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Abstract.  A new family of structure-dependent integration methods is developed to enhance with desired 

numerical damping. This family method preserves the most important advantage of the structure-dependent 

integration method, which can integrate unconditional stability and explicit formulation together, and thus it 

is very computationally efficient. In addition, its numerical damping can be continuously controlled with a 

parameter. Consequently, it is best suited to solving an inertia-type problem, where the unimportant high 

frequency responses can be suppressed or even eliminated by the favorable numerical damping while the 

low frequency modes can be very accurately integrated. 
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1. Introduction 
 

A series of structure-dependent integration algorithms have been successively developed by 

Chang (2002a, 2007, 2009, 2010, 2014, 2015) for structural dynamics. This type of integration 

methods is unlike the conventional step-by-step integration methods (Newmark 1959, Hilber et al. 

1977, Wood et al. 1981, Chung and Hulbert 1993, Krenk 2008, Rezaiee-Pajand et al. 2011, Gao, et 

al. 2012, Alamatian 2013, Gui et al. 2014) in the formulation of the two quadrature equations, 

where constant coefficients are usually found for the conventional integration methods while they 

become functions of initial structural properties and step size for the structure-dependent 

integration algorithms. The most important property of the structure-dependent integration 

algorithms is that they can integrate the unconditional stability and explicit formulation together. 

Hence, a large time step can be adopted without considering stability for time integration in 

solving an inertia-type problem, where the total response is dominated by low frequency modes 

while the high frequency responses are of no interest. On the other hand, an explicit formulation 

implies that there is no need to involve an iteration procedure. Thus, it is computationally efficient 

in the time history analysis of an inertia-type problem. Notice that the choice of an appropriate step 

size for time integration is not only dependent upon stability and accuracy but also the capability 

to capture dynamic loading and linearization errors (Chen and Robinson 1993, Robinson and Chen 
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1993, Chang 1998, 2001a, b, 2002b, Hadianfard 2012). 

Since structure-dependent integration algorithms can have unconditional stability and explicit 

formulation simultaneously, it is promising if they can be further enhanced by numerical damping. 

This is mainly because that numerical damping can be used to suppress spurious oscillations in the 

numerical solution that resulted from spatially unresolved high frequency modes. It is worth noting 

that there are many unconditionally stable integration methods with controllable numerical 

damping in the currently available integration methods, such as the HHT-α method (Hilber et al. 

1977), the WBZ-α method (Wood et al. 1981) and the Generalized-α method (Chung and Hulbert 

1993). However, they are classified as implicit methods. This implies that their applications to 

nonlinear dynamic analysis will involve an iteration procedure per time step and thus more 

computational efforts will be consumed when compared to the explicit, structure-dependent 

integration methods (Chang 2002a, 2007, 2009, 2010, 2014, Kolay and Ricles 2014). 

A new family of structure-dependent integration algorithms with desired numerical dissipation 

has been developed and is presented herein. Since the developing details are very complicated, 

they will not be presented although the concept will be described. However, the numerical 

properties of the proposed family method will be thoroughly evaluated and confirmed herein. The 

simultaneous integration of the unconditional stability, explicit formulation and numerical 

damping for this family method will be addressed in this work. In addition, the computational 

efficiency of this family method is also studied. 

 

 

2. Dissipative integration method 
 

Two schemes are applied to develop the new family method. One is the use of an asymptotic 

form of equation of motion and the other is the use of structure-dependent difference equation for 

displacement increment. Since the use of an asymptotic form of equation of motion to develop a 

dissipative integration method has been successfully implemented, such as the HHT-α method, 

WBZ-α method and generalized-α method, this scheme is adopted herein. Some integration 

methods (2002a, 2007, 2009, 2010, 2014) have been developed to integrate unconditional stability 

and explicit formulation together by using the structure-dependent difference equation for 

displacement increment and thus this scheme is also applied to develop a new family method. 

As a result, the proposed dissipative integration method for a linear elastic single degree of 

freedom can be expressed as 
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                 (1) 

where m, c and k are the mass, viscous damping coefficient and stiffness, respectively; di, vi, ai and 

fi are the displacement, velocity, acceleration and external force at the end of the i-th time step, 

respectively. In general, a constant viscous damping coefficient is considered and thus c=c0 is 

taken. Meanwhile, for a nonlinear system, ki+1 is used to replace k and represents the stiffness at 

the end of (i+1)-th time step. The coefficients β1 to β3 are found to be 
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where ξ is a viscous damping ratio; Ω0= ω0(Δt) and mk /
00

  is the natural frequency of the 

system determined from the initial tangent stiffness of k0; and p is the only parameter to control the 

numerical properties and p≠−1, which is manifested from Eq. (1).  

Based on the fundamental theory of structural dynamics, the term ξΩ0 can be replaced with  

(Δt)c0/(2m) and the term 
2

0
  is replaced by (Δt)2(k0/m) (Chang 2002a, 2007, 2009, 2010). As a  

result, Eq. (2) becomes  
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              (3) 

In this equation, β1 to β3 are functions of initial structural properties (m, c0 and k0) and step size 

(Δt). Thus, they remain invariant for a whole step-by-step integration procedure if a constant time 

step is used. It should be mentioned that the use of Eq. (3) to replace Eq. (2) is very important in 

carrying out time integration since it avoids the need to solve an eigenvalue problem, which is 

very time consuming for a matrix with a large order. For brevity, the Proposed Family Method will 

be referred as PFM subsequently.  

 

 

3. Determination of parameter 
 

Eqs. (1)-(2) reveal that the parameter p plays an important role since the equation of motion 

and two quadrature equations are closely related to it. Hence, it is anticipated that the numerical 
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properties of PFM depend upon it. Thus, it is important to determine the useful range of p so that 

PFM can have desired numerical properties. For this purpose, the basic analysis of PFM for a 

linear elastic, single degree of freedom system is needed and conducted next.  

At first, the free vibration response obtained from PFM for the system can be rewritten in a 

recursive matrix form as 

1i i
X AX                                  (4) 

where Xi+1=[di+1, (Δt)vi+1, (Δt)2 ai+1 ]
T and A is an amplification matrix. Hence, the characteristic 

equation of A can be obtained from |A−λI|=0 and is found to be 

0
32

2

1

3  AAA                              (5) 

where λ is an eigenvalue of A and the coefficients A1, A2 and A3 are found to be 

 

 

20

21 0

20

22 0

3

2 1 1 1 2 2
2

1 11

2 2 1 2 2 1
1

1 11

1 1

1

p
A

D D p D pp

p p
A

D D p D pp

p
A

D p





   
       

     

    
       

     

 
   

 

              (6) 

Notice that this characteristic equation can be further applied to evaluate the numerical 

properties of PFM. 

A numerical method is said to be convergent if the numerical solution approaches the exact 

solution as the step size tends to zero. Thus, a numerical method has to be convergent to be of any 

use. As a result, the parameter p must be appropriately determined so that PFM is a convergent 

method. A numerical method is said to be convergent if it is consistent and stable. The consistency 

is in terms of the order of accuracy determined from the local truncation error. Hence, the local 

truncation error must be derived and the stability must be evaluated for PFM. 

A local truncation error is often defined as the error committed in each time step by replacing 

the differential equation with its corresponding difference equation (Belytschko and Hughes 1983). 

As a result, the local truncation error for PFM is found to be 
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 (7) 

This equation reveals that PFM can generally have a second order accuracy for any value of p 

and any viscous damping ratio ξ. 

In the study of the stability conditions of PFM, the limiting cases of Ω0→0 and Ω0→∞ are 

considered first. Using Eq. (5), the characteristic equation of PFM and its corresponding roots for 
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the limiting case of Ω0→0 are found to be 
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The p value must be in the range of −1<p≤3 so that |λ3|≤1 can be satisfied. Similarly, in the limit 

Ω0→∞, the characteristic equation of PFM and its corresponding roots are found to be 

 
2

1,2 3
0 and 0p p                          (9) 

Apparently, the stability condition of |λ1,2|≤1 will be met if −1<p≤1 is chosen. Consequently, it 

is concluded that PFM can have unconditional stability in the limits Ω0→0 and Ω0→∞ for a linear 

elastic system if −1<p≤1 is met. 

After obtaining the range of −1<p≤1 for PFM to have unconditional stability in the limiting 

cases of Ω0→0 and Ω0→∞, it is needed to further confirm that if the same range is applicable to a 

general value of Ω0. This can be evaluated by using the Routh-Hurwitz criterion which gives 

necessary and sufficient conditions for the roots of polynomial to have negative real parts and 

using the procedure given in the reference (Lambert 1973), where λ=(1+ϕ)/(1−ϕ) is used. As a 

result, a necessary and sufficient condition for the roots of Eq. (5) to lie within or on the circle 

|λ|=1 is to satisfy the following inequalities 
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   (10) 

After substituting Eq. (6) into Eq. (10), it is found that all the five inequalities will be met if 

−1<p≤1 is adopted. This proves stability for PFM. Consequently, this stability property in 

conjunction with the previous proof of consistency implies convergence for PFM.  

 

 

4. Numerical properties 
 

After determining the useful range of the parameter p for PFM, it is important to explore its 

numerical properties, such as stability, accuracy, numerical damping and overshooting. In general, 

these numerical properties can be obtained from Eq. (5) and the computing details can be found 

from the references (Belytschko and Hughes 1983, Chang 2010).  

  

4.1 Stability 
 

The variation of spectral radius with Δt/T0, where T0=2π/ω0, is plotted in Fig. 1 for PFM. It is 

very interesting to find that the spectral radius is always equal to 1 either for p→−1 or p=1. This 

implies that PFM has zero numerical damping for these two cases. On the other hand, for the case 

of p=0, the spectral radius is almost equal to one for small Δt/T0; subsequently, it decreases 

gradually and finally becomes a zero constant as Δt/T0 is large enough. It is clear that the curves 

for p=±0.5 are very similar to that of p=0 except that the constant value becomes 0.5 for a large 

Δt/T0. At first glance, it seems that PFM with the p value chosen from either −1<p≤0 or 0≤ p≤1 

will lead to controllable numerical damping. However, it is worth noting that the curve for p=−0.5 

shows an abrupt change of slope at the point (0.24, 0.62), which might be the bifurcation point, 
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Fig. 1 Variations of spectral radius with Δt/T0 

 

 

Fig. 2 Principal roots of PFM with p=−0.5 

 

 

where complex conjugate roots bifurcate into real roots. Thus, it is needed to find the eigenvalues 

of PFM for the case of p=−0.5. For this purpose, both the real part and imaginary part of each 

principal root for PFM with p=−0.5 is plotted in Fig. 2. It is evident from this figure that the 

imaginary part of each principal root will become zero after the value of Δt/T0 is greater than about  
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Fig. 3 Variation of relative period error with Δt/T0 

 

 
Fig. 4 Variation of numerical damping ratio with Δt/T0 

 

 

0.67, as marked in a solid circle in the figure. This confirms that the complex conjugate roots 

bifurcate into two real roots at this bifurcation point and thus there is no numerical damping. 

Hence, the range of −1<p≤0 is of no interest for practical applications. Consequently, the 

subsequent study will focus on the range of 0≤ p≤1 for PFM.  

 

4.2 Accuracy and numerical damping 
 

The variations of relative period errors versus Δt/T0 for PFM with p=1.00, 0.75, 0.50, 0.25 and 
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0.00 are shown in Fig. 3 while those for numerical damping ratios are plotted in Fig. 4. The 

corresponding results for the constant average acceleration method (AAM) are also plotted in both 

figures for comparisons. It is manifested from Fig. 3 that the relative period errors increase with 

the decrease of p for a given value of Δt/T0. The curve for p=1.00 is overlapped with that of AAM 

and has the smallest relative period error for a given Δt/T0 when compared to the other curves. In 

general, the relative period error is small in the range of Δt/T0≤0.05 for the five different p values. 

It is evident from Fig. 4 that PFM can have favorable numerical dissipation. In fact, for all the 

curves except for p=1.00, each curve seems to a zero damping ratio for a small value of Δt/T0 and 

then increases gradually with a controlled turn upward. Finally, a constant numerical damping ratio 

is reached, which is manifested from Fig. 1. This implies that the low frequency modes can be 

accurately integrated while the high frequency modes can be effectively suppressed or even totally 

eliminated. Notice that the curve for PFM with p=0.00 has the largest numerical damping ratio in 

Fig. 4 and the largest relative period error in Fig. 3. Meanwhile, the curve for PFM with p=1.00 

has no numerical damping in Fig. 4 and the smallest relative period error in Fig. 3. Hence, the 

increase of the numerical dissipation for PFM will sacrifice the numerical accuracy. 

 
4.3 Overshooting 

 
The numerical solution might overshoot the exact solution in the early response although it is 

calculated from an unconditionally stable integration method (Goudreau and Taylor 1972, Hilber 

and Hughes 1978). Therefore, the overshooting behavior for PFM must be investigated. In general, 

the tendency of an integration method to overshoot the exact solution can be assessed by 

computing the free vibration response of a single degree of freedom system for the current time 

step based on the previous step data. Since PFM is a convergent method, there is no overshoot as 

Ω0→0. The behavior as Ω0→∞ can provide an indication of the overshooting behavior of the high 

frequency mode in a system where the values of Δt/T0 are large for the high-frequency modes. As a 

result, the following equations can be obtained for the limiting condition of Ω0→∞. 
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                   (11) 

It is manifested from this equation that there is no overshoot in displacement for any member of 

PFM while it has a tendency to overshoot linearly in Ω0 in the velocity equation due to the initial 

displacement term except for the case of p=1. 

The overshooting behavior of PFM can be revealed by computing the free vibration responses 

of displacement and velocity for a single degree of freedom system with a time step corresponding 

to Δt/T0=10. In this calculation, the initial conditions are assumed to be d0=1 and v0=0. The 

numerical results are shown in Fig. 5. For comparison, the results obtained from AAM are also 

plotted in the figure. The velocity term is normalized by the initial natural frequency of the system 

in order to have the same unit as displacement. In Fig. 5(a), the two curves are overlapped together 

for AAM and PFM with p=1.0. In addition, they exhibit no overshoot both in displacement and in 

velocity for a linear elastic system. On the other hand, PFM with p=0.5 displays a different 

behavior in velocity response although it also exhibits no overshoot in displacement. In fact, a very 

significant overshooting phenomenon is found in velocity in the early response, as shown in Fig. 

5(b). As a result, the phenomena of the overshoot behaviors either in displacement or in velocity  
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Fig. 5 Comparisons of overshoot responses for PFM 

 

 

for PFM with p=1.0 and 0.5 as shown in Fig. 5 are in good agreement with the results shown in 

Eq. (11). 

 

 

5. Implementation 
 

After the analytical study of the numerical properties of PFM for a linear elastic system, it is 

important to further examine its actual performance in the solution of a nonlinear system. For this 

purpose, PFM is implemented for a multiple degree of freedom system. As a result, it can be 

expressed as 
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where M, C0 and K are mass, viscous damping and stiffness matrices, respectively; di, vi, ai and fi 

are vectors of displacement, velocity, acceleration and external force at the i-th time step, 

respectively. The coefficient matrices of B1 to B3 are found to be 
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where K0 is the initial stiffness matrix and the stiffness matrix K in the first line of Eq. (12) is 

generally different from the initial stiffness K0 for a nonlinear system. A restoring force vector ri+1 

is often introduced to replace Kdi+1 in the solution of a nonlinear system.  

The second line of Eq. (12) indicates that PFM can have an explicit formulation since it can be 

directly applied to determine the next step displacement vector. This is because that it only 

involves the previous two step data and involves no current step data. Apparently, the direct use of 

the coefficient matrices of B1 to B3 to determine the displacement vector di+1 is too expensive in 

computing since it requires to obtain the inverse matrix of D and subsequently the products of 

matrix to matrix. Both are time consuming. Alternatively, the solution procedure of the second line 

of Eq. (12) is numerically equivalent to solve the equation of 
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  (14) 

This equation can be solved by a direct elimination method, which consists of a triangulation 

and a substitution where a triangulation consumes much more computational effort than for a 

substitution. It is important to note that only one triangulation of D is needed since it is invariant 

for a whole integration procedure. In addition, the coefficient matrices for the velocity and 

acceleration terms on the right hand side of Eq. (14) are also invariant. Therefore, they can be 

restored for the subsequent use after the first calculations. This solution procedure for di+1 reveals 

that PFM can save many computational efforts for each time step when compared to an implicit 

method. This is because that PFM involves no nonlinear iterations for each time step while an 

iteration procedure is unavoidable for an implicit method in solving a nonlinear system.  

Similarly, the velocity vector can be obtained from the first and third lines of Eq. (12) and is 

numerically equivalent to solve the following equation 

 
 

 
 

 
 

0 1

1 1

2 3 2 3 1

1 2 1 1 2 1

3 1

2 1 1

i i i

i i i

p p
t t

p p p p

p p
t

p p



 

    
       

      

  
    

  

M C v M v a

f Ma r

        (15) 
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Fig. 6 Free vibration responses to mathematical nonlinearity 

 

 

This equation can also be solved by a direct elimination method and only one triangulation of 

the matrix 2/(p+1)M+(3−p)/2(p+1)(Δt)C0 is needed to be performed for a whole step-by-step 

integration procedure. In addition, there is also no matrix-matrix product on the right hand side of 

Eq. (15). Apparently, no nonlinear iterations are involved for calculating the velocity vector. 

Finally, the acceleration vector can be calculated by using the equations of motion, i.e., the first 

line of Eq. (12). The implementation details of PFM reveal that it can have an explicit formulation 

and involves no nonlinear iterations in the solution of a nonlinear system. Hence, it is anticipated 

that it is computationally efficient when compared to an implicit method in solving an inertia-type 

problem. An explicit formulation may not be yielded for the proposed family method when 

internal force and velocity are nonlinearly depended. 

 
 
6. Numerical illustrations 
 

Analytical studies of PFM reveal that it has very promising numerical properties for a linear 

elastic system. Therefore, it is of interest to confirm the obtained analytical results for linear elastic 

systems and to examine its performance in the solution of nonlinear systems. In addition, the study 

of computational efficiency is also of great interest since PFM integrates the explicit formulation 

and unconditional stability together. In this numerical study, PFM with p=0.1 and 0.5 will be 

intensively used in the following numerical demonstrations since the former method possesses no 

numerical damping while the latter method shows controllable numerical damping. For brevity, the 

former method will be referred as PFM1 and the latter method is PFM2.  
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Fig. 7 Seismic responses to elastoplastic nonlinearity for one-story building 

 
 
6.1 Example 1-Response to mathematical nonlinearity 
 

A second-order differential equation is mathematically designated and it can be considered as 

the equation of motion for a single degree of freedom system with varied stiffness. In fact, it is 

 0
1

u
u

u
 


                                (16) 

where the case of stiffness softening will be encountered for nonzero displacement. In addition, the 

degree of stiffness softening will increase for a large value of u. The initial period of the system is 

found to be 2π sec for u=0. The free vibration responses to the initial conditions of u(0)=0 and   

u (0)=50 are calculated by the Newmark explicit method (NEM), AAM, PFM1 and PFM2.  

Fig. 6 shows the calculation results. The solution obtained from NEM with Δt=0.01 sec can be 

considered as a reference solution for comparison. It is manifested from Fig. 6(a) that AAM, 

PFM1 and PFM2 with a time step of Δt=0.2 sec can result in a reliable solution. This time step is 

in correspondence to Δt/T0=0.032≤0.05. In order to look into the variation of stiffness during the 

free vibration, the time history of stiffness is plotted in Fig. 6(b). It is evident that the system is 

experienced highly nonlinear stiffness softening since the stiffness ki roughly varies in the range of 

10-3<ki≤1. This example indicates that both PFM1 and PFM2 can be applied to solve a highly 

nonlinear system and lead to the numerical solution with comparable accuracy when compared to 

the result obtained from AAM.    
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6.2 Example 2-Seismic response to elastoplastic nonlinearity 
  

A one-story building with an elastoplastic model is considered in this example. The lumped 

mass of 4×103 kg and the stiffness of 105 N/m are assumed for the building. This building has an 

initial natural frequency of 5 rad/sec  based on the initial structural properties. On the other hand, 

the yielding strength of the elastoplastic model is assumed to be 5×103 N for both compression and 

tension. The ground acceleration record of TCU075 with a peak ground acceleration of 0.8 g is 

inputted into the building. TCU075 was collected from the main shock of 1999 Chi-Chi 

earthquake in Taiwan. This record is a near-field ground motion data and has a significant pulse-

like wave in the velocity wave form (Loh et al. 2000).  

Since the interval of digitization of TCU075 is 0.005 sec , the numerical result obtained from 

NEM with Δt=0.005 sec is considered as a reference solution for comparison purposes. On the 

other hand, the time step of Δt=0.02 sec are used to carry out time integration for AAM, PFM1 and 

PFM2. Apparently, this time step of Δt=0.02 will lead to almost no period distortion since the 

value of Δt/T0=0.016 is much smaller than 0.05. Hence, the key factor to have a reliable solution is 

to minimize the linearization errors of the elastoplastic model. The numerical results for 

displacement response and hysteretic loop are plotted in Fig. 7. It is evident from Fig. 7(a) that 

AAM, PFM1 and PFM2 can have acceptable solutions although slight errors are visible in the late 

response time histories. That the yielding point is not exactly captured might be responsible for the 

slight errors. The very complicated elastoplastic behavior of the one-story building is revealed by 

Fig. 7(b). Thus, it is confirmed that PFM1 and PFM2 can be employed to solve a highly nonlinear 

problem with an elastoplastic model.  

 

6.3 Example 3-Response to 7-story building 
 

In order to illustrate the effectiveness of using high-frequency numerical damping to filter out 

the spurious participation of high frequency modes for PFM, a 7-story shear-beam type building is 

considered. The building is shown in Fig. 8, where a lumped mass is assumed for each story and 

the stiffness of each story consists a linear part and a nonlinear part. The linear part is a constant 

stiffness and the nonlinear part is a function of the story drift. The stiffness for each story can be 

expressed in the form of 

 0 1
1 , , 1~ 7

j i i i i i i i
k k p u u u u i

  
                   (17) 

where kj-i is the instantaneous stiffness for the i-th story at the end of the j-th time step and k0-i is 

the initial stiffness for the i-th story at the start of the motion; Δui is the story drift for the i-th story 

and pi is a given constant corresponding to this story drift. The initial natural frequencies and the 

1st and 7th modal shapes of the building are also shown in Fig. 8. Two initial conditions are 

intentionally designated to confirm the effectiveness of numerical damping for PFM. The 1st initial 

displacement condition only contains the pure 1st mode, i.e., u1(0)=ϕ1/10. Whereas, the 2nd initial 

displacement condition consists of the 1st and 7th modes with an equal weight, i.e., u2(0)=ϕ1/10+ 

ϕ7/10. Meanwhile, two different stiffness properties are specified so that a linear elastic system and 

a nonlinear system can be simulated. The pi values for the two systems are given as below: 

 (A) 
1 7

~ 0.0p p    a linear elastic system 

 (B) 
1 7

~ 0.5p p    a nonlinear system  
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Fig. 8 A 7-story building and its structural properties 

 

 
Fig. 9 Free vibration responses of linear elastic 7-story building 

 

 

The free vibration response to u1(0) is obtained from NEM with a time step of Δt=0.0005 sec,  

which is small enough to satisfy the upper stability limit (7)

0
( ) 1.67 2.0t    . Meanwhile, the  
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Fig. 10 Free vibration responses of nonlinear 7-story building 

 

 

free vibration responses to u2(0) are computed by using AAM, PFM1 and PFM2 with a time step 

of Δt=0.01 sec. 

The displacement responses of the 1st and 7th stories for the linear elastic system are shown in 

Fig. 9 while those for the nonlinear system are plotted in Fig. 10. The solution obtained from NEM 

can be considered as an exact solution for comparison purpose since it only contains the pure 1st 

modal response. In Fig. 9(a), the four curves are overlapped together. This implies that AAM, 

PFM1 and PFM2 can give very accurate solutions for the 1st story. This is because that there is 

almost no contribution from the 7th mode to the total response at the 1st story and the time step of 

Δt=0.01 sec is small enough to accurately integrate the 1st modal response. On the other hand, in 

Fig. 9(b), the numerical results obtained from AAM and PFM1 drastically deviate from the exact 

solution while the result obtained from PFM2 is also almost coincided with the reference solution 

except for the very early response. This is because that AAM and PFM1 possess no numerical 

damping to filter out the 7th modal response while PFM2 has controllable numerical dissipation to 

remove the 7th modal response and thus it leads to a very reliable solution. Very similar phenomena 

are found in Fig. 10 for the nonlinear system. Notice that only part of the displacement responses 

for the 7th story are plotted in Fig. 10(b) in order to have a closer examination of using numerical 

damping to eliminate the 7th modal response.  

 

6.4 Example 4-Confirmation of convergence rate for PFM without dynamic loading 
  

It is manifested from Eq. (7) that PFM is a second-order accurate method based on the 

evaluation of local truncation error. This analytical prediction can be further verified by numerical  
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Fig. 11 Convergence of displacement, velocity and acceleration without dynamic loading 

 

 

study. In fact, Example 3 can be applied to examine the convergence rate of PFM by calculating 

the displacement, velocity and acceleration. This can be done by next. At first, a series of different 

time steps, which must be small enough to yield accurate solutions, are employed to compute the 

free vibration responses to u2(0) by using AAM, PFM1 and PFM2. In addition, the displacement 

error of |di−u(ti)|, velocity error of |vi− u (ti)| and acceleration error of |ai− u (ti)| at the instant time of 

t=0.1 sec are also calculated. Notice that u(ti), u (ti) and u (ti) are introduced to denote the exact 

displacement, velocity and acceleration at the instant time of t=0.1 sec and are obtained from a 

very small time step. As a result, the log of the error versus the log of step size on log-log scale is 

plotted in Fig. 11.  

In Fig. 11, it is found that that the slopes of the displacement errors and the velocity errors 

evaluated at the instant time of t=0.1 sec for PFM1 and PFM2 are almost the same as those of 

AAM and show a convergence rate of 2 for both the linear elastic and nonlinear systems. Although 

a similar phenomenon is also found for the acceleration error at the instant time of t=0.1 sec for 

AAM and PFM1 and a convergence rate of 2 is also found for the two systems, the results for 

PFM2 are different from those obtained from AAM and PFM1 and only show a convergence rate 

about 1 for the two systems. 

 

6.5 Example 5-Confirmation of convergence rate for PFM with dynamic loading 
 

The convergence rate of PFM was confirmed in the previous example through the calculation  
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Fig. 12 Convergence of displacement, velocity and acceleration with dynamic loading 

 

 

of the free vibration responses of the 7-story building. These results cannot reflect the convergence 

rate of PFM under dynamic loading. Hence, it is of interest to investigate its convergence rate 

under dynamic loading. For this purpose, a single degree of freedom system subject to the 

dynamic load of sin(t/10) N is considered. In fact, the following two systems are solved.  

 

 

sin /10                            linear elastic system

sin /10                     nonlinear system
1

u u t

u
u t

u

 

 


             (18) 

Similar to the plot of Fig. 11, the log of the error versus the log of step size on log-log scale is 

plotted in Fig. 12, where the time instant of t=0.2 sec is considered. 

Apparently, the phenomena found in Fig. 11 are also found in Fig. 12. In fact, the slopes of the 

displacement errors and the velocity errors at the instant time of t=0.2 sec for PFM1 and PFM2 

seem to be the same as those of AAM and have a convergence rate of 2 for both the linear elastic 

and nonlinear systems. On the other hand, although the slopes of the acceleration errors at the 

instant time of t=0.2 sec for AAM and PFM1 also show a convergence rate of 2 for the two 

systems, a smaller convergence rate about 1 is found for PFM2 for both systems. As a result, it is 

illustrated that PFM can have a second order accuracy for the case of nonzero dynamic loading. 

 

6.6 Example 6-Computational efficiency 
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Fig. 13 A n-degree-of-freedom spring-mass system 

 
Table 1 The lowest and highest initial natural frequencies 

n )1(
0 rad/sec )(

0
n rad/sec 

250 12.54 4000.00 

500 6.28 4000.00 

1000 3.14 4000.00 

 

 

Since PFM can integrate explicit formulation and unconditional stability together, it might be 

very computational efficiency in solving an inertia-type problem. In order to thoroughly confirm 

the computational efficiency of PFM, a large spring-mass system is designated for this purpose. 

The system is shown in Fig. 13, where the stiffness ki of each spring will decrease after the system 

deforms due to the nonlinear term of 7

1
6 10

i i
u u


   . A 250-degree-of-freedom (250-DOF) 

system can be simulated if n is taken to be 250. Similarly, a 500-DOF system and a 1000-DOF 

system are simulated by choosing n=500 and 1000, respectively. For comparisons, NEM, AAM, 

Chang explicit method (CEM) (Chang 2002a, 2007), HHT–α method with α=−1/3 (HHT) (Hilber 

et al. 1977), Optimal U0-V0 algorithm with ρ∞=1/2 (TAM) (Zhou and Tamma 2006)
 
and PFM2 

are used to calculate the displacement responses. The three spring-mass systems are excited by a 

sinusoidal load of Asin(t) at their base, where the amplitude A is taken to be 10, 5 and 1 in 

correspondence to 250-DOF, 500-DOF and 1000-DOF systems. The lowest and highest initial 

natural frequencies of the three systems are summarized in Table 1 for brevity.   

It is seen in Table 1 that the three systems have the same highest initial natural frequency and is 

as large as 4000.0 rad/sec. This implies that a time step less than or equal to Δt=5×10-4 sec is 

needed for using NEM to solve any of the three systems. Hence, Δt=5×10-4 sec is adopted for 

solving the three systems. Since this time step is much smaller than accuracy consideration, it will 

lead to a very reliable solution and can be considered as an exact solution for comparison. On the 

other hand, there is no limitation on step size to meet an upper stability limit for the rest 

integration methods since they are unconditionally stable. In fact, the maximum allowable time 

step to yield an accurate result for the 250-DOF system is 0.025 sec for the rest integration 

methods. Whereas, those for the 500-DOF and 1000-DOF systems are 0.05 and 0.04 sec, 

correspondingly.  
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Fig. 14 Forced vibration responses of 250-DOF system 

 

 
Fig. 15 Forced vibration responses of 500-DOF system 
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Fig. 16 Forced vibration responses of 1000-DOF system 

 

 

Numerical results for the 250-DOF system are shown in Fig. 14 while those for the 500-DOF 

and 1000-DOF systems are plotted in Figs. 15 and 16, respectively. The top plot of each figure 

shows the numerical results obtained from NEM, AAM and CEM while those obtained from 

NEM, HHT, TAM and PFM2 are plotted in the bottom plot of each figure. It is worth noting that 

HHT, TAM and PFM2 can have desired numerical dissipation while NEM, AAM and CEM 

possess no numerical damping. An iteration procedure is needed for using AAM, HHT, and TAM 

since they are implicit methods. In each computation, the Newton-type iteration method is adopted 

to conduct the time integration procedure. It is seen in the two plots of Fig. 14 that the use of 

Δt=0.025 sec is able to obtain reliable solutions for the 250-DOF system for using AAM, CEM, 

HHT, TAM and PFM2. Therefore, it is strongly indicated that PFM2 is unconditionally stable 

since the product of the initial highest natural frequency and step size is as large as 100. Besides, it 

is also confirmed that PFM2 can have comparable accuracy when compared to AAM, CEM, HHT 

and TAM. Very similar phenomena are also found for the 500-DOF and 1000-DOF systems as 

shown in Figs. 15 and 16, respectively.  

To evaluate the computational efficiency of PFM2 in contrast to NEM, AAM, CEM, HHT and 

TAM, the CPU time consumed for each time history analysis is recorded and summarized in Table 

2. In addition, the average iteration number per time step is also shown in a parenthesis right 

behind the consumed CPU time for AAM, HHT and TAM. The ratio of the CPU time consumed 

by PFM2 over that of AAM is listed in the 9th column while that for TAM is shown in the last 

column. The 8th column reveals that PFM2 involves much less CPU time when compared to NEM, 

AAM, HHT and TAM. The use of a small time step to meet the upper stability limit is responsible 

for involving large CPU time for NEM. Notice that it is computationally inefficient for using NEM 

834



 

 

 

 

 

 

A family of dissipative structure-dependent integration methods 

 

 

Table 2 Comparison of CPU time 

N-DOF Δt NEM AAM CEM HHT TAM PFM2 PFM2/AAM PFM2/TAM 

250 0.025 38 205(3.7) 1.2 206(3.7) 326(6.6) 1.3 0.63% 0.40% 

500 0.05 215 1303(6.2) 3.7 1350(6.4) 1745(8.5) 4.1 0.31% 0.23% 

1000 0.04 1068 8543(2.4) 15.8 8953(2.4) 11342(4.0) 20.9 0.24% 0.18% 

 

 

to solve an inertia-type problem such as the three systems. However, it is applied to emphasize the 

importance of using an unconditionally stable integration method to solve such problems. On the 

other hand, although the unconditional stability of AAM, HHT and TAM enables the use of a large 

time step to perform the time integration procedure, many computational efforts are still consumed 

as shown in the 4th, 6th and 7th columns. This is because that an iteration procedure is needed in 

each time step for an implicit method and it is very time consuming for a matrix of large order. The 

integration of explicit formulation and unconditional stability together results in r saving many 

computational efforts for PFM2. In fact, the unconditional stability allows it use a large time step 

and the explicit formulation allows it involve no nonlinear iteration for each time step. The last 

two columns reveal that the CPU time consumed by PFM2 is less than 1% of that consumed by 

AAM and TAM for all the cases. In addition, it seems that the ratio will become small as the total 

number of degree of freedom increases. It is manifested from the 5th column that the CPU time 

involved by CEM is slightly less than that of PFM2. This is because that it also integrates 

unconditional stability and explicit formulation together. In addition, its implementation is slightly 

simpler than for PFM2. However, it has no numerical dissipation.  

 

 

7. Conclusions 
  

Since numerical damping can be used to effectively filter out the spurious oscillations of high 

frequency responses, it is beneficial for an integration algorithm to have such a numerical damping 

property. For this purpose, a family of dissipative integration methods is proposed and presented in 

this work. A unique parameter p is introduced to control the numerical properties of this family 

method. In general, it has unconditional stability, second order accuracy and favorable numerical 

dissipation, which can be continuously controlled by the parameter p. In addition, it exhibits no 

overshooting in displacement while a tendency to overshoot in velocity is found due to the initial 

displacement term. Since the proposed family method can integrate unconditional stability and 

explicit formulation together, it is anticipated that it can save many computational efforts when 

compared to the use of an implicit method to solve an inertia-type problem. This is mainly because 

that it involves no nonlinear iterations for each time step. It is evident from numerical experiment 

that the CPU time consumed by the proposed family method might be as less as about 0.24% of 

that consumed by the constant average acceleration method in solving an inertia-type problem for 

a 1000-degree-of-freedom system.    
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