft and Is the area moment of inertia. Integrating the 
above equations with respect to the z-coordinate and assuming the rotation angles at bearings are 
zero, and then the rotation angle of shaft 1 is 

2b1
1 1

s s
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2 1
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                (12) 

Integrating Eq. (12) further yields the displacement of shaft 1 due to its bending deformation 

3b1
b1 1

s s

3 2 2 3b2
b2 1
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             (13) 

Similar expressions can also be obtained for shaft 2 just by changing the sign of contact load P. 
Finally, the oriental varying of pinion and gear brought by the shaft bending deformation are 

given as 

1
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The displacements of the pinion and gear caused by the shaft bending deformation are 

1
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For shaft torsional deformation, the expressions are given by 

in 1
1

1

T l

GI
 

                     

out 2
2

2

T l

GI
 

                
(16a-b) 
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Fig. 3 Contact load acting on the pinion along with the reaction load on the shaft 1 
 
 
2.3 The transformation matrix 

 
In this study, the most critical task is to couple the deformation of the bearings and shafts and 

the contact behavior of pinion and gear. This is accomplished with two transformation matrices T1 
and T2. The transformation matrix T1 transfers pinion contact behavior defined by the coordinate 
x1y1z1 to the global coordinate xyz, which contains deformations of both bearing and shaft 1 
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(17) 

where ϕ1 is rigid rotation angle of pinion, Δβx1=βx1−βx2 and Δβy1=βy1−βy2. 
Similarly, the transformation matrix T2 transfers the behavior of gear defined by the coordinate 

x2y2z2 to the global coordinate xyz, which includes the bearing and shaft 2 deformations given by 
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(18)

where ϕ2 is rigid rotation angle of gear, Δβx2=βx3−βx4 and Δβy2=βy3−βy4. 
 

2.4 Gear model 
 
The details of the gear model are given in Litvin and Fuentes (2004), and therefore only a brief 

description is described below as a review. For a pair of helical gear with right hand shown in Fig. 
1, the tooth profile Σ1 on the pinion within the coordinate system x1y1z1 is expressed as parameters 
θ1 and u1 

'
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and the unit differential with respect to θ1 and u1 are, respectively 
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The unit normal to the tooth surface Σ1 is given by 
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                      (19d) 

where p1 is the screw parameter, μ1=wt1/2rp1-invαt1, wt1 is the nominal value of space width on the 
pitch circle, and αt1 is the profile angle in the cross section at the point of intersection of the profile 
with pitch circle. Also, λb1 is the lead angle. 

The profile Σ2 on the gear within the coordinate system x2y2z2is expressed as parameters θ2 and 
u2, and its differentials and unit normal are, respectively 
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The contact behavior of helical gear pair is examined within the global coordinate xyz, 
therefore the expressions for tooth profile Σ1 and Σ2 of pinion and gear are required to be defined 
within the global coordinate xyz while they must include the influence of bearing and shaft 
deformation. It is easily accomplished by multiplying the transformation matrix with the 
expressions for tooth profile Σ1 and Σ2 at local coordinate 

'
1 1 1 1 x1 y1 1 1 1( , , , , , )x y       Tr r

                    (21a) 

'
θ1 1 1 1 x1 y1 1 1 θ1( , , , , , )x y       Tr r

                   (21b) 

'
u1 1 1 1 x1 y1 1 1 u1( , , , , , )x y       Tr r

                   (21c) 

'
1 1 1 1 x1 y1 1 1 1( , , , , , )x y       Tn n

                    (21d) 

'
2 2 2 2 x2 y2 2 2 2( , , , , , )x y       Tr r

                    (22a) 

'
θ2 2 2 2 x2 y2 2 2 θ2( , , , , , )x y       Tr r

                   (22b) 

'
u2 2 2 2 x2 y2 2 2 u2( , , , , , )x y       Tr r

                   (22c) 

'
2 2 2 2 x2 y2 2 2 2( , , , , , )x y       Tn n                    (22d) 

Applying Eqs. 21(a-d) and Eqs. 22(a-d) above, the positions and their differences with respect 
to profile parameters of the tooth profiles Σ1 and Σ2 are determined, which represent the 
foundations for analyzing the gear contact behavior. The detailed description for the deformation 
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calculation of pinion and gear is given in Wang et al. (2012). 
 

2.5 Equation of meshing 
 

The deformed tooth profile Σ1 of pinion and the deformed tooth profile Σ2 of gear can be 
expressed as. 

1
1 tf 1 1( , )u r r q                            (23a) 

where qtf(θ1, μ1) is a polynomial expression that accounts for pinion and gear deformations and are 
formed by Chebyshev polynomial fit given in Wang et al. (2012). In this study, the influence of 
deformations of bearings and shaft on the mating teeth meshing is manifested through qtf(θ1, μ1).                

The unit differentials with respect to parameter θ1 and u1, assuming the influences of 
deformation on the modulus are omitted, are given by 
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r r                           (23b) 
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   (23d) 

The expression for the relative velocity between the pinion and the gear may be represented as, 

12
1 2 1 2( )    v ω ω r a ω                          (24) 

where ω1 and ω2 are vector of rotation angular velocity and a is the vector of gear center distance. 
Hence, the equation of meshing is established based on the fact that the scale product between 
relative velocity and unit normal direction must be orthogonal, that is 

12 0 n v                                 (25) 

Here, the subscript “1” is omitted for simplicity. 
Rearranging the above equation to obtain 

t

T Ttf tf
θ u 1 b

cos( ) cos

( , ) ( , )
( ) ( [ 0 0] ) / sin 0

u u
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  

 
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 
T

q q
r r r         (26) 

where the first term on the left hand side of the above equation is contributed by the gear rigid 
body motion, while the second item represents the influence of the pinion elastic deformation, 
bearing deformation and shaft deformation on the gear mesh. 
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Table 1 Parameters of the components in the helical gear system of interest 

Components Parameters Descriptions values 

Bearing parameters (30208) 

din Bore diameter 40 mm 
dout Outside diameter 80 mm 
bb Width 19.75 mm 
α Contact angle 30° 
zb Roller number 15 
l Roller length 10 mm 

Gear 
Parameters 

m Modulus 6 mm 
z Teeth number 16 
α Pressure angle 20° 
β Helix angle 15° 
b Tooth facewidth 60 mm 
v Poisson ratio 0.29 
E Elasticity modulus 2.09×1011 Pa 
G Elasticity shear modulus 3.88×1010 Pa 

Shaft Parameters 
I Section moment of inertia 1.26×10-7 m4 
l1 length 60 mm 
l2 length 60 mm 

 
 
Finally, due to the assumption of small deformation, the gear tooth contact load should be 

inversely proportional to the deformation on the contact line, that is 

nndpdpdp  ...2211                            (27) 

where di is the separation distance at contact load pi due to gear deformation. In addition, the sum 
of all contact load pi should balance out with the force exerted by the external torque T as 
expressed below 

in b1
1

/
n

i
i

p T r


                               (28) 

where rb1 is the base circle radius of pinion. 
 
 
3. Numerical analysis 
 

For the helical gear system shown in Fig. 1, the parameters of the components such as bearing, 
shaft and gear are given in Table 1. Both the input torque and output torque are assumed to be 100 
Nm. First of all, the displacement and reaction load of the bearing is examined and its stiffness 
varying with the contact angle studied.  
 

3.1 Bearing deformation characteristics 
 

Bearing deformation is often omitted in past studies of helical gear system analysis, especially  
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Fig. 4 Effects of radial and axial deflections on bearing reaction load 
 

Fig. 5 Effect of contact angle on bearing contact stiffness 
 
 

in computing the gear contact behavior. Generally speaking, the bearing deformation influences 
the gear contact behavior in two ways: one is that the bearing deformation causes the gear to 
rigidly offset from its ideal position; second is that the influence of bearing deformation on the 
gear rigid offset is generally enlarged due to the shaft leverage function. Therefore, it is useful to 
investigate bearing deformation characteristics as defined by Eqs. 1(a-g). 

Fig. 4 shows the tapered roller bearing radial reaction load Fr (a) and thrust reaction load Fa (b) 
varying with the radial deflection Δr and axial deflection Δz. During the simulated intervals 
between 0 and 1 μm of bearing radial deflection and axial deflection, the bearing radial load Fr and 
thrust reaction load Fa distributed as plane obviously have linear relationship with the radial 
deflection Δr and axial deflection Δz. As far as the bearing radial load Fr is concerned, it 
considerably increases from 0 kN to around 1.0 kN with its radial deflection Δr from 0 μm to 1 
μm. However, as bearing axial deflection Δz varies within the same interval, the bearing radial 
reaction load Fr has a slight increase with a scope of 0.1 kN. The bearing thrust reaction load Fr 

has a similar distribution as the bearing radial reaction load Fa. In summary, the bearing radial 
reaction load Fr and thrust reaction load Fa grow linearly with the increase of the bearing radial  
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(c) T=300 Nm 

Fig. 6 Contact load distribution in the meshing plane of helical gear pair for roller length of 15 
mm, shaft diameter of 20 mm 

 
 

deflection Δr and axial deflection Δz. As a result, their relationship can be reasonably defined by 
the linear Eqs. 4(a-b).  
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The stiffness of tapered roller bearing defined in Eqs. 4(a-b) is illustrated in Fig. 5 as a function 
of contact angle ranging from 10° to 80°. The stiffness krr show that the influence of bearing radial 
deflection Δr on the bearing radial reaction load Fr drops slightly as contact angle rises, while the 
stiffness kra has a small value illustrating the weak influence of bearing axial deflection Δz on the 
bearing radial reaction load Fr. The fact that both the stiffness kra and kaa increase significantly 
with the surge of the contact angle shows that, relative to the bearing thrust reaction load Fa, the 
larger the contact angle, the stiffer the bearing in axes direction.  
 

3.2 Influence of external torque on contact load distribution 
 

As expected, the external torque has a significant impact on the helical gear contact load 
distribution. Figs. 6(a)-(c) shows the gear contact load distribution in the meshing plane given 
roller length of 15 mm and shaft diameter of 20 mm for loading condition of 100 Nm, 200 Nm and 
300 Nm. There are four sections in the figures indicated by I, II, III and IV to represent the contact 
load distribution within the meshing plane during a mesh cycle. Tooth pairs 1, 2 and 3, as shown in 
Fig. 1, are defined as the meshed tooth pairs of Tooth 1, 2 and 3 at the pinion with their 
corresponding counterparts at the gear. During the designated mesh cycle, the tooth pair 2 is 
always in contact, while tooth pairs 1 and 3 take part in contact only part of the time. Near the 
beginning of the meshing cycle shown, the tooth pairs 2 and 1 are in contact simultaneously and 
their contact load variations are indicated by sections II and IV. Then as the helical gear rotates, the 
tooth pair 1 disengages while tooth pair 3 engages, and tooth pairs 2 and 3 bear the load 
simultaneously and their contact load variations are indicated by sections III and I. The thin solid 
lines represent the contact lines within the meshing plane. The color bar showing the value of 
contact load for all plots in Fig. 6 is given at the right hand side of Fig. 6(c).  

First of all, regardless of the magnitude of external torque, the contact load varies over the tooth 
flank in a similar approach. At the beginning of the mesh cycle, the tooth pairs 2 and 1 jointly bear 
the external load. As tooth pair 1 disengages, its contact load fluctuates substantially. Then, as 
tooth pair 3 comes into contact and carry increasingly more contact load, tooth pair 2 load 
decreases gradually. Comparing Figs. 6(a)-(c), the maximum contact loads occur at the root of 
tooth pair 2 as the tooth pair 1 disengages and tooth pair 3 engages, increase from 1.876 kN/m, 
3.876 kN/m to 6.338 kN/m corresponding to the external torque 100 Nm, 200 Nm and 300 Nm 
exerted on the helical gear pair. This behavior obviously demonstrates that the external load has a 
critical impact on the contact load of helical gear. In addition, unlike past studies that shows the 
contact load to vary smoothly over the meshing plane, the contact load in this case changes 
abruptly since not only the effect of bearing radial deformation and shaft torsional deformation are 
considered as in many past efforts, the shaft bending deformation is also included in this proposed 
analysis. Finally, the contact load distribution once again shows that the tooth acts like a cantilever 
beam during meshing due to the fact that the largest contact load appears at the tooth root while 
the smallest contact load occur at tooth tip.  

 
3.3 Influence of shaft flexibility on contact load distribution 

 
In this section, the influence of shaft flexibility on the contact load distribution is examined. 

First, the contact load distribution of helical gear for external torque of 100Nm, roller length of 15 
mm and shaft diameter of 20 mm is computed and illustrated in Fig. 7(a). The difference of contact 
load distribution with external torque of 100 N.m and roller length of 15 mm is shown in Fig. 7(b)  
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(a) Contact load distribution for T=100 Nm, roller length 15 mm and shaft diameter 20 mm 
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(b) Difference of contact load distribution between shaft diameters of 20 mm and 30 mm 
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(c) difference of contact load distribution between shaft diameters of 30 mm and 40 mm 

Fig. 7 Influence of shaft flexibility on the helical gear contact load distribution in the meshing plane 
 
 

between shaft diameters of 20 mm and 30 mm; finally, the difference of contact load distribution is 
given in Fig. 7(c) between shaft diameter 30 mm and 40 mm. 
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The differences of contact load distributions for different shaft diameters have similar trends 
over the whole meshing plane. Here, it can be seen that as we get nearer to the tooth root, the 
larger the difference in contact load is observed. On the other hand, the nearer to the tooth tip, the 
smaller the difference is observed. In addition, by comparing Fig. 7(b) and Fig. 7(c), it is obvious 
that the shaft flexibility do not influence linearly on the contact load. For instance, the largest 
distributed contact load difference between shaft diameter of 20 mm and 30 mm approaches 300 
Nm while that between shaft of 30 mm and 40 mm shrinks to only around 80 Nm. This 
phenomenon demonstrates that the shaft elasticity has a significant impact on the contact load 
distribution as the shaft becomes more flexible. However, the influence of the shaft elasticity on 
the contact load distribution decreases significantly as the shaft becomes stiff beyond a certain 
value. In another word, when the shaft becomes stiffer over a certain value, it is not an effective 
method to improve the contact load distribution by enlarging the shaft diameter.  
 
 
4. Conclusions 
 

The contact load distributions of helical gears considering the flexibilities of bearing and shafts 
are examined using a set of modified mesh equation. The detailed modeling for bearing and shaft 
are established. Instead of searching the whole tooth flank iteratively, the real contact lines are 
determined by simply solving the modified mesh equation. The analysis shows that bearing 
reaction forces is linear with respect to the deformations, the external load has a decided impact on 
the helical gear contact load and finally shaft exerts a significant influence on the contact load 
when shaft is flexible, however, as the shaft become stiff, this influence decreases considerably.  
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