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Abstract.  Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 

introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans 

it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. 

The paper presents three methods of estimation of the equivalent moment of inertia for such spans: 

experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are 

presented. Recorded displacements and the method of least squares are used to find an “experimental” 

moment of inertia. Then it is computed according to the analytical method that accounts for joint action of 

truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. 

Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results 

is given. The comparative analysis proves efficiency of the analytical method. 
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1. Introduction 
 

Flexural stiffness is one of crucial parameters of a bridge span. For a long time it has governed 

the serviceability limit state of deflection of a bridge superstructure. European standard of bridge 

design introduced another limit state that depends on the parameter. It is the serviceability limit 

state for railway bridge spans concerning hazard of resonance induced by crossing trains. 

Estimation of bridge span flexural stiffness is relatively easy for plate-girder and box-girder 

bridges. Their cross-section is coherent-all components are tied together continually along span 

length. It is so particularly for modern bridges which exhibit joint action of main girders and a 

deck. Arch, cable-stayed and suspension bridges have complex cross-sections. In all these cases 

components that influence span flexural stiffness are connected at some points along the span by 

members that are “weak” along the span (hangers). Moreover, for suspension bridges and cable-

stayed bridges, construction of pylons influences span flexural stiffness. Truss-girder bridge spans 

differ from the two groups. Their components are separated in cross-section but connected with a 

bracing system that is relatively rigid along span length. The differences are shown in Fig. 1. 

The paper compares estimations of moment of inertia for a truss bridge span based on testing, 

finite element method and analytical method. The latter one takes into account joint action of the  
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Fig. 1 Cross-sections of bridge spans

 

 
 

 
Fig. 2 Bottom flange of a gussetless bridge truss girder (top) and an example of assembly part (bottom)
 
 

bridge deck and girders as well as limited shear stiffness provided by diagonal bracing. It is 
applicable to preliminary design of trussed structures and rapid assessment of flexural stiffness of 
existing truss bridge spans. 
 
 
2. Trussed structures in bridge building 
 

Bridge building still applies trussed structures to carry loads. The most popular are truss girders 
characterized recently by Chen et al. (2013), Unsworth (2010). Modern bridge truss girders are 
usually gussetless-gusset plates are incorporated into member vertical walls (Fig. 2). Thus nodes 
are truly rigid. In terms of static behaviour the girders act as frames and as such they are analysed. 

Besides having rigid nodes the bridge trussed structures more and more often carry loads 
applied at nodes and between them (Fig. 3). Such truss bridge spans are described for instance by 
Reintjes (2009) as well as Xia and Zhong (2011).  

Trussed systems are widely used also as main members of decks of arched and cable-stayed  

802



 
 
 
 
 
 

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck 

 
Fig. 3 The idea of modern truss bridge span 

 

 
Fig. 4 Examples of contemporary bridge decks: steel-concrete composite (left) and orthotropic (right); 
both shown for I and box cross-sections of the flange of trussed structure
 
 

bridges. Such structures are reported by Xia and Zhong (2011), Zhang and Zhang (2011), Zheng 
and Dai (2013) as well as Nan et al. (2014). They are also applied as stiffening members of decks 
of suspension bridges as described by Li et al. (2007). 

Due to cross-beam arrangement shown in Fig. 3 the flanges of trussed structures carry 
significant bending moments. So the flanges usually have cross-section of significant height to get 
an appropriate moment of inertia. I-sections and box-sections are used. To reduce dimensions of 
joints the flange members are usually situated eccentrically in reference to their theoretical flange 
axes. 

The decks of simply supported or suspended to arches or pylons trussed structures are similar 
The idea is shown in Fig. 4- concrete slabs and steel orthotropic decks are used. The joint action of 
the decks and main girders is usually expected. In railway bridges the decks carry regular railway 
tracks (rails, slippers, gravel). 
 
 
3. Tested bridge spans and test loading results 
 

Twin bridge spans, shown in Fig. 5, were tested. Geometrical data of the spans: 
- theoretical span length: 51.0 m, 
- truss girder spacing: 5.30 m, 
- truss girder theoretical height: 8.00 m, 
- distance between centres of gravity of top and bottom flanges: 8.85 m, 
- bottom flange node spacing: 12.75 m,  
- cross-beam spacing: 3.19 m, 
- RC slab thickness – variable – 0.25÷0.33 m 
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Fig. 5 Analyzed bridge span: general view (left) and cross-section (right) 
 

Table 1 Cross-section characteristics of main structural elements 

Model element 
(for symbols see Fig. 5) 

AX  (cm2) IX  (cm4) IY  (cm4) IZ  (cm4) 

D11, D12 (half of length near D11) 364 231 1669197 33358 
D12 (half of length near D13), D13, D14

 (half of length near D13), 
394 337 1878496 39608 

D14 (half of length near D21), D21 
 (half of length near D14) 

474 794 2466298 56274 

D21 (half of length near D22), D22÷D24 310 432 158183 41711 
G1 405 958 221373 58398 
G2 244 243 87208 37514 
K1 184 110 25014 59471 
K2 134 58 12803 40572 
K3 98 32 4503 27393 
K4 170 150 5439 15719 

Transverse beam – composite beam 599 57000 614000 810000 
Transverse beam – steel beam 364 231 1669197 33358 

Concrete slab 
8 shell elements across and 32 shell elements along the deck 

slab, 28 cm thick 
 
 
- slab longitudinal reinforcement: top and bottom layers of 32 25 steel bars. 
Cross-sectional characteristics, according to the design documentation, are given in Table 1. 
For the testing of both spans the same set of three coupled locomotives was used-Fig. 6. In the 

case of both spans, railway track is located symmetrically between truss girders (Fig. 5). 
Vertical displacements of bottom flange nodes 1, 2 and 3 (Fig. 6) were recorded during testing. 

The land survey method used for measuring provided accuracy of 0.01 mm. The recorded 
displacements are put together in Table 2. Positive sign marks direction downwards. 

Because of the similarity of loading conditions for the four girders (I-A, I-B, II-A and II-B)  
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Fig. 6 Test loading: scheme (top) and general view (bottom) 

 
Table 2 Elastic displacements of truss bottom flange nodes 

Flange node (i) Location 

Elastic displacement (mm) 
Span I Span II 

girder I-A 
(k=1) 

girder I-B 
(k=2) 

girder II-A 
(k=3) 

girder II-B 
(k=4) 

1 ¼·Lt 8.05 8.25 8.15 8.20 
2 ½·Lt 11.35 12.10 11.85 11.80 
3 ¾·Lt 7.65 8.25 8.30 8.20 

 
 

their node displacement recordings, given in Table 2, were assumed to be statistic samples (four 
samples per flange node). Mean values of displacements at flange nodes are computed according 
to the equation 

 
n
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n
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                                                                 (1) 

where: ui ave-mean value of the displacement of node i, i=1, 2, 3, uik-the k-th sample of recorded 
displacements at the node i, k=1, 2, 3, 4, n-number of samples, n=4. 

Standard deviation for the mean values of displacements, given in Table 3, is computed 
according to the equation 

 
 

1n

uu
s

n

1k

2
aveiik

i 





  .                                                       (2) 

The computed mean displacements and standard deviations computed for population of four 
samples are put together in Table 3. It can be seen from Table 3 that the scatter of recorded  
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Table 3 Mean displacements and standard deviations 

Flange node (i) Location 
Mean elastic displacement 

ui ave (mm) 
Standard deviation 

si (mm) 
si / ui ave 

1 ¼·Lt 8.16 0.09 1% 

2 ½·Lt 11.78 0.34 3% 

3 ¾·Lt 8.10 0.33 4% 

 
 

displacements for each node is small-standard deviation up to 4% of the respective mean value. It 
supports the preliminary assumptions that the four truss girders are treated as four statistic 
samples. 
 
 
4. Experimental estimation of span moment of inertia 
 

The estimation is based on recorded node displacements. The method of least squares is chosen 
to find an equivalent moment of inertia of truss bridge spans. It is the most popular statistical 
method being applied in practice. Its implementation in a spreadsheet is fairly easy. For direct 
measurements with average Gauss error equal to zero (as land survey repeatable measurements) 
the criterion of least squares method is equivalent to the criterion of the highest credibility method. 

The equivalent moment of inertia of the tested truss bridge spans is defined as the one that 
provides the following 

   minuu
3

1i

2
estireci 

                                                        
(3) 

 where: ui rec-recorded displacement of nodes of truss bottom flange (Table 3), ui est-displacement of 
the respective three points located on a simply supported beam of equivalent moment of inertia 

and of the bridge span length. 
Displacements ui est of a simply supported beam of equivalent moment of inertia are computed 

as superposition of displacement of respective point “i” caused by the nodal forces Pj-resultants of 
division of forces shown in Fig. 6 into bottom flange nodes (0, 1, 2, 3, 4). The method of 
computing node displacements is shown in Fig. 7. 

Vertical displacement uij of flange node “i” caused by the nodal force Pj equals (Fig. 7) 
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                       (4) 

where: xi and xj are ordinates of node “i” and concentrated load Pj along rigid flange, respectively 
(Fig. 7), Lt-theoretical span length, i.e., distance between axes of supports (m), E-elastic modulus 
of steel (kPa), JTR-moment of inertia of equivalent simply supported beam representing a bridge 
span (m4). 

806



 
 
 
 
 
 

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck 

 
Fig. 7 Method of computing displacement of an equivalent beam 

 
Table 4 Computed displacements for the equivalent moment of inertia Iexp 

Nodal forces Pj (kN) 
Displacements uij est (mm) at the respective points 

on the equivalent beam 

1 (¼·Lt) 2 (½·Lt) 3 (¾·Lt) 
P0=305.4 0.00 0.00 0.00 
P1=742.8 2.62 3.20 2.03 
P2=839.6 3.61 5.26 3.61 
P3=736.4 2.02 3.17 2.59 
P4=315.8 0.00 0.00 0.00 

Total (ui est) 8.24 11.62 8.24 
 

 
Total displacement of flange node “i” is 

 



3

1j
estijesti uu                                                               (5) 

Nodal forces Pj were computed. Then the equivalent moment of inertia Iexp for the experimental 
results (ui rec) was computed with an aid of a result search analysis available in a spreadsheet, under 
the condition given in Eq. (3). During the process estimated displacements were computed as in 
Eq. (4). The nodal forces Pj and displacements of respective points (1, 2, 3) of an equivalent 
simply supported beam They are put together in Table 4. 

The obtained equivalent moment of inertia for bridge span equals Iexp=2,154 m4. 
 
 
5. Analytical method of estimation of span moment of inertia 
 

5.1 Simplified technique 
 

Simple technique of estimation of moment of inertia in bending for through truss bridge span is 
computing it as total moment of inertia of two truss girders 

  2
bbb

2
ttts.a zAIzAI2I                                                (6) 

where: Ia.s-moment of inertia in bending for a truss bridge span (m4), It, Ib-average moments of 
inertia of top and bottom flange of a truss girder, respectively (m4), At, Ab-average cross-sectional 
area of top and bottom flange of a truss girder, respectively (m2), zt, zb-distance from the truss 
centre of gravity to the centre of gravity of top and bottom flange of a truss girder, respectively 
(m). 

Location of the truss centre of gravity is computed as follows 
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Table 5 The computation results of the simple analytical method 

Parameter Units Value 

Ab m2 0.0423 
Ib m4 0.0210 
At m2 0.0342 
It m4 0.0018 
zb m 3.95 
zt m 4.90 

Ia.s m4 3.007 
 

 
Fig. 8 Structural system for setting equivalent cross-sectional area of flange member adjacent to deck 

 
 

btt

bt

tt
b

zhz

AA

hA
z






                                                                 (7) 

where: ht-distance between top and bottom flange centre of gravity. 
The computation results of the simple analytical method, applied to the truss bridge span 

described in the Chapter 3, are put together in Table 5.  
 

5.2 Refined technique 
 

The technique accounts for influence of bridge deck and limited shear stiffness provided by 
diagonal bracing. Accounting for influence of steel-concrete composite deck on flexural stiffness 
of through truss bridge span is described by Siekierski (2014). It is based on the idea of an 
equivalent cross-sectional area of members of truss flange adjacent to the composite deck. The 
structural system shown in Fig. 8 is analysed. It consists of a single span of deck concrete slab (up 
to span longitudinal symmetry axis) and adjacent truss girder member, both of the length r (cross-
beam spacing). The composite deck is connected to the girder with a “connecting member” of 
length d. The member is assumed to have cross-sectional properties just like steel cross-beam. The 
length d equals the distance between the outermost shear connector of cross-beam and the 
longitudinal centre plane of a truss girder. 

In a real structure the “connecting member” consists of steel cross-beam and stiffener of the 
truss flange adjacent to the deck (Fig. 5). Its moment of inertia in horizontal plane is smaller than  
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Fig. 9 Fixed-fixed (left) and fixed-hinged (right) boundary conditions for the “connecting member” 
 
 

Iah. To take it into account an additional flexibility is introduced. Namely it is assumed that the 
response of the “connecting member” to the force N is an average of the two cases of boundary 
conditions: fixed-fixed and fixed-hinged. The conditions are shown in Fig. 9, left and right, 
respectively. 

In the system shown in Fig. 8 the force N is carried to support by truss girder member and 
concrete slab. The extent of joint action of the two members is governed by flexural stiffness in 
horizontal plane of the “connecting member” of length d. 

For the system shown in Fig. 8 the difference of forces N and Pa is expressed as a function of 
the difference on elongations of the flange member adjacent to the deck (la) and the concrete slab 
(lc) 

  ca3
aha

a ll
d

IE
PN 


 .                                                (8) 

where  is 12 for the fixed-fixed boundary conditions (Fig. 9, left) and 3 for the and fixed-hinged 
boundary conditions (Fig. 9, right). 

The equilibrium of forces (N, Pa, Pc) must occur in the same time and both elongations (la, 
lc) are described by Hooke’s law. 

Equivalent cross-sectional area of truss flange must provide equality of its elongation and the 
elongation of the truss flange as part of the system shown in Fig. 8. It means that 
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(9) 

Thus the equivalent cross-sectional area (Aa equ) of the flange member adjacent to the deck is: 
– in the case of fixed-fixed boundary conditions (=12) 
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– in the case of fixed-hinged boundary conditions (=3) 
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                                      (11) 

where: Aa,ff, Aa,fh-equivalent cross-sectional area (m2) of flange member adjacent to the deck 
obtained for the fixed-fixed and fixed-hinged boundary conditions, respectively, Ac-half of cross-
sectional area of the concrete slab (m2), Ec-elastic modulus of concrete (kPa), Ea-elastic modulus 

of steel (kPa), 
a

c

E

E
 , Iah-moment of inertia of steel cross-beam in horizontal plane (m4). 
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The mean value of the equivalent cross-sectional area Aa,m is 

 
2

AA
A fh,aff,a

m,a




                                                         
(12) 

In this way the Ab,m of the bottom flange of the truss girder shown in Fig. 5 is computed. 
Thus the modified moment of inertia of a truss bridge span is 

  2
m,bm,bb

2
m,tttm.a zAIzAI2I                                           (13) 

where: Ab,m-average cross-sectional area of bottom flange (m2) accounting for joint action of truss 
girders and steel-concrete composite deck, computed according to Eq. (12), zt,m, zb,m-distance from 
the truss centre of gravity to the centre of gravity of top and bottom flange, respectively (m), 
computed for the bottom flange area equal to Ab,m. 

Bracing members of trusses provide smaller shear stiffness in comparison to webs of plate 
girders. Hence, effective moment of inertia of truss girder is smaller than given in Eq. (13). The 
difference depends on truss static scheme-type of supports and loading. In the case of bridge truss 
girders, a simply supported and uniformly loaded beam is a representative scheme. So the moment 
of inertia of a truss bridge span accounting for the actual shear stiffness of truss girders is 
(Pałkowski 2001) 

 

  2
tv

m.aa

m.a
r.a

LS2

IE

5

48
1

I
I








                                                     

(14) 

where: Ia.r-moment of inertia of truss bridge span accounting for joint action of the bridge deck and 
girders as well as actual shear stiffness of the truss girders provided by diagonal bracing (m4), Lt-
truss girder theoretical length (m), Sv-shear stiffness for a single truss girder, 2·Sv-shear stiffness 
for a truss bridge span made of two girders. 

In the case of a truss girder with parallel flanges and “W” bracing, its shear stiffness equals 
(Pałkowski 2001) 

     cossinAES 2
dav                                                 (15) 

where:  is an inclination angle of diagonal bracing (measured with respect to horizontal plane), 
Ad-cross-sectional area of bracing diagonal of a truss girder (m2), if the area of bracing diagonals 
vary the average is assumed. 

The computation results of the refined analytical method are put together in Table 6. 
 
 

Table 6 The computation results of the advanced analytical method 

Parameter Units Value 
Ia.s m4 3.007 
Ab,m m2 0.0510 
zb,m m 3.55 
zt,m m 5.30 
Ia.m m4 1.625 
Ad m2 0.0165 
Sv kN 1.29·106 
Ia.r m4 1.664 
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Fig. 10 Computational model of finite element method 

 
Table 7 Computed displacements of bottom flange nodes 

Node number Displacement ui FEM [mm] 

1 9.43 

2 13.35 

3 9.29 

 
 
6. FEM assessment of span moment of inertia 
 

Finite element method, implemented in the Autodesk Robot package (Autodesk Robot 2013), 
was used to create numerical model of the bridge span presented in the Chapter 3. The model is 
shown in Fig. 10. Structure dimensions were assumed as in the design documentation and cross-
sectional data-as in Table 1. 

The computational model consists of beam elements, that model truss girders, transverse 
beams, wind bracings, and shell elements modelling RC slab. The shell elements are placed at the 
level of RC slab mid-plane. Kinematic constraints are applied to appropriate pairs of nodes of 
cross-beams and truss bottom flanges to ensure compatibility of displacements. They are shown in 
Fig. 10 as short vertical elements connecting girders and deck. 

The FEM model respects eccentricity of bottom flange and different levels of neutral axes of 
steel cross-beams, composite cross-beams, and slab mid-plane. 

Based on the models the displacements of truss bottom flange nodes under test loading (Fig. 6) 
were computed. They are put in Table 7. 

The equivalent moment of inertia IFEM for the numerical results (ui FEM) was computed with an 
aid of a result search analysis available in a spreadsheet. The following condition was applied 

   minuu
3

1i

2
estiFEMi 

                                                   
(16) 

where: ui FEM-computed displacement of nodes of truss bottom flange based on the numerical 
analysis, ui est-displacement of the respective three points located on a simply supported beam of  
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Table 8 Computed displacements for the equivalent moment of inertia IFEM 

Nodal forces Pj (kN) 
Displacements uij est (mm) at the respective points 

on the equivalent beam 
1 (¼·Lt) 2 (½·Lt) 3 (¾·Lt) 

P0=305.4 0.00 0.00 0.00 
P1=742.8 2.99 3.65 2.32 
P2=839.6 4.13 6.00 4.13 
P3=736.4 2.30 3.62 2.96 
P4=315.8 0.00 0.00 0.00 

Total (ui est) 9.42 13.27 9.41 
 
Table 9 Equivalent moments of inertia resulted from application of different methods  

Result source Symbol I (m4) 
expI

I  

Experiment Iexp 2.154 1.00 
Simplified analytical method Ia.s 3.007 1.40 

Refined analytical method Ia.r 1.664 0.77 
Finite element method IFEM 1.886 0.88 

 
 
the bridge span length (described according to Eq. (4)). 

The obtained equivalent moment of inertia equals IFEM=1.886 m4. The computed displacements 
of the respective points (1, 2, 3) of an equivalent simply supported beam are put together in 
Table 8. 
 
 
7. Comparison of computation results 
 

An equivalent moment of inertia of a through truss bridge span was estimated with an aid of 
four different methods: experimental, simplified analytical, refined analytical and numerical. The 
computation results are put together in Table 9. 

It can be seen from Table 9 that refined analytical method and the finite element method give 
similar results-the span equivalent moment of inertia is underestimated by 12÷23%. The simplified 
analytical method provides a 40% overestimation of the moment of inertia. 
 
 
8. Conclusions 
 

The equivalent moment of inertia of a truss bridge span was estimated on the basis of test 
loading results. A simply supported beam of constant flexural stiffness was used as a model and 
the least squares method was applied to find the moment of inertia that provides the best 
agreement with recorded displacements of the truss bridge span. 

The moment of inertia was estimated using simplified and refined analytical methods. The 
simplified method assumes that the moment of inertia of a bridge span depends only on truss 
girders which are treated as web-less plate girders. The refined method takes into account joint 
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action of a bridge deck and girders as well as actual shear stiffness provided by diagonal bracing. 
Finite element model was created to estimate the bridge span moment of inertia. It consists of 

beam elements modelling truss members, steel cross-beams and bracing members as well as shell 
elements modelling deck concrete slab. 

The simplified analytical method should not be applied to assess the equivalent moment of 
inertia of a truss bridge span. However the refined analytical method provides the accuracy of 
estimation similar to the finite element method. The discrepancies of results provided by the two 
methods can be reduced by further refining of the analytical method i.e. accounting for dimensions 
of truss joints and rigidity of wind bracing. 

The refined analytical method and the finite element method underestimate the moment of 
inertia of the tested truss bridge span. It complies with the fact that actual flexural stiffness of 
bridge spans is usually underestimated by computational models. 

The refined analytical method is applicable to preliminary design of trussed structures and 
rapid assessment of flexural stiffness of existing truss bridge spans. 
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