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Abstract.  A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied 

several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with 

and without strength degeneration are established using the stress-strength interference theory. The random 

loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed 

method is demonstrated numerically through an example. The results have shown that the proposed method 

is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic 

reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without 

degeneration is also a special case of fuzzy reliability with structural strength degeneration. 
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1. Introduction 
 

Structural reliability is an important indicator in structural performance evaluation. One of the 

challenges in reliability analysis is that loads and structural strength are uncertain (Fröling et al. 

2014, Kim et al. 2015). The context of structural reliability includes both probabilistic reliability 

and fuzzy reliability. The structural probabilistic reliability has been researched in many practical 

applications such as buildings, bridges, offshore structures, mechanical structures, underground 

pipelines, highway infrastructure, etc (He and Wang 1993, Rashid and Ramezan 2013, Laskar et 

al. 2014, Mahmoodian et al. 2012, Tee and Lutfor 2014).  
A large amount of data or information is needed when the probabilistic reliability of a structure 

is predicted (Ellishkoff 1995). In practical applications, the predicted reliability results may 
contain large error due to inaccurate probability distribution functions and are very sensitive to the 
accuracy of the estimated distributional parameters (Qiu 2005, Ben-Haim 1994). If the data or 
information is not enough, it is difficult to estimate accurately the probability distribution function 
and especially to differentiate between binomial distribution and uniform distribution. Even the 
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probability distribution function is determined accurately, its parameters may not be necessary 
accurate and this will affect the reliability results. For example, the calculated reliability indices 
may not be the same using slightly different means and variances of normal distribution.     

There are many fuzzy reliability cases for solving real life practical engineering problems as 
compared to probabilistic reliability problems. In fact, fuzzy reliability problem is considered even 
more complex because it contains not only random information, but also fuzzy information. Many 
solving methods of fuzzy reliability problems have been researched (Tutmez et al. 2013, Ayyub 
and Lai 1992, Huang 2000, Jiang and Chen 2003). Among them include structural fuzzy reliability 
problems under random stress and fuzzy strength (Huang et al. 2001, Ma et al. 2006, Wang and 
Liu 2005, Rezazadeh et al. 2012). A practical approach has been proposed where a fuzzy problem 
is converted to a random problem by using an equivalent method and then the structural reliability 
index is calculated using First-Order Second Moment (FOSM) method (Štemberk and Kruis 
2007).   

Nevertheless, the proposed approaches in the above articles were only applied to the case of 
single load and did not consider structural fuzzy strength degeneration. In fact, during the service 
period of engineering structures, the random loads are normally applied several times and 
structural strength is often degraded due to vibration, shock, fatigue, corrosion, aging, as well as 
the combined effects of uncertain inherent and extrinsic factors. Therefore, structural reliability is 
a function of time. The dynamic reliability of mechanical components and system reliability have 
also been researched. Most of the probabilistic reliability models of mechanical components are 
proposed by considering that the applied random loads can be modeled by a probability 
distribution function. However, in practical applications, the predicted reliability may contain large 
error due to inaccurate estimation of probability distribution functions. Thus, this approach is very 
sensitive to the accuracy of the estimated distributional parameters (Fang et al. 2014). It is 
indicated that their failure rates are similar to the well-known “bath-tub” shaped curve (Zhu et al. 
2014, Wang et al. 2010).  

In this paper, a new structural dynamic fuzzy reliability analysis under stochastic loads is 
proposed. The random loads are applied several times and fuzzy structural strength is analyzed. 
The structural random-fuzzy reliability prediction model based on time responses with and without 
strength degeneration is established using the stress-strength interference theory. Finally, it is 
demonstrated that the proposed model is feasible, accurate and practicable by an example. 

 
 

2. Fuzzy reliability membership function 
 

Suppose )(~ xr  is the membership function of the corresponding structural fuzzy strength r~ ， 
)(~ xr ≥0 for xmin≤x≤xmax where xmin is the lower bound and xmax is the upper bound of x. If the  

stress of random loads acting on the structure is s(t) at time t, the membership function of the 
fuzzy safety state can be written as follows. 
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3. Structural reliability models under random loads applied several times with fuzzy 
strength 
 

3.1 Structural reliability without fuzzy strength degeneration 
 

Structural reliability analysis considered in this section is for structures which have been 
subjected to random loads applied several times but their fuzzy strengths are not degraded during 
its service period. The random load applied on the structure, S and its stress s are assumed as 
random variables. During its service period, the structure is not subjected to a single continuous 
load, but multiple series of random loads. If the structure does not fail under the maximum load of 
these series of random loads, then the structure is considered safe under these series of random 
loads. Thus, fatigue failure is not considered in this study. Hence, it is assumed that structural 
reliability under n times of random loads is equivalent to the reliability under the maximum 
random load. Let the maximum value of n times of random loads is Smax and based on the above 
assumption, structural reliability under the maximum load Smax can be used to predict structural 
reliability under n times random loads. In other words, Smax can be used as an equivalent load to 
predict the structural reliability. 

Suppose probability density function of the maximum stress smax is f(smax) and the cumulative 
distribution of smax under n times random loads which is equivalent to the maximum load can be 
written as follows. 

1
max max max( ) [ ( )] ( )n

nf s n F s f s                           (2) 

Therefore, Eq. (2) can also be written as follows. 

1( ( )) [ ( ( ))] ( ( ))n
nf s t n F s t f s t                           (3) 

Based on Eq. (1) and Eq. (3), structural fuzzy reliability under n times random loads can be 
derived as follows. 
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The applied random loads are considered to obey a Poisson distribution with mean parameter 
λt. Thus, the probability distribution of the stress s at time t is given as follows. 

( )
( ( ) )

!

n tt e
P N t n

n

 

  0,1,2n                           (5) 

The structural fuzzy reliability based on time response without fuzzy strength degeneration (or 
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strength degeneration is small which can be ignored) under random loads which are applied 
several times can be obtained by using fully probabilistic theory with Eq. (3) and Eq. (4) as 
follows. 
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Eq. (6) can be simplified as follows. 
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3.2 Structural reliability with fuzzy strength degeneration 

 
In fact, in addition to random loads which change with time, structural fuzzy strength is also 

degraded during its service period due to corrosion, vibration, fatigue, aging, etc. The probability 
of structural strength which is greater than the applied stress at time t can be calculated as follows 
based on fuzzy reliability membership function in Eq. (1). 
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where r(t) is the remainder of structural fuzzy strength at time t, r(t)=r(0)−[r(0)−s(t)](
T

t
)c (Schaff 

and Davidson 1997), r(0) is the initial structural fuzzy strength, T is the service life, c is 
degeneration factor of material strength and f(s(t)) is probability density function of the stress due 
to the applied load at time t. 

Based on the Poisson distribution function, the following observations can be deduced. 
1) {N(t), t≥0} is an independent increment process 
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2) P(N(t+Δt)−N(t)=1)=λΔt+o(Δt)  
3) P(N(t+Δt)−N(t)≥2=o(Δt)  

where N(t) is the number of applied load at time (0,t) and λ is parameter of the Poisson 
distribution. Structural fuzzy reliability at time t+Δt can be obtained using fully probabilistic 
theory as follows. 
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where P(r(t)>s(t)) is the probability of structural reliability at time t. By arranging Eq. (9), it can be 
rewritten as follows. 
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The general solution of Eq. (12) is given in Eq. (13). The constant of integration in Eq. (13) can 
be determined by the initial condition at t=0, R(t)=R(0) as follows. 

( ( ( )) 1) ln (0)
( )
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                             (14) 

The finally solution of Eq. (12) is given in Eq. (14) which is the prediction model of structural 
fuzzy reliability based on time response with fuzzy strength degeneration under random loads 
which are applied several times. 

 
 

Fig. 1 An axle in the decelerated box 
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Fig. 2 The membership function of the fuzzy safety state 

 
 
4. Example 

 
An axle in the decelerated box is used as an example to verify the proposed approach as shown 

in Fig. 1. The strength of the axle in the decelerated box r~  is 235 MPa and its membership 
function is defined as triangular distribution as follows. 
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The applied stress is assumed to obey normal distribution s(t)~(137, 18) MPa, λ=0.5. 
 

4.1 Case 1: structural reliability without fuzzy strength degeneration 
 

The membership function of the fuzzy safety state as shown in Fig. 2 can be obtained using Eq. 
(1) as follows. 
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Then, the probability density function of the applied stress under random loads which are 
applied 50 times on the structure can be computed using Eq. (3) as follows. 
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Finally, the structural fuzzy reliability based on time response without strength degeneration 
can be obtained using Eq. (7) as follows. 
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Fig. 3 Dynamic fuzzy reliability without strength degeneration 
 
 

Eq. (18) is plotted in Fig. 3. Under random loads which are applied 50 times, the results show 
that structural fuzzy reliability is decreased over time regardless of fuzzy strength degeneration. 
This is because when the number of applied random loads increases with time, the axle is 
continuously affected by the random loads, thus the fuzzy reliability is descended over time. This 
situation is considered to conform to engineering practice. 
 

4.2 Case 2: structural reliability with fuzzy strength degeneration 
 

The similar axle is also used to validate the proposed fuzzy reliability model for the case of 
strength degeneration. Its service period is designed as T=10000h and the degeneration factor of 
material strength c=4.108 (Schaff and Davidson 1997). The probability of structural strength 
which is greater than the applied stress at time t can be obtained using Eq. (8) as follows. 
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Finally, the structural fuzzy reliability based on time response with strength degeneration can 
be obtained using Eq. (14) as follows.  

 ( )( ) h tR t e                                (20) 

where 

2 2

2 2

2

2

2.898 1.494 0.0001 0.5042
( ) 0.0009ln 0.9856ln

2.898 1.491 0.0001 0.5042
          0.0467arctan(0.0199 1) 0.0467 arctan(0.0199 t-1)

t +1.084 t+ 0.6299
         + 0.0005ln 0.031

t -1.084 t+ 0.6299

t t t t
h t

t t t t
t

   
 

   
  



2

2

4arctan(0.0111t+1)

t + 0.0002 t+1
         + 0.0314arctan(0.0111 1) + 0.5849ln

t 0.0002 t+1
         0.0743arctan(0.0178 t+1) 0.0743arctan(0.0178-1)) 0.0004t




  

 

 Eq. (20) is plotted in Fig. 4. Based on the results from Huang et al. (2001), for the case 
without consideration of fuzzy randomness, without consideration of the number of times the 
random load is applied and without strength degeneration, the computed reliability by the classical 
reliability method is 1. On the other hand, for the case with fuzzy randomness but without 
consideration of the number of times the random load is applied and without strength 
degeneration, the computed reliability is 0.99975. 

In this study, without consideration of strength degeneration, when t=0, R(0)=0.99975 based on 
 
 

Fig. 4 Dynamic fuzzy reliability with strength degeneration 
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Eq. (17). This leads to the same result given by Huang et al. (2001). However, when t=2h and 
when random load which is applied one time is considered, R(2)=0.999744. Similarly, with 
consideration of strength degeneration, R(0)=0.99975 when t=0 but R(2)=0.995 when t=2h using 
Eq. (19). This again leads to the same result given by Huang et al. (2001) when t=0.  

Based on the above results, for the case without strength degeneration, the estimated structural 
fuzzy reliability is descended over time due to the random loads applied several times. On the 
other hand, for the case with strength degeneration, the estimated structural dynamic fuzzy 
reliability is also descended over time but to a much greater extent due to both the random loads 
applied several times and fuzzy strength degeneration. The analysis shows that the probabilistic 
reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without 
degeneration is also a special case of fuzzy reliability with structural strength degeneration.  
 
 
5. Conclusions 
 

A new structural fuzzy reliability analysis under random loads which are applied several times 
is proposed in this paper. The proposed approach is based on fuzzy theory. The fuzzy reliability 
prediction models based on time response with and without strength degeneration are established 
using the stress-strength interference theory. The proposed model is simple and easy to implement. 
The proposed model can be used to determine structural service life and maintenance strategy. It 
can also be used to provide a theoretical basis for structural fuzzy reliability-based design and 
sensitivity analysis. The efficiency of the proposed model is demonstrated numerically through an 
axle. The results are consistent with engineering practice and it has been shown that the proposed 
model is efficient, practicable, feasible and gives reasonable prediction.   
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