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Abstract.  In the present study, separate and combined effects of rotary inertia, shear deformation and 

material non-homogeneity (MNH) on the values of natural frequencies of the simply supported beam are 

examined. MNH is characterized considering the parabolic variations of the Young's modulus and density 

along the thickness direction of the beam, while the value of Poisson’s ratio is assumed to remain constant. 

At first, the equation of the motion including the effects of the rotary inertia, shear deformation and MNH is 

provided. Then the solutions including frequencies of the first three modes for various combinations of the 

parameters of the MNH, depth to length ratios, and shear corrections factors are reported. To show the 

accuracy of the present results, two comparisons are carried out and good agreements are found. 
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1. Introduction 
 

Beam is one of the most important components in the engineering structures due to it can be 

used in various applications. In addition, different structures such as helicopter rotor blades, space 

craft antennae, flexible satellites, airplane wings, gun barrels, robot arms, high-rise buildings, 

long-span bridges, and subsystems of more complex structures can be modelled as a beam-like 

slender member. Therefore, examining the vibration behavior of this simple structural component 

considering different conditions would be helpful in understanding and explaining the behavior of 

more complex and real structures subjected similar conditions (Wang et al. 2000, Aghababaei et 

al. 2009a, b, Civalek and Gurses 2009, Carrera et al. 2011). 

It is seen that the dynamics of beams has received an extensive research for a long period, and 

the most of these works are mainly focused on thin beams, which are analyzed on the basis of 

Euler-Bernoulli beam theory also known as classical beam theory (CBT). However, CBT slightly 

overestimates the natural frequencies and the error increases with the increase of modes and 

thickness of the beam, due to rotary inertia and shear deformation effects are neglected. To 

enhance the accuracy, different theories are developed, i.e. including rotary inertia effects to CBT, 

which is called Reissner beam theory (RBT), including shear deformation to the CBT, which is 

called shear model beam theory (SMBT), and including both rotary inertia and shear deformation 
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effects which is called Timoshenko beam theory (TBT) (Timoshenko 1937, Han et al. 1999, De 

Silva 2000, Rao 2007, Labuschagne et al. 2009, Leissa and Qatu 2011, Wang and Wang 2014). 
Numerous studies have been published on the vibration of beams using different theories and 

methods, some of them are given in Refs. (Hurty and Moshe 1964, Grant 1978, Chang and Yuan 

1985, Horr and Schmidt 1995, Al-Ansary 1998, Yıldırım and Kıral 2000, Şimşek and Kocatürk 

2007, Civalek and Kiracioglu 2009, Demir et al. 2010, Irvine 2010, Saffari et al. 2012, Berrabah et 

al. 2013, Liu et al. 2013, Avcar 2014, Avcar and Saplioglu 2015, Bagdatli 2015, Mao 2015, 

Szyiko-Bigus and Sniady 2015, Yesilce 2015). 

All of the above mentioned studies are carried out for homogeneous (H) structures in sense that 

mechanical properties of the structure are taken to be constant throughout. However, plenty of 

materials exist in the nature which are non-homogeneous (NH), such as plywood, delta wood, 

timber, fiber reinforced plastic are examples of naturally NH materials, and glass epoxy and boron 

epoxy in steel alloys are examples of artificially NH materials. The mechanical properties of these 

materials may vary with the space coordinates, either continuously or discontinuously, in an 

arbitrary specified way (Chakraverty and Petyt 1997, Lal and Sharma 2004, Chakraverty et al. 

2007, Gupta et al. 2007, Civalek 2009, Gupta and Kumar 2010, Gupta et al. 2010, Lal and Kumar 

2013, Civalek 2013, Tounsi et al. 2013, Belabed et al. 2014, Hebali et al. 2014, Ait Amar Meziane 

et al. 2014, Ait Yahia et al. 2015, Mahi et al. 2015). As the use of these advanced materials in 

various fields of engineering and technology has been increased, the vibration problems of NH 

beams have been also received the attention of numerous researchers for long years (Nayfeh 1972, 

Chaudhuri and Datta 1989, Ji andYeh 1994, Tong et al. 1995, Elishakoff and Becquet 2000, 

Becquet and Elishakoff 2001, Elishakoff and Candan 2001, Elishakoff and Guede 2001, Elishakoff 

2005, Ece et al. 2007, Taha and Abohadima 2008, Avcar 2010, Lin 2010, Şimşek 2010, Mazzei 

and Scott 2012, Nandi et al. 2012, Akgöz and Civalek 2013, Mohammadnejad et al. 2014, 

Bourada et al. 2015, Gan et al.2015, Zemri et al. 2015). 

From the review of available literature it is observed that the separate and combined effects of 

rotary inertia, shear deformation and the MNH on the values of natural frequencies of the simply 

supported beam in which the MNH is characterized with the parabolic variation of the Young's 

modulus and density along the thickness direction has not been dealt yet. The objective of the 

present study is to address this problem. For this aim, firstly the equation of the motion including 

the effects of MNH, the rotary inertia and shear deformation is provided. Then the solutions 

including natural frequencies of the first three modes for various combinations of the parameters 

of the non-homogeneity, depth to length ratios and shear corrections factors are reported. The 

present analysis may be of beneficial to the designers, researchers, scientists and engineers, 

dealing with NH beams for finding the required natural frequency by changing the different 

parameters considered here.   

 
 
2. Fundamental equations 

 

Consider an elastic a beam of length L, Young’ modulus E, and mass density ρ, subjected to the 

effects of bending, shear deformation and rotary inertia as shown in Fig. 1 (De Silva 2000). 

 As one can see from Fig. 1(b), the total slope of the beam can be expressed as  






x

w
                                                                  (1) 
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(a) 

 
(b)                                                                     (c) 

Fig. 1 (a) Geometry of the beam, beam element under the effects of (b) bending and shear 

(c) rotary inertia 

 

 

where, θ, ψ, x and w are angle of rotation of beam element due to bending, increase in the slope 

due to shear deformation, longitudinal coordinate and the transverse displacement of beam, 

respectively. 

The linear shear stress-shear strain relation can be expressed using the sign convention given in 

Fig. 1(c), as 

 kGAQ                                                                 
 (2) 

here, Q, k, G and A are shear force, shear correction factor, shear modulus and area, respectively 

and following definition apply 

 


12

E
G                                                                   (3) 

where ν is the Poisson’s ratio.  

The equation of translational motion is  

 
2

2

t

w
A

x

Q









                                                               (4) 

here t is time.   

The equation of rotational motion of beam element including the rotary inertia is  

2

2

t
IQ

x

M









                                                             (5) 

where I is the area moment of inertia of the beam.  
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The relation between moment and curvature is  

x
EIM






                                                                 
(6) 

Manipulations of above mentioned equations yields the equation of motion for the free 

vibration of a H beam including shear deformation and rotary inertia effects as follows 

(Timoshenko 1937, De Silva 2000, Rao 2007, Leissa and Qatu 2011)  

0
t

w

kG
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w
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w
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22

4
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

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











 










                            (7) 

It is assumed that the MNH of the beam stems from the variation of Young’s modulus and mass 

density along the thickness direction (Chakraverty and Petyt 1997, Lal and Sharma 2004, 

Chakraverty et al. 2007, Gupta et al. 2007, Gupta and Kumar 2010, Gupta et al. 2010, Lal and 

Kumar 2013) 

))z(1(EE 11                                                              
(8) 

))z(1( 21                                                              (9) 

where hzz / , )(z  is the continuous function of MNH defining the variation of Young's  

modulus and mass density, E1 and ρ1 are the Young’s modulus and mass density of non-

homogenous material and β1 and β2 are the non-homogeneity and density parameters (−0.5≤βi≤0.5, 

i=1,2). It should be noted that the value of Poisson’s ratio is assumed to remain constant.  

The MNH function of the beam is taken to be parabolic function (Chakraverty and Petyt 1997, 

Chakraverty et al. 2007) 

2z)z(                                                                  (10) 

Considering Eqs. (8)-(10) in Eq.(7), the governing equation for the free vibration of a NH beam 

including shear deformation and rotary inertia effects is obtained as follow 
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


                       (11) 

where G1 is shear modulus and D is the flexural rigidity of the NH beam, and the following 

definitions apply 






















2/1

2/1

21

2/1

2/1

11

2/1

2/1

1
23

zd))z(1(

zd))z(1(
)1(2

E
G

zd))z(1(zEbhD

                                                (12) 

Note that, the first two terms represent the classical beam theory, plus three additional terms 

show the rotary inertia, shear deformation and their combined effects respectively in Eq. (11).  
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3. Solution of the fundamental equations 
 

The solution of the Eq. (11) is sought by separation of variables. Assume that the displacement 

can be separated into spatial and temporal variables 

)t(T)x()t,x(w                                                           (13) 

 where Γ and T are independent of time and position, respectively. 

Substituting Eq. (13) into Eq. (11) and after some mathematical operations, the following 

equation is obtained 

0)x(
)t(T

)t(T

kG

I

)t(T

)t(T
)x(

kG

D
I

)t(T

)t(T
)x(A)x(D

IV

1

2
1

II
II

1

1
1

II

1
IV 










 
             (14) 

The temporal function can be represented as 

tsinctcosc)t(T 21                                                        (15) 

Substituting Eq. (15) into Eq. (14) and after some mathematical rearrangements, the following 

equation is gotten 

0)x(
kG

I
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D
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1

2
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1

1
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2
1

2IV 








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                     (16) 

The solution of the Eq. (16) is sought as follow 

)xcos(d)xsin(d)xcosh(d)xsinh(d)x( 4321                              (17) 

The both boundary conditions of the beam are assumed as simply supported, therefore the 

following expressions are satisfied 

0)L()L()0()0( IIII                                                 (18) 

Considering Eq. (18) in Eq. (17) and after some mathematical operations the following 

coefficient matrix is obtained 
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0

0

d

d

LsinLsinh

LsinLsinh

3

1

                                               (19) 

The non-trivial solution of the determinant of the coefficient matrix is as follows 

0LsinhLsin                                                           (20) 

From Eq. (20) the following result is obtained  

,...2,1n,
L

n
n 


                                                         (21) 
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where the subscript, n,  is an integer index.  

Thus the displacement function becomes 

 )xsin()Lsinh()xsinh()Lsin(d)x( 5                                       (22) 

Substituting Eqs. (22) and then (21) into Eq. (16) respectively, after some mathematical 

rearrangements the following equation is found 
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Consequently, from Eq. (23), the expression for the free vibration frequency of the NH beam 

including rotary inertia and shear deformation effects, which corresponds to the TBT, is gotten 
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One can obtain the equation for the free vibration the NH beam including only the shear 

deformation effect by setting the terms including ρ1I equal to zero in Eq. (11) 
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After repeating the above mentioned solution procedure for the Eq. (25), the expression for the 

free vibration frequency of NH beam including only shear deformation effect, which corresponds 

to the SMBT, is gotten as 
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Similarly, one can obtain the equation for the free vibration the NH beam including only the 

rotary inertia effect by letting G1→∞ in Eq. (11) 
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Reapplying the above mentioned solution procedure for the Eq. (27), the expression for the free 

vibration frequency of NH beam including only rotary inertia effect, which corresponds to RBT, is 

found as 
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Additionally, one can obtain the equation for the free vibration the NH classical beam which 

neglects the effects of rotary inertia and shear deformation by setting the terms including ρ1I equal 

to zero and letting G1→∞ in Eq. (11) 
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                                                         (29) 

As the above mentioned solution procedure employed for Eq. (29), the expression for the free 

vibration frequency of NH beam neglecting the both shear deformation and rotary inertia effects, 

which corresponds CBT, is gotten as 
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4. Numerical results and discussion  
 

In this section illustrative studies are given to examine the present problem. At first, two 

comparative studies are presented to show the accuracy of the present formulation for homogenous 

beams, by taking β1=β2=0. Then, three different studies are exhibited to show the separate and 

combined effects of rotary inertia, shear deformation and MNH versus various non-homogeneity 

coefficients, depth to length ratios and shear corrections factors on the values of natural 

frequencies of beams. Here the natural frequency (Hz) is defined as Ωi=ωi/2π, i=C, RI, S, RIS, 

material properties are taken to be E=210 GPa; ρ=7850 kg/m
3
, v=0.3  

 

Comparative Study 1. Separate and combined contributions of rotary inertia and shear 

deformation on the frequencies of simply supported rectangular beam versus mode number, n, are 

compared with those of Leissa and Qatu (2011) in Table 1. Here, ωi/ωC i=RI, S, RIS, is the 

frequency ratio and h/L=0.1, G/E=0.4, k=2/3 are taken into account.  
 

 

Table 1 Comparisons of frequency ratios of H beam with results of Leissa and Qatu (2011) 

n 

ωi/ωC 

Leissa and Qatu (2011) Present Study 

ωRI ωS ωRIS ωRI ωS ωRIS 

1 0.9959 0.9849 0.9811 0.9959 0.9849 0.9811 

2 0.9839 0.9435 0.9314 0.9839 0.9435 0.9314 

3 0.9649 0.8847 0.8651 0.9649 0.8847 0.8651 

4 0.9401 0.8183 0.7945 0.9401 0.8183 0.7945 

5 0.9107 0.7514 0.7268 0.9107 0.7514 0.7268 

6 0.8784 0.6884 0.6650 0.8784 0.6884 0.6650 

7 0.8442 0.6310 0.6100 0.8442 0.6310 0.6100 

8 0.8094 0.5799 0.5614 0.8094 0.5799 0.5614 

9 0.7747 0.5347 0.5187 0.7747 0.5347 0.5187 

10 0.7407 0.4948 0.4816 0.7407 0.4948 0.4816 

877



 

 

 

 

 

 

Mehmet Avcar 

Table 2 Comparisons of values of natural frequencies of H beam with results of Rao (2008) 

Natural Frequency (rad/s) 

 ωC ωRI ωRIS 

n Rao (2008) Present Study Rao (2008) Present Study Rao (2008) Present Study 

1 703.0149 702.9992 696.5987 696.5834 677.8909 677.9541 

2 2812.0598 2811.9968 2713.4221 2713.3651 2473.3691 2474.1605 

3 6327.1348 6326.9929 5858.0654 5857.9512 4948.0063 4950.8366 

 

 

Comparative Study 2. The values of natural frequencies (rad/s) of homogeneous beam are 

compared with results of Rao (2008) in Table 2. Here, L=1 m, b=0.05m, h=0.15 m, E=207×10
9
 Pa, 

G=79.3×10
9
 Pa, ρ=76.5×10

3
 N/m

3
, k=5/6 are considered.  

It is clear that from above given comparisons, the both results are in good agreements, which 

shows the accuracy of the present expressions (24), (26), (28) and (30).   

 

Study 1. Table 3 shows the natural frequencies ΩC, ΩRI, ΩS and ΩRIS (Hz) of simply supported 

H and NH beams for βi i=1,2; h=0.5 m; h/L=0.15; k=5/6 taking the values β1=−0.5, 0, 0.5
 
and 

β2=−0.5, 0, 0.5. It is found that the natural frequencies, Ωi, increase with the increase in non-

homogeneity parameter, β1, while they decrease with the increase in density parameter β2. On the 

other hand, the effects of the MNH on the values of natural frequencies vary according to the non-

homogeneity parameter, β1 and density parameter β2. For example the highest effect is observed as 

the MNH arises due to β1=0.5; β2=−0.5, while the lowest effect is observed as the MNH arises due 

to β1=0.5; β2=0.5. Besides, the efficiency of MNH decreases with increasing mode numbers for ΩS 

and ΩRIS while it remains constant for ΩRI and ΩC. Moreover, it is observed that as MNH arises 

from the variation of density parameter, β2, only, it has constant effects on the values of natural 

frequencies in the all number of modes. However as MNH arises from the variation of non-

homogeneity parameter, β1, only, it has variable effect on the values of natural frequencies 

according to number of modes for ΩS and ΩRIS while it remains constant for ΩRI, ΩC.  

 

 
Table 3 Variation of natural frequencies, Ωi, (Hz) of H and NH beam versus non-homogeneity parameters 

β1  
n=1 n=2 n=3 

β2 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 

−0.5 

ΩC 103.688 101.505 99.454 414.753 406.020 397.817 933.193 913.545 895.088 

ΩRI 102.742 100.579 98.547 400.205 391.779 383.863 864.013 845.821 828.732 

ΩS 100.914 98.790 96.794 375.051 367.155 359.737 761.553 745.519 730.456 

ΩRIS 100.086 97.979 95.999 366.009 358.303 351.064 733.995 718.541 704.023 

0 

ΩC 107.810 105.540 103.408 431.239 422.160 413.630 970.288 949.859 930.668 

ΩRI 106.826 104.577 102.464 416.113 407.352 399.122 898.358 879.443 861.674 

ΩS 104.826 102.619 100.546 388.685 380.502 372.814 787.102 770.530 754.962 

ΩRIS 103.969 101.780 99.724 379.430 371.441 363.936 759.245 743.259 728.242 

0.5 

ΩC 111.780 109.426 107.215 447.118 437.704 428.861 1006.016 984.835 964.937 

ΩRI 110.759 108.427 106.237 431.436 422.352 413.818 931.437 911.825 893.403 

ΩS 108.591 106.305 104.157 401.793 393.334 385.387 811.656 794.567 778.514 

ΩRIS 107.706 105.439 103.308 392.333 384.073 376.313 783.506 767.009 751.513 
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Table 4 Variation of natural frequencies, Ωi, (Hz) of H and NH beam versus the depth to length ratio  

 β1=β2=0 (H Case) 

n 
h/L=0.1 h/L=0.15 

ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS 

1 46.907 46.715 46.316 46.136 105.540 104.577 102.619 101.780 

2 187.626 184.614 178.680 176.304 422.160 407.352 380.502 371.441 

3 422.160 407.352 380.502 371.441 949.859 879.443 770.530 743.259 

n 
h/L=0.2 h/L=0.25 

ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS 

1 187.626 184.614 178.680 176.304 293.166 285.910 272.153 267.073 

2 750.506 705.519 631.911 611.502 1172.665 1067.996 915.273 880.750 

3 1688.638 1483.267 1217.467 1168.351 2638.497 2181.666 1687.939 1619.441 

 
β1=0.5; β2=−0.5 (NH Case) 

n 
h/L=0.1 h/L=0.15 

ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS 

1 49.680 49.477 49.035 48.844 111.780 110.759 108.591 107.706 

2 198.719 195.529 188.963 186.465 447.118 431.436 401.793 392.333 

3 447.118 431.436 401.793 392.333 1006.016 931.437 811.656 783.506 

n 
h/L=0.2 h/L=0.25 

ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS 

1 198.719 195.529 188.963 186.465 310.499 302.813 287.608 282.285 

2 794.877 747.230 666.175 645.029 1241.995 1131.137 963.380 927.873 

3 1788.473 1570.960 1279.652 1229.476 2794.490 2310.650 1771.071 1701.712 

 

 

Furthermore, the separate and combined effects of rotary inertia and shear deformation increase 

with increasing number of modes. Additionally, as the MNH is considered; the separate effect of 

the shear deformation and the combined effect of shear deformation and rotary inertia become 

more pronounced while the separate effect of rotary inertia remains constant. 

 

Study 2. Table 4 shows the natural frequencies ΩC, ΩRI, ΩS and ΩRIS (Hz) of simply supported 

H and NH beams for β1=0.5; β2=−0.5, k=5/6 versus the depth to length ratio, h/L. It is seen that the 

natural frequencies increase with the increase in the ratio, h/L. On the other hand, the effect of the 

MNH decrease with the increase of depth to length ratio, h/L, as well as it becomes more 

inefficient with increasing number of modes for ΩS and ΩRIS while it remains constant for ΩC and 

ΩRI in all modes. Besides, it is found that the MNH has lowest effect on the values of ΩS. 

Additionally, the separate effect of the shear deformation is higher than the separate effect of the 

rotary inertia, while their combined effect is the most pronounced one and the significances of all 

of these three effects increase with the increase in the ratio h/L and number of modes. 

Furthermore, the separate effect of shear deformation and combined effects of rotary inertia and 

shear deformation become more pronounced with the consideration of MNH.  

 

Study 3. Table 5 shows the natural frequencies ΩC, ΩRI, ΩS and ΩRIS (Hz) of simply supported 

H and NH beams for β1=−0.5; β2=0.5, h/L=0.25 versus two well-known shear correction factor, k, 

for rectangular beam. It is observed that natural frequencies, ΩS and ΩRIS increase with the increase  
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Table 5 Variation of natural frequencies, Ωi, (Hz) of H and NH beam versus the shear correction factor 

β1=β2=0 (H Case) 

k 
n=1 n=2 n=3 

ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS 

2/3 293.166 285.910 267.570 262.890 1172.665 1067.996 873.591 845.919 2638.497 2181.666 1575.598 1526.516 

5/6 293.166 285.910 272.153 267.073 1172.665 1067.996 915.273 880.750 2638.497 2181.666 1687.939 1619.441 

β1=−0.5; β2=0.5 (NH Case) 

k 
n=1 n=2 n=3 

ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS ΩC ΩRI ΩS ΩRIS 

2/3 276.262 269.424 252.877 248.404 1105.047 1006.412 829.664 802.599 2486.355 2055.865 1501.643 1452.767 

5/6 276.262 269.424 257.079 252.236 1105.047 1006.412 868.418 834.821 2486.355 2055.865 1607.206 1539.372 

 

 

of k, while the natural frequencies ΩC and ΩRI remains constant due to they are independent from 

it. Besides, the rate of increase of natural frequencies, ΩS and ΩRIS according the shear correction 

factor, k, in H case slightly higher than those in NH case. On the other hand, the effect of the MNH 

increases with the increase of k for ΩS and ΩRIS, and the effect of MNH on the values of ΩRIS is 

more pronounced. Moreover, it is observed that the influence of variation of shear correction 

factor, k, on ΩS is higher than that for ΩRIS in both H and NH cases. The separate effect of the 

shear deformation and the combined effect of shear deformation and rotary inertia are more 

pronounced than the separate effect of the rotary inertia, however the differences between them 

decrease with the increase of k and consideration of MNH.  

 

 

5. Conclusions  
 

In the present work, the free vibration of simply supported beams composed of NH materials 

was analyzed. Several examples were carried out to demonstrate the separate and combined effects 

of rotary inertia, shear deformation and MNH on the values of natural frequencies considering 

various non-homogeneity and density parameters, depth to length ratios, and shear correction 

factors.  

The following interesting results are found 

• Non-homogeneity parameter, β1, and density parameter, β2, have contrary effects on the values 

of natural frequencies, and so the effect of MNH on the values of natural frequencies change 

according to variations of the non-homogeneity parameter, β1, and density parameter, β2. The 

percentage variation in the value of natural frequencies ΩC, ΩRI, ΩS and ΩRIS for the first mode 

vary in the interval from −5.912 to 5.766 versus β1 and β2 (−0.5≤βi≤0.5, i=1,2) 

• MNH has highest on the values of natural frequencies ΩC and ΩRI while it has least effect on 

the values of natural frequency ΩS 

• The effect of MNH on the values of natural frequencies ΩC and ΩRI are exactly same, as well 

as it is independent from the variation of the number of the modes and the depth to length ratios    

• The effect of the MNH on the values of natural frequencies ΩS and ΩRIS decreases with 

increase of number of modes and depth to length ratios while it increase with increase of shear 

correction factor which validates that the effect of MNH decreases as the shear deformation effect 

is taken into account 

880



 

 

 

 

 

 

Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam 

 

 

• The effects of variations of the depth to length ratio, shear correction factor on the values of 

natural frequencies decrease as the MNH is taken into account 

• The orders of values of frequencies are always ΩC>ΩRI>ΩS>ΩRIS  in the all number of modes 

and cases. And the differences between them increase with the increase of depth to length ratios 

and number of modes  

Consequently, it is concluded that the effects of MNH, rotary inertia and shear deformation on 

the natural frequencies of beams are considerable. Besides, the effects of rotary inertia and shear 

deformation should be necessarily taken into account while examining the vibrations of thick 

beams. The present analysis may be beneficial to designers, researchers, scientists and engineers, 

dealing with NH beams for finding the required natural frequency by changing the different 

parameters considered here.   
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