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Abstract.  Triangular pyramid and Quadrangular pyramid elements for partial double-layer spherical 

reticulated shells of pyramidal system are investigated in the present study. Macro programs for six typical 

partial double-layer spherical reticulated shells of pyramidal system are compiled by using the ANSYS 

Parametric Design Language (APDL). Internal force analysis of six spherical reticulated shells is carried out. 

Distribution regularity of the stress and displacement are studied. A shape optimization program is proposed 

by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the 

characteristics of partial double-layer spherical reticulated shells of pyramidal system and the ideas of 

discrete variable optimization design. Shape optimization is achieved by considering the objective function 

of the minimum total steel consumption, global and locality constraints. The shape optimization of six 

spherical reticulated shells is calculated with the span of 30m~120m and rise to span ratio of 1/7~1/3. The 

variations of the total steel consumption along with the span and rise to span ratio are discussed with contrast 

to the results of shape optimization. The optimal combination of main design parameters for six spherical 

reticulated shells is investigated, i.e., the number of the optimal grids. The results show that: (1) The Kiewitt 

and Geodesic partial double-layer spherical reticulated shells of triangular pyramidal system should be 

preferentially adopted in large and medium-span structures. The range of rise to span ratio is from 1/6 to 1/5. 

(2) The Ribbed and Schwedler partial double-layer spherical reticulated shells of quadrangular pyramidal 

system should be preferentially adopted in small-span structures. The rise to span ratio should be 1/4. (3) 

Grids of the six spherical reticulated shells can be optimized after shape optimization and the total steel 

consumption is optimized to be the least. 
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1. Introduction 
 

Before the 19th century, spatial structure developed very slowly due to the restrictions of 

building materials and relevant technical. Later, it has got a fast development with the 

improvement of steel production technology, the rapid development of computer technology and 

the increasing social demand. Spherical reticulated shell as a new mesh style has also been widely 

used (Svanberg 1987, Saka 1991, Salajegheh and Vanderplaats 1993). 

Spherical reticulated shells are spatial skeletal structures, and their rod-system is generated by 

connecting the nodes according to certain rules. Owing to their good appearance, reasonable stress 

and large stiffness (Shen and Chen 1996, Deng and Dong 1999), they have vast application 

prospects in modern large-span building structures (Rajan1995, Dong and Yao 2003), such as 

major sports / arts venues, waiting halls and shopping malls (Fig. 1). 

According to different grid types, there are six typical spherical reticulated shells, i.e., Ribbed 

spherical reticulated shell, Schwedler spherical reticulated shell, Lamella spherical reticulated 

shell, Three-way grid spherical reticulated shell, Kiewitt spherical reticulated shell and Geodesic 

spherical reticulated shell. Spherical reticulated shells can also be divided into single-layer, 

double-layer, partial double-layer etc. based on their structural type. Partial double-layer spherical 

reticulated shell of pyramidal system is a reinforced structural style on the basis of single-layer 

spherical reticulated shell, which is generated by connecting the nodes according to certain rules 

base on triangular pyramid and quadrangular pyramid. Partial double-layer spherical reticulated 

shells of pyramidal system combine the virtues of single-layer and double-layer spherical 

reticulated shells (Levy et al. 1994, He et al. 2002). They have higher integral bearing capacity 

and deformation resistant capability than single-layer spherical reticulated shells, and their total 

weight is less than double-layer spherical reticulated shells. Therefore, partial double-layer 

spherical reticulated shells of pyramidal system are typical and widely used structures in modern 

architectures. However, the number of nodes and rod elements of spherical reticulated shells is too 

many and the variation of span, rise, grid size, type and other parameters can cause structural 

internal force reallocation. Besides, the workload of re-modeling is very large and it is quite 

difficult to carry out high efficient internal force analysis and shape optimization design. 

Conventional modeling of these structures often relies on hand-modeling rather than on parametric 

modeling in domestic and foreign studies. Relevant research is also seldom related to the specific  

 

 

  
(a) Gymnasium of America Tacoma (b) Eden project of England 

Fig. 1 Examples of spherical reticulated shells 
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work of shape optimization design. In addition, these structural materials are ideal but of high cost. 

Thus, shape optimization is quite necessary and important for the design and construction of 

spherical reticulated shells (Yas et al. 2007, Lu et al. 2012). 

At present, continuous variable optimization design has already possessed perfect theoretical 

system and abundant practical experience, but the research on optimization design of discrete 

variable is not many. The present research achievements are mainly as follows: Jenkins studied 

structural optimization with the genetic algorithm (1991) and natural algorithm (1997). Saka and 

Kameshki (1998) investigated optimum design of nonlinear elastic framed domes, i.e., an 

algorithm was presented for the optimum design of three-dimensional rigidly jointed frames which 

took into account the nonlinear response due to the effect of axial forces in members. He et al. 

(2001) proposed that chaos optimization algorithm could be used in the optimization design of 

double-layer cylindrical reticulated shell, which realized the synchronous optimization of the rise 

to span ratio, grid size and vault thickness as continuous variables. Zhang and Dong (2003) 

presented a structural optimization algorithm. In the process of optimum design, both the stress 

constraints and displacement constraints were considered. The geometrical nonlinearity was taken 

into account during the computation of stresses and displacements. A computer program was 

developed, and the design example verified the effectiveness of the proposed method. Xu et al. 

(2006) investigated an optimal method, and this optimum design was performed by the 

combination of the direct searching method and the criterion. Wang and Tang (2006) proposed an 

optimum method based on the optimality criteria, which could be used in optimization design of 

single-layer reticulated shells. The constraints of displacement, stress, member stability and 

structural stability were considered. Vyzantiadou et al. (2007) proposed structural systems. The 

proposed computational method produced algorithms using fractal mathematics, and could 

generate forms applicable to shells. Yas et al. (2007) proposed the stacking sequence optimization 

of a laminated cylindrical shell for obtaining maximum natural frequency and buckling stress, 

simultaneously. Rahami et al. (2008) introduced a combination of energy and force method, and 

genetic algorithm was employed as an optimization tool for minimizing the weight of the truss 

structures. Wu et al. (2010) investigated a new design concept of MAS, and a shape optimization 

method with finite element analysis was applied on two-dimensional (2D) stent models. Durgun 

and Yildiz (2012) introduced a new optimization algorithm, called the Cuckoo Search Algorithm, 

for solving structural design optimization problems. Luo et al. (2012) also studied a meshless 

Galerkin level set method for shape and topology optimization of continuum structures. Yildiz 

(2013) investigated a comparison of evolutionary-based optimization techniques for structural 

design optimization problems. Furthermore, a hybrid optimization technique based on differential 

evolution algorithm was introduced for structural design optimization problems. Emmanuel et al. 

(2014) used ANN and GA for buckling optimization of laminated composite plate with elliptical 

cutout. In addition, the publications (Kaveh and Zolghadr 2014, Kaveh and Ahmadi2014, Thall et 

al. 2014) also considered the structural optimization design. 

In the present study, generation methods of nodes and rod elements for six typical partial 

double-layer spherical reticulated shells of pyramidal system are proposed. Macro programs are 

compiled by using the ANSYS Parametric Design Language (APDL). Users can easily get the 

required models only by inputting five parameters, i.e., the shell span (S), rise (F), latitudinal 

portions (Kn), radial loops (Nx) and thickness of double-layer (T). The purpose of rapid modeling 

can be attained by modifying parameters simply. The method can greatly improve efficiency of 

internal force analysis and optimization design, and reduce analyzing cost. It lays good foundation 

for structural internal force analysis and shape optimization. Then the maximum stress and 
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displacement of six typical spherical reticulated shells are analyzed. Moreover, a shape 

optimization program is proposed based on the sequence two-stage algorithm in FORTRAN 

environment. The shape optimization of six typical spherical reticulated shells are calculated with 

the span of 30 m~120 m and rise to span ratio of 1/7~1/3. The variations of the total steel 

consumption along with the span and rise to span ratio are discussed with contrast to the results of 

shape optimization. The optimal combined regulation of main design parameters is studied. The 

research results provide reference for actual spherical reticulated shells.   

 

 

2. The types of partial double-layer spherical reticulated shells of pyramidal system 
 

According to different grid styles, spherical reticulated shells can be divided into six types, i.e., 

Ribbed type, Schwedler type, Lamella type, Three-way grid type, Kiewitt type and Geodesic type. 

For the first three spherical reticulated shells, the basic unit of partial double-layer is quadrangular 

pyramid. For the latter three spherical reticulated shells, the basic unit of partial double-layer is 

triangular pyramid. The position of vertex for a pyramid is determined by the bottom surface and 

the height of a pyramid, i.e., the upper layer grids of spherical reticulated shells and the thickness 

of partial double-layer. Triangular pyramid system and quadrangular pyramid system are formed 

by connecting vertex and each point on the bottom surface (Zhang 2014). The basic unit of 

pyramidal system and actual pyramidal system are shown in Figs. 2-3. 

 
 

  
(a) The basic unit of triangular pyramid (b) The basic unit of quadrangular pyramid 

Fig. 2 The basic unit of pyramidal system 

 

 
 

(a) Triangular pyramid system (b) Quadrangular pyramid system 

Fig. 3 Pyramidal system 
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Shape optimization for partial double-layer spherical reticulated shells of pyramidal system 

 

Fig. 4 Geometric parameters schematic diagram of spherical reticulated shells 

 

 

Six typical partial double-layer spherical reticulated shells of pyramidal system are studied, i.e., 

Ribbed partial double-layer spherical reticulated shells of quadrangular pyramid system, 

Schwedler partial double-layer spherical reticulated shells of quadrangular pyramid system, 

Lamella partial double-layer spherical reticulated shells of quadrangular pyramid system, 

Three-way grid partial double-layer spherical reticulated shells of triangular pyramid system, 

Kiewitt partial double-layer spherical reticulated shells of triangular pyramid system, Geodesic 

partial double-layer spherical reticulated shells of triangular pyramid system. 

 

 

3. Parametric modeling  
 

3.1 Geometric descriptions 
    

The main geometric parameters (Fig. 4) of describing spherical reticulated shells have: shell 

span(S), rise (F), latitudinal portions (Kn), radial loops (Nx), thickness of double-layer (T). The 

sphere curvature radius R is calculated (Shen and Chen 1996, Lu et al. 2013) by Eq. (1). The 

global angle Dpha of two radial neighboring circle nodes is calculated (Shen and Chen 1996, Lu et 

al. 2013) by Eq. (2). 
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3.2 The methods of APDL parametric modeling 

    

S, F, Kn, Nx and T are given in the spherical coordinates, then the sphere curvature radius R and 

global angle Dpha are calculated. The nodes are generated in each circle from inside to outside in 
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order by using cyclic command statements. Spherical surface, quadrangular pyramid and triangular 

pyramid are formed by connecting the nodes. Displacement constraints and external loads are 

applied on the structures. 

Taking Kiewitt partial double-layer spherical reticulated shells of triangular pyramid system as 

an example. Its modeling process is as follows: Let vertex of upper layer be number 1. Applying 

loads on nodes whose number is less than starting node number of the outermost circle and 

imposing displacement constraints on other nodes. Rod types, material properties, real constants, 

etc., are applied to analyze the structural internal force. Macro programs are compiled by using 

APDL in ANSYS (Chen and Liu 2009, Gong and Xie 2010, Zhang et al. 2013, Zhang 2014).The 

program’s commands of generating nodes are N, NODE, X, Y, Z in ANSYS. Wherein the X, Y, Z 

are the coordinates of nodes. The program's commands of generating rod elements are E, P1, P2 in 

ANSYS. Wherein the P1, P2 are the node numbers on both ends of rod element. 

(1) Determine the numbers and coordinates of nodes:  

The number of upper layer nodes is Num1=1+Kn×Nx×(Nx+1)/2. The j-th node at the i-th loop 

from the vertex to outside is numbered as 1+Kn×(i−1)×i/2+j, which coordinates are (R, (j−1)× 

360/(Kn×i), 90−i×DPha). The number of lower layer vertex is Num1+1. The j-th node at the i-th 

loop from inside to outside is numbered as 1+Kn×(i−1)+j+Num1, which coordinates are (R-T, 

(j−0.5)×360/Kn, 90− (i−0.5)×DPha). 

(2) Rod elements connection: 

1) Rod elements connection of upper layer: The latitudinal rod elements at the i-th loop and the 

j-th portion (1≤j≤Kn×i−1) are made by connecting the node 1+Kn×(i−1)×i/2+j and the node 

1+Kn×(i−1)×i/2+j+1. The latitudinal rod elements at the last portion (j=kn) of each loop are made 

by connecting the last node 1+Kn×(i−1)×i/2+1 and the first node 1+Kn×(i−1)×i/2+Kn×i of this 

loop. The radical rod elements of the first loop are made by connecting the vertex and nodes of the 

first loop. Then, all the rest of radial rod elements are made by adopting two-level circulating 

modes, i.e., the portions circulating and internal rod elements circulating.  

2) Rod elements connection of lower layer:  

Firstly, the triangular pyramid vertexes between upper layer and lower layer are connected.  

Secondly, the triangular pyramids between the first loop and second loop are connected solely. 

Starting from the third loop, the triangular pyramids of odd-numbered loops are made by 

connecting vertexes of lower layer Num1+1+(i−1)×Kn+j and three nodes of upper layer (i-2)× 

(i−1)×Kn/2+(i−3)/2+3+(j−1)×(i-1), (i-1)×i×Kn/2+(i-3)/2+3+(j-1)×i and (i−1)×i×Kn/2+(i−3)/2+3+ 

(j−1)×i+1 respectively. The triangular pyramids of even-numbered loops are made by connecting 

vertexes of lower layer Num1+1+(i−1)×Kn+j and three nodes of upper layer 

i×(i−1)×Kn/2+i/2+2+(j−1)×i, (i−1)×(i−2)×Kn/2+i/2+1+(j−1)×(i−1) and (i−1) ×(i−2)×Kn/2+i/2+2+ 

(j−1)×(i−1) respectively. 

Thirdly, in the j-th portion (1≤j≤Kn−1) between the second loop and third loop, the rod 

elements are made by connecting the node Num1+1+(i−1)×Kn+j and two nodes i×(i−1)×Kn/2+ 

i/2+1+(j−1)×i, i×(i−1)×Kn/2+i/2+1+(j−1)×i+2 respectively. When j=Kn, the rod elements are made 

by connecting the node Num1+1+(i−1)×Kn+j and the node 1+(i−1)×Kn+i/2. Starting from the fourth 

loop, the rod elements of even-numbered loops are made by connecting the node Num1+ 

1+(i−1)×Kn+j and two nodes i×(i−1)×Kn/2+i/2+1+(j−1)×i, i×(i−1)×Kn/2+i/2+1+(j−1)×i+2 

respectively. Starting from the fifth loop, the rod elements of odd-numbered loops are made by 

connecting the node Num1+1+(i−1)×Kn+j and two nodes (i−1)×(i−2)×Kn/2+(i−1)/2+1+(j−1)×(i−1), 

(i−1)×(i−2)×Kn/2+(i−1)/2+1+(j−1)×(i−1)+2 respectively. Finally, the radical rod elements of lower 

layer are made by connecting the node 1+Kn×(i−1)+j+Num1 and the node 1+Kn×i+j+Num1. 
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(3)Boundary constraints and nodal loads: 

The starting node number of the outermost loop is Num1−Kn×Nx+1. Applying loads on nodes 

whose number is less than the number and imposing displacement constraints on other nodes. 

 

3.3 The input window of geometrical parameters 
 

Users can easily get the required models only by inputting parameters such as S, F, Kn, Nx and 

T. Procedures are as follows: 

Customizing programs of geometrical parameters window 

MULTIPRO,'start',4   

*cset,1,3, S, ' Span=(mm)',90 

*cset,4,6, F, ' Rise =(mm)',18 

*cset,7,9, Kn, ' Latitudinal portions = ',16 

*cset,10,12, Nx, ' Radial loops =',8 

*cset,13,15, T, 'Thickness=(mm)',1 

*cset,61,62, 'Please input geometry parameters' 

MULTIPRO, 'end' 

 
3.4 Modeling examples 
 

Parametric modeling examples of six typical spherical reticulated shells are shown in Figs. 

5-10. 

 
 
4. The internal force analysis 
 

As for spherical reticulated shells, the basal principle and methods of internal force analysis can 

be summarized as two categories. The first category is imitative shell method based on continuity 

assumption, and the second category is finite element method of truss structures based on 

discretization assumption. For imitative shell method, the structures are analyzed and studied 
 
 

  
(a) Single-layer (b) Quadrangular pyramid system 

Fig. 5 Ribbed spherical reticulated shell (S=30 m, F=7.5 m, Kn=24, Nx=6, T=0/1) 
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(a) Single-layer (b) Quadrangular pyramid system 

Fig. 6 Schwedler spherical reticulated shell (S=30 m, F=7.5 m, Kn=24, Nx=6, T=0/1) 

 

  
(a) Single-layer (b) Quadrangular pyramid system 

Fig. 7 Lamella spherical reticulated shell (S=30 m, F=7.5 m, Kn=24, Nx=6, T=0/1) 

 

  
(a) Single-layer (b) Triangular pyramid system 

Fig. 8 Three-way grid spherical reticulated shell (S=30 m, F=7.5 m, Kn=6, Nx=6, T=0/1) 
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(a) Single-layer (b) Triangular pyramid system 

Fig. 9 Kiewitt spherical reticulated shell (S=30 m, F=7.5 m, Kn=6, Nx=6, T=0/1) 

 

  
(a) Single-layer (b) Triangular pyramid system 

Fig. 10 Geodesic spherical reticulated shell (S=30 m, F=7.5 m, Kn=6, Nx=6, T=0/1) 

 
 
according to the basic theory of elastic thin shells. Its purpose is to obtain displacement and stress 

of the structures and then convert into internal force of spherical reticulated shells. The basal 

principle of finite element method for truss structures is that the grids constituted by rod elements 

originally can disperse into individual element. And a rod can be usually considered as a basic 

element when conducting internal force analysis. 

The finite element method of truss structures is usually adopted when making internal force 

analysis for reticulated shells. This method can be applied in static, dynamic and buckling analysis 

of all types of spherical reticulated shells. 

This study makes use of finite element analysis software (ANSYS) for internal force analysis of 

six typical spherical reticulated shells. Space beam elements are adopted as rod elements, and the 

nodes of spherical reticulated shells are assumed to be ideal rigid joints. Beam4 element is selected 

in the present study. Beam4 is a tensile and compressive, torsional and bending element in the 

axial direction, meanwhile, each node has six degrees of freedom, which can translate along the X, 

Y, Z directions and rotate around the X, Y, Z axis in the node coordinate system. 
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Fig. 11 Displacement contour of Ribbed partial double-layer spherical reticulated shells of 

quadrangular pyramid system (S=30 m, F=7.5 m, Kn=24, Nx=6, T=1) 

 

 

Fig. 12 Displacement contour of Schwedler partial double-layer spherical reticulated shells of 

quadrangular pyramid system (S=30 m, F=7.5 m, Kn=24, Nx=6, T=1) 

 

 

The relevant parameters are unified, so that the calculated results are comparable. Rod elements 

of spherical reticulated shells adopt hot-rolling seamless pipe (calculated by YB 231-70), steel  
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Fig. 13 Displacement contour of Lamella partial double-layer spherical reticulated shells of 

quadrangular pyramid system (S=30 m, F=7.5 m, Kn=24, Nx=6, T=1) 

 

 

Fig. 14 Displacement contour of Three-way grid partial double-layer spherical reticulated shells of 

triangular pyramid system (S=30 m, F=7.5 m, Kn=6, Nx=6, T=1) 

 

 

density ρ=7800 kg/m
3
, elastic modulus E=2.06×10

5
 Mpa, Poisson ratio ε=0.3, yield strength of 

steel [ζ]=2.15×10
8
 N/m

2
. The steel type is Q235, i.e., outer diameter D=0.152 m, wall thickness  
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Fig. 15 Displacement contour of Kiewitt partial double-layer spherical reticulated shells of triangular 

pyramid system (S=30 m, F=7.5 m, Kn=6, Nx=6, T=1) 

 

 

Fig. 16 Displacement contour of Geodesic partial double-layer spherical reticulated shells of triangular 

pyramid system (S=30 m, F=7.5 m, Kn=6, Nx=6, T=1) 

 

 

t=4.5 mm, sectional area S=2.085×10
-3 

m
2
, second moment of area I=5.6761×10

-6
 m

4
, sectional 

resistance moment W=7.469×10
-5

 m
3
.The equivalent uniformly distributed loads of roof (q=2.35  
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Table 1 The results of internal force analysis for six typical partial double-layer  spherical reticulated shells 

of pyramidal system 

Type 
S 

(m) 

F 

(m) 
Kn Nx 

T 

(m) 

The maximum 

displacement (m) 

Allowed 

values (m) 

The maximum 

stress (Mpa) 

Allowed 

values (Mpa) 

Ribbed 

type 

30 7.5 24 6 1 0.002385 0.075 30.2 
 

215 
60 15 36 12 1.5 0.016967 0.150 87.5 

90 22.5 48 18 2 0.047365 0.225 152 

Schweder 

type 

30 7.5 24 6 1 0.002326 0.075 31.2 
 

215 
60 15 36 12 1.5 0.016574 0.15 91.3 

90 22.5 48 18 2 0.046241 0.225 159 

Lamella 

type 

30 7.5 24 6 1 0.001858 0.075 18.1 
 

215 
60 15 36 12 1.5 0.012761 0.15 55.7 

90 22.5 48 18 2 0.036384 0.225 107 

Three-way 

grid type 

30 7.5 6 6 1 0.001319 0.075 18.5 
 

215 
60 15 6 12 1.5 0.007478 0.15 43.9 

90 22.5 6 18 2 0.019901 0.225 85.8 

Kiewitt 

type 

30 7.5 6 6 1 0.001219 0.075 17.3 
 

215 
60 15 6 12 1.5 0.006115 0.15 39.0 

90 22.5 6 18 2 0.015245 0.225 58.0 

Geodesic 

type 

30 7.5 6 6 1 0.002277 0.075 23.2 
 

215 
60 15 6 12 1.5 0.009562 0.15 52.2 

90 22.5 6 18 2 0.027537 0.225 76.2 

 

 

KN/m
2
) vertically downward effect on the nodes of spherical reticulated shells. The allowable 

structural maximum displacement is 1/400 of the span (Technology Procedures of Space Grid 

Structure, 2010). In addition, constraint condition of the outermost nodes of spherical reticulated 

shells is simply supported, which cannot translate along the X, Y, Z directions but rotate around the 

X, Y, Z axis. The internal force analysis of six typical partial double-layer spherical reticulated 

shells of pyramidal system, in the span of 30 m, 60 m and 90 m, are calculated. Take displacement 

as an example, the displacement contours are shown in Figs. 11-16. Analysis results are shown in 

Table 1. 

The following conclusions can be obtained from Figs. 11-16 and Table 1: 

(1) Overall, as for the six typical partial double-layer spherical reticulated shells of pyramidal 

system, their maximum displacement and maximum stress both increase with the span. Take 

Ribbed partial double-layer spherical reticulated shells of quadrangular pyramid system as an 

example, when the span is 30 m, 60 m and 90 m, its maximum displacement are 0.002389 m，

0.016967 m and 0.047365 m, in that order. In addition, its maximum stress are 30.2 MPa，87.5 

MPa and 152 MPa, in that order. 

(2) From the displacement of six typical spherical reticulated shells under the loads aspect, the 

maximum displacement of Ribbed spherical reticulated shell based on quadrangular pyramid is the 

biggest, followed by Schwedler spherical reticulated shell. The maximum displacement of Kiewitt 

spherical reticulated shell based on triangular pyramid is the smallest, followed by Geodesic 

spherical reticulated shell. The maximum displacement of Ribbed and Schwedler spherical 

reticulated shells occur at the vertex, and the rest of the four occur in the vicinity of the vertex. 
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(3) From the stress of six typical spherical reticulated shells under the loads aspect, the 

maximum stress of Schwedler spherical reticulated shell based on quadrangular pyramid is the 

biggest, followed by Ribbed spherical reticulated shell. The maximum stress of Kiewitt spherical 

reticulated shell based on triangular pyramid is the smallest, followed by Geodesic spherical 

reticulated shell. The stress variety of Ribbed, Schwedler and Lamella spherical reticulated shells 

is more obvious than the other three spherical reticulated shells. The stress distribution of Ribbed, 

Schwedler and Lamella spherical reticulated shells is also uneven, and the stress distribution of the 

other three spherical reticulated shells is relatively uniform. 

(4) In the quadrangular pyramid system, Schwedler spherical reticulated shell is generated by 

increasing diagonal rods on the basis of Ribbed spherical reticulated shell. Its maximum 

displacement has decreased, but its maximum stress has increased. Under the same conditions, the 

maximum displacement and stress of Lamella spherical reticulated shell are smaller than Ribbed 

and Schwedler spherical reticulated shells. 

(5) In the triangular pyramidal system, the grid division of Three-way grid, Kiewitt and 

Geodesic spherical reticulated shells is relatively uniform, and the mechanical behavior is better 

than the other three spherical reticulated shells 

 

 

5. The shape optimization program design 
 

The nodes distribution of partial double-layer spherical reticulated shells of pyramidal system 

has a regularity, which is determined by macroscopic surface shape and geometric parameters (F, 

S, Kn, Nx) of the structures. With regard to this kind of structures, cross-section optimization and 

shape optimization are carried out in order when conducting optimization design. Cross-section 

optimization adopts relative difference quotient algorithm (RDQA) based on discrete variables. 

Optimal cross-section size is sought by presetting macroscopic surface parameters. Then, on the 

basis of cross-section optimization, the optimal solution is got by changing macroscopic surface 

parameters with the goal of minimizing the total steel consumption, i.e., shape optimization. 

 

5.1 Mathematical models of shape optimization 
    

(1) Design variables 

The cross-sectional area of the rod element Ai (i=1, 2, , m),  

The volume of the node Vj (j=1, 2, , n). 

(2) The objective function 

The total weight of reticulated shells 

      




n

j
jji

m

i
ii VAlW

11

min   (3) 

Where m is the number of rod elements; n is the number of nodes; Ai is cross-sectional area of 

the i-th rod element, (m
2
); ρi, ρj are density of steel of rod elements and nodes respectively, 

(kg/m
3
); li is geometry length of the i-th rod element, (m); Vj is volume of the j-th ball node, (m

3
); 

The volume of hollow ball, Vj=πd
2
t, t is the wall thickness of welded hollow spherical joints, 

(mm). 

(3) Constraint conditions 
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1) Deflection Constraints 

          
  max  

(4) 

δmax is the maximum calculated deflection, [δ] is the allowable deflection. 

2) Strength constraints of the rods: 

Pull rod 

          

  
i

i
i

A

N
 (5) 

Ni is axial pull of the i-th pull rod, (N); [ζ] is the design strength. 

Pressure rod 

 


 
ii

i
i

A

N
                             (6) 

Ni is axial pressure of the i-th pressure rod, (N); φi 
is stability factor of the i-th pressure rod. 

3) Slenderness ratio of the rods 

  
i

i
i

r

l0                              (7) 

l0i is geometry length of the i-th rod element, (m); ri is cross-sectional radius of gyration of the 

i-th rod element, (m); λi 
is slenderness ratio of the i-th rod element, [λ] is the allowable slenderness 

ratio. 

4) Upper and lower constraints of cross-section of the rods 

 AAi                                           (8) 

 VVj                                           (9) 

 SS k                                          (10) 

{A} is a variable discrete set of cross-sectional dimensions of the rods; {V} is a variable 

discrete set of volume of the nodes; {S} is a variable discrete set of structural geometry. 

5) Constraints of the nodes: 

Welded hollow spherical 

 


ndd
D

221
min


                           (11) 

d1, d2 is the outer diameter of two adjacent rods, (mm); θ is the angle between two adjacent 

rods, (rad); αn 
is clear distance between adjacent rods in the spherical surface.  

 

5.2 The two-stage optimization method 
 
(1) The first-stage (cross-section) optimization:  
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The sequence two-stage optimization algorithm based on discrete variables is adopted. The first 

stage makes use of a one-dimensional search algorithm to process local constraints, such as stress 

constraints, stability constraints, slenderness ratio constraints, etc. The second stage takes 

advantage of relative difference quotient algorithm (RDQA) to handle whole constraints (Deng 

and Dong 1999).  

Mathematical models (Lu et al. 2013, Sun et al. 2002) of cross-section optimization are as 

follows 

          

 

 
 

ii

i

i

n

j
jji

m

i
ii
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ts
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
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
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

w

11

1

..

min

 
(12) 

(2) The second-stage (shape) optimization: 

The aim is to seek optimal node locations along declining direction of the total weight, which 

can improve mechanical properties of the structures and provide an improved structural style for 

next round of cross-section optimization. 

Mathematical models (Lu et al. 2013, Sun et al. 2002) of shape optimization are as follows 

        

 

 





 


max

11

2

..
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,

ts

VAnxknlW

nxknSeekingP
n

j
jji

m

i
ii  (13) 

Given the range of Kn and Nx, optimal combination of Kn and Nx is searched with the goal of 

minimizing the total steel consumption of spherical reticulated shells 

 

5.3 The design concept of shape optimization 
 
As for partial double-layer spherical reticulated shells of pyramidal system, the number of rod 

elements and nodes are the main factors affecting the total weight of the structures. This study 

takes the total steel consumption of reticulated shells (including the weight of rods and nodes) as 

objective function. Meanwhile, Kn and Nx are taken as design variables (Lu et al. 2012). A shape 

optimization program is compiled in FORTRAN environment. The optimizer can use ANSYS to 

model, resolve and optimize in the background, so that the parameterization can be achieved. The 

specific process of shape optimization is as follows. 

The optimum design program can be run after connecting with ANSYS. And the shape 

optimization is carried out by calling pre-processing and post-processing results of ANSYS 

directly. According to the optimized results, the real constants of rod elements in each group are 

modified, and they are read from lsjhao_result.txt. The new real constants are sent to the ANSYS 

for finite element analysis, then, the results are passed again to FORTRAN for optimization. The  

570



 

 

 

 

 

 

Shape optimization for partial double-layer spherical reticulated shells of pyramidal system 

 

 

 

 

Fig. 17 Shape optimization flowchart of partial double-layer spherical reticulated shells of pyramidal system 
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cycle is kept going until it satisfies the constraints. 

According to design concept of two-stage optimization (Sun et al. 2002, Chen 1989, Zhang and 

Hou 1998), the first-stage optimization, firstly the location and number of nodes are determined, 

meanwhile, the cross-sectional area of rods and the volume of nodes are used as design variables. 

Cross-section optimization is carried out by using one-dimensional search method and relative 

difference quotient method. The second-stage optimization, assumed the cross-sectional area of 

rods and the volume of nodes unchanged, taking Kn and Nx as design variables for shape 

optimization. Cross-section optimization and shape optimization are carried out simultaneously 

until the results converged. And optimal solution is obtained. Finally, the number of optimal grids 

is determined by optimal solution. 

In order to present the process of shape optimization intuitively, Fig. 17 gives the flowchart of 

partial double-layer spherical reticulated shells of pyramidal system.  

 

 

6. The results of shape optimization and discussion 
 

The relevant parameters are unified, so that the optimized results are comparable (Lu et al. 

2012). The rod elements of spherical reticulated shells adopt hot-rolling seamless pipe (calculated 

by YB 231-70). Constraints of spherical reticulated shells are simply supported. Uniform load 

q=2.35 KN/m
2
, steel density ρ=7800 kg/m

3
, elastic modulus E=2.06×10

5
 Mpa, Poisson ratio ε=0.3, 

yield strength of steel [ζ]=2.15×10
8 

N/m
2
. Optimal results of Ribbed, Schwedler and Lamella 

spherical reticulated shells with the span of 30 m~90 m are given in Tables 2-4. The optimized 

range of Kn is between 10 and 60, and the optimized range of Nx is between 6 and 20. Meanwhile, 

optimal results of Three-way grid, Kiewitt and Geodesic spherical reticulated shells with the span 

of 30 m~120 m are given in Tables 5-7. The optimized range of Kn is between 4 and 20, and the 

optimized range of Nx is between 6 and 20. 

 
6.1 The results of shape optimization 

    
The optimal results of six typical partial double-layer spherical reticulated shells of pyramidal 

system are shown in Tables 2-7. 

 

 
Table 2 The optimal results of Ribbed partial double-layer spherical reticulated shells of quadrangular 

pyramid system 

Type 
Span 

(m) 

The optimal 

steel consumption (t) 

The optimal 

thickness (m) 

The optimal rise 

to span ratio (F/S) 

The number of 

optimal grids 

Kn Nx 

Ribbed 

type 

30 29.14 1.0 1/4 17 8 

40 48.98 1.0 1/4 26 8 

50 58.98 1.0 1/4 33 9 

60 69.38 1.0 1/4 37 12 

70 100.56 1.5 1/5 41 12 

80 127.55 1.5 1/5 49 15 

90 183.51 1.5 1/5 50 16 
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Table 3 The optimal results of Schwedler partial double-layer spherical reticulated shells of quadrangular 

pyramid system 

Type 
Span 

(m) 

The optimal 

steel consumption (t) 

The optimal 

thickness (m) 

The optimal rise 

to span ratio (F/S) 

The number of 

optimal grids 

Kn Nx 

Schwedler 

type 

30 33.39 1.0 1/5 16 10 

40 50.23 1.0 1/5 25 11 

50 65.35 1.0 1/5 31 12 

60 79.12 1.0 1/5 37 13 

70 98.56 1.5 1/5 42 14 

80 128.52 1.5 1/5 48 15 

90 185.24 1.5 1/5 52 16 

 
Table 4 The optimal results of Lamella partial double-layer spherical reticulated shells of quadrangular 

pyramid system 

Type 
Span 

(m) 

The optimal 

steel consumption (t) 

The optimal 

thickness (m) 

The optimal rise 

to span ratio (F/S) 

The number of 

optimal grids 

Kn Nx 

Lamella 

type 

30 40.57 1.0 1/4 16 7 

40 59.24 1.0 1/4 25 8 

50 75.24 1.0 1/4 32 9 

60 95.84 1.0 1/4 37 12 

70 110.58 1.5 1/5 42 12 

80 145.88 1.5 1/5 48 14 

90 209.48 1.5 1/5 50 15 

 
Table 5 The optimal results of Three-way grid partial double-layer spherical reticulated shells of triangular 

pyramid system 

Type 
Span 

(m) 

The optimal 

steel consumption (t) 

The optimal 

thickness (m) 

The optimal rise 

to span ratio (F/S) 

The number of 

optimal grids 

Kn Nx 

Three-way 

grid 

type 

30 38.47 1.0 1/4 6 10 

40 54.19 1.0 1/4 6 10 

50 75.42 1.0 1/4 6 11 

60 87.86 1.0 1/4 6 12 

70 97.50 1.0 1/5 6 13 

80 120.55 1.0 1/5 6 13 

90 157.14 1.5 1/5 6 15 

100 161.77 1.5 1/6 6 15 

110 201.61 1.5 1/6 6 16 

120 230.91 1.5 1/6 6 17 

 

 

The following conclusions are reached from Tables 2-7: 

(1) The optimal steel consumption of six typical partial double-layer spherical reticulated shells 

of pyramidal system increase with the span. As for spherical reticulated shells of different span and  
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Table 6 The optimal results of Kiewitt partial double-layer spherical reticulated shells of triangular pyramid 

system 

Type 
Span 

(m) 

The optimal 

steel consumption (t) 

The optimal 

thickness (m) 

The optimal rise 

to span ratio (F/S) 

The number of 

optimal grids 

Kn Nx 

Kiewitt 

type 

30 35.87 1.0 1/4 6 8 

40 51.76 1.0 1/4 6 8 

50 69.07 1.0 1/4 8 10 

60 85.42 1.0 1/4 6 11 

70 90.56 1.0 1/5 8 12 

80 112.56 1.0 1/5 8 14 

90 150.47 1.0 1/5 8 15 

100 150.94 1.5 1/6 8 16 

110 190.75 1.5 1/6 6 18 

120 218.78 1.5 1/6 8 18 

 
Table 7 The optimal results of Geodesic partial double-layer spherical reticulated shells of triangular 

pyramid system 

Type S (m) 
The optimal 

steel consumption (t) 

The optimal 

thickness (m) 

The optimal rise 

to span ratio (F/S) 

The number of 

optimal grids 

Kn Nx 

Geodesic 

type 

30 34.42 1.0 1/4 5 9 

40 50.58 1.0 1/4 5 10 

50 67.99 1.0 1/4 5 10 

60 82.13 1.0 1/4 5 10 

70 87.11 1.0 1/5 5 12 

80 103.76 1.0 1/5 5 14 

90 138.45 1.0 1/5 5 15 

100 136.58 1.0 1/6 5 16 

110 185.42 1.5 1/6 5 17 

120 213.58 1.5 1/6 5 17 

 

 
rise to span ratio, the number of optimal grids is existed after optimization, and at this moment, the 

total steel consumption is the least. 

(2) The density of grid division has obvious implications for structural total steel consumption. 

The total steel consumption will increase rapidly whether the density is too dense or too sparse. Nx 

will increase as the span increases for the same type of spherical reticulated shell. 

(3)When the span is between 30 m to 60 m, the optimal thickness is 1 m. Then, the optimal 

thickness will increase as the span increases. 

(4) Schwedler spherical reticulated shell keeps its optimal rise to span ratio unchanged at 1/5. 

For other spherical reticulated shells, the optimal rise to span ratio will decrease as the span 

increases. 
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Fig. 18 The total steel consumption of six typical spherical reticulated shells when span is 30 m 

 

 
Fig. 19 The total steel consumption of six typical spherical reticulated shells when span is 60 m 

 
 

6.2 Discussion 
    

In order to compare change rule of total steel consumption for six typical partial double-layer 
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spherical reticulated shells of pyramidal system after shape optimization, the total steel 

consumption with the span of 30 m, 60 m, 70 m, 90 m, 100 m and 120 m are shown by using 

curves. 

 

 

 
Fig. 20 The total steel consumption of six typical spherical reticulated shells when span is 70 m 

 

 
Fig. 21 The total steel consumption of six typical spherical reticulated shells when span is 90m 
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Under the same span and different rise to span ratio, the total steel consumption of six typical 

spherical reticulated shells after optimization are shown in Figs. 18-23. 

The following conclusions are reached from Figs. 18-23: 

 

 

 

Fig. 22 The total steel consumption of six typical spherical reticulated shells when span is 100 m 

 

 

Fig. 23 The total steel consumption of six typical spherical reticulated shells when span is 120 m 
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(1) When the span is 30 m, it can be clearly seen from Fig. 18: With the increase of rise-span 

ratio, the total steel consumption of six typical partial double-layer spherical reticulated shells of 

pyramidal system decreases firstly, and then increases. The optimal rise to span ratio of Schwedler 

is 1/5, the other five spherical reticulated shells is 1/4. It is also concluded that the total steel 

consumption of Ribbed spherical reticulated shell is the least, followed by Schwedler spherical 

reticulated shell, and Lamella spherical reticulated shell is the largest. 

(2) In the same way, when the span is 60 m (Fig. 19), the results are basically consistent with 

the analysis of Fig. 20. At this point, the total steel consumption of Lamella spherical reticulated 

shell is much larger than Ribbed spherical reticulated shell. 

(3) When the span is between 70 m to 90 m, it can be clearly seen from Figs. 20-21: With the 

increase of rise-span ratio, the total steel consumption of six typical spherical reticulated shells 

decreases firstly, and then increases. When the rise to span ratio is 1/5, the total steel consumption 

is minimal. It also shows, the total steel consumption of Geodesic spherical reticulated shell is the 

least, followed by Kiewitt spherical reticulated shell, and Lamella spherical reticulated shell is also 

the largest.  

(4) When the span is more than 90 m, the total steel consumption of Ribbed, Schwedler and 

Lamella spherical reticulated shells is much larger than the other three spherical reticulated shells. 

Therefore, the total steel consumption of the last three spherical reticulated shells is listed only. It 

can be seen from Figs. 22-23: With the increase of rise-span ratio, the total steel consumption of 

last three spherical reticulated shells decreases firstly, and then increases. When the rise to span 

ratio is 1/6, the total steel consumption is minimal. It is also concluded that the total steel 

consumption of Geodesic spherical reticulated shell is the least, followed by Kiewitt spherical 

reticulated shell, and Three-way grid is the largest. 

(5) Overall, when the span is less than 60m, the difference of the total steel consumption of six 

typical spherical reticulated shells is small. Otherwise, the total steel consumption increases 

rapidly. When the span is 30 m, the difference of the total steel consumption between the 

maximum and minimum is 11 t. When the span is 60 m, the difference of the total steel 

consumption between the maximum and minimum is 27 t. The maximum difference has increased 

by nearly two times. And as the span increases, the difference gets bigger and bigger.  

(6) Under the same span and rise to span ratio, after shape optimization, the most rapid increase 

in the total steel consumption is Lamella spherical reticulated shell increases. It shows that the 

mechanical behavior of the pyramidal system been set on the radical rods is better than the 

pyramidal system been set on latitudinal rods of Lamella type. So the mechanical property of 

Lamella spherical reticulated shell is inferior to the other five spherical reticulated shells.  

(7) Under the certain span, the total steel consumption of six typical spherical reticulated shells 

changes with the changes of rise to span ratio. When the rise to span ratio is between 1/6 and 1/4, 

the figure is the lightest.  

(8) In a word, when the span is not more than 60 m, the total steel consumption of Ribbed 

spherical reticulated shell is the minimum after shape optimization, followed by Schwedler 

spherical reticulated shell, and the difference of the total steel consumption between those two 

types is small. When the span is greater than 60 m, the total steel consumption of Geodesic 

spherical reticulated shell is the minimum after shape optimization, followed by Kiewitt spherical 

reticulated shell, and the difference of the total steel consumption between those two types is also 

small. Thus, from the viewpoint of economic aspect, Ribbed and Schwedler spherical reticulated 

shells can be used for small-span structures. Geodesic and Kiewitt spherical reticulated shells can 

be used for large, medium-span structures. 
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7. Conclusions 
 

In the present study, as for six typical partial double-layer spherical reticulated shells of 

pyramidal system, an efficient parametric modeling method and a shape optimization method are 

proposed and compiled in APDL and FORTRAN language. The maximum stress and displacement 

of six typical spherical reticulated shells are analyzed. Shape optimization is carried out based on 

the objective function of the minimum total steel consumption and the restriction condition of 

strength, stiffness, slenderness ratio, stability. The variations of total steel consumption along with 

the span and span ratio are discussed with contrast to the results of shape optimization. The results 

show that:  

• When the span is more than 60 m, from the viewpoint of internal force analysis and shape 

optimization, Kiewitt partial double-layer spherical reticulated shells of triangular pyramidal 

system is preferable. Thus, it can be widely used in large and medium-span structures. 

• Similarly, as for Geodesic partial double-layer spherical reticulated shells of triangular 

pyramidal system, its mechanical behavior is second only to Kiewitt type, but its optimized results 

is better than Kiewitt type. Therefore, it can also be widely used in large and medium-span 

structures. 

• For Ribbed partial double-layer spherical reticulated shells of quadrangular pyramidal system, 

its displacement is the largest after internal force analysis, but its mechanical properties can meet 

requirement. And when the span is not more than 60 m, the total steel consumption after shape 

optimization is the least. Thus, it can be widely used in small-span structures. 

• For Schwedler partial double-layer spherical reticulated shells of quadrangular pyramidal 

system, its stress is the largest after internal force analysis, but its mechanical properties can meet 

requirement. And when the span is not more than 60 m, the total steel consumption after shape 

optimization is smaller. Thus, it can be widely used in small-span structures. 

• As for Lamella partial double-layer spherical reticulated shells of quadrangular pyramidal 

system, it should not be generally adopted in actual projects because of its larger stress, 

displacement and total steel consumption.  

• As for Three-way grid partial double-layer spherical reticulated shells of triangular pyramidal 

system, its mechanical behavior and optimized results are in the medium level, which can be used 

in medium-span structures. 
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