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Abstract.  In this paper, a new and simplified method is presented in which the natural frequencies of the 

uniform and non-uniform beams are calculated through simple mathematical relationships. The various 

vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and 

without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural 

vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with 

effects of viscose damping are investigated. The governing differential equations are first obtained and then; 

according to a harmonic vibration, are converted into single variable equations in terms of location. Through 

repetitive integrations, the governing equations are converted into weak form integral equations. The mode 

shape functions of the vibration are approximated using a power series. Substitution of the power series into 

the integral equations results in a system of linear algebraic equations. The natural frequencies are 

determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence 

rate of the current approach are investigated through comparison of the numerical results obtained with those 

obtained from other published references and results of available finite element software. 
 

Keywords:  natural frequency; Rayleigh beam; axial vibration; torsional vibration; flexural vibration; weak 

form integral equation 

 
 
1. Introduction 
 

The vibration of continuous systems is always encountered in engineering practices. According 

to the history of structural dynamics, Bernoulli-Euler, Rayleigh and Timoshenko beams theories 

has been proposed for characterization of elastic beams vibration. The classical Bernoulli-Euler 

theory of flexural vibrations is characterized by giving higher natural frequencies than those 

obtained by experiments on thick beams, especially for higher modes. Lord Rayleigh (1877) 

improved the classical theory by considering the effect of rotational inertia of the cross-section. 

Later, Timoshenko (1921, 1922) introduced the effect of transverse shear deformation. For slender 

beams the effects of the shear deformation and rotational inertia are small and can be neglected. 

Bernoulli-Euler theory provides good results for the fundamental frequency of slender beams; 

nevertheless Timoshenko and Rayleigh theories also provide good results. But for short beams the 

effects of shear deformation and rotational inertia are significant. For such beams, Timoshenko  
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Fig. 1 Non-uniform Rayleigh beam with a lumped mass under variable axial forces and transverse forces 

 

 
beam theory yields the best predictive results. The subject of free vibration analysis of 

Timoshenko and Bernoulli beams has been paid attention by many researchers. However, few of 

them have investigated Rayleigh beam theory. Lateral vibration of a beam is governed by a partial 

differential equation that is of the fourth order in the spatial variable and second order in time. 

Axial and torsional vibrations of the beam are governed by a partial differential equation which is 

called the “wave equation” that is of the second order in the spatial variable and second order in 

time. In this paper, a new analytical approach is presented for conversion of the governing 

differential equations of all mentioned vibration problems into solvable ones. Corresponding 

vibration frequencies are determined as well. 

By seeking a non-trivial solution of the integral equation, the natural frequencies of a cantilever 

Rayleigh beam with axial force and tip mass has been calculated (Li et al. 2013). By conversion of 

the governing differential equations into weak form integral equations, the natural frequencies of 

the non-prismatic Bernoulli beam under variable axial force has been obtained (Saffari et al. 

2012). Using Differential Transform Method and Numerical Assembly Technique, the exact 

natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam has been 

calculated by Yesilce (2015). The vibration analysis of rotating Timoshenko beams by means of 

the differential quadrature method has been investigated (Bambill et al. 2010). A boundary 

element method has been developed for the general flexural-torsional buckling analysis of 

Timoshenko beams of arbitrarily shaped cross section by Sapountzakis and Dourakopoulos (2010). 

Transverse vibration of Euler-Bernoulli beams carrying concentrated masses with rotatory inertia 

has been studied (Maiz et al. 2007). The natural frequencies of a shaft with non-uniform cross 

section and various kinds of end conditions have been calculated by Pouyet and Lataillade (1981). 

Using Rayleigh quotient, the axial vibration frequencies of the non-prismatic beams have been 

calculated (Chalah et al. 2014). The first five natural frequencies and mode shapes of a 

Timoshenko multi-span beam subjected to the axial force have been obtained and the effects of 

attached spring-mass systems on the free vibration characteristics multi-span beams have been 

studied by Yesilce and Demirdag (2008). Using the dynamic stiffness method, the natural 

frequencies of a rotating tapered Rayleigh beam have been calculated by Banerjee and Jackson 

(2013). A boundary element method (BEM) has been developed for the non-uniform torsion of 
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simply or multiply connected cylindrical bars of arbitrary cross-section by Saapountzakis (2000). 

The analysis of a rotating tapered cantilever with centrifugal force has been formulated (Wright et 

al. 1982, Yan et al. 2011). Torsional vibration of multi-step non-uniform rods with various 

concentrated elements has been investigated by Li (2002). The free vibration of Bernoulli, 

Rayleigh and Timoshenko uniform/non-uniform beams with/without effects of axial forces have 

been investigated (Hijmissen and Horssen 2008, Pradhan and Chakraverty, 2013, Stojanovic and 

Kozic 2012, Huang et al. 2013, Huang and Li 2010). 

 

 

2. Cantilever Rayleigh beam with a lumped mass under variable axial force  
 

2.1 Conversion of the governing differential equation to its weak form 
 
The governing differential equation for vibration of a non-uniform Rayleigh beam under 

transverse forces (Fig. 1) is given by (Li et al. 2013) 

         
2 2 2 2

2 2 2 2

( , )
( , ) ( , ) ( , ) , (1)

x t
D x x t m x x t N x x t I x P x t

x x x xx x t t


   

            
                        

 (1) 

In which D(x)=EI(x) is bending stiffness which depends on both young’s modulus E and the 

inertial moment of cross-sectional area I(x). N(x), m(x), ϑ(x,t), ρ and P(x,t) are the axial force, the 

mass per unit length, transverse displacement, density of the beam and transverse force, 

respectively. Axial force includes a concentrated axial force at free end of the beam and variably 

distributed axial force. Setting p(x,t)=0, the free vibration equation is obtained. If motion is 

represented by a harmonic vibration, the transverse displacement is obtained using the following 

relation 

       
  i, ( ) (2)tx t x e    (2) 

Where ϕ(x) and ω are mode shape function and natural frequency of the beam, respectively. It 

is assumed that the beam has a constant cross section. Hence, the functions I(x)≡constant=I and 

A(x)≡constant=A are applied. Substitution of relationship (2) into Eq. (1) leads to a single-variable 

equation in terms of location, as follows 

       
 

4 2
2 2

4 2

d d d d
( ) [ ] I 0 0 (3)

d dd d
EI A x N x x L

x xx x

 
           (3) 

In which L is the beam length. For further convenience, the following variables are introduced 

       

2
2 1 ( )

, , , ( ) (4)
x A I N L

L r
L EI L A EI

 
         (4) 

Substitution of variables (4) into Eq. (3) leads to 

       
 

4 2
2 2 2

4 2

d d d d
( ) [ ] 0 0 1 (5)

d dd d
r

 
    

  




       (5) 

In which 
( )

( )
x

L


    is applied. Eq. (5) is, in fact, the free vibration equation of a Rayleigh 

657



 

 

 

 

 

 

Mehrdad Mohammadnejad 

beam under variable axial forces based on the non-dimensional variable ξ. In order to transform 

Eq. (5) to its weak form, both sides of Eq. (5) are integrated twice with respect to ξ within the 

range 0 to ξ. The resulting integral equations are as follows 

       

    2
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2 2 2

13
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(7) 

Further, integration from both sides of Eq. (7) twice with respect to ξ from 0 to ξ yields 
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 (9) 

In Eq. (9) C1, C2, C3 and C4 are the integration constants which are determined through 

boundary conditions of both ends of the beam. Eq. (9) is the integral equation of the weak form for 

free vibration of a Rayleigh beam under variable axial force. Eqs. (6)-(9) are applicable for 

determination of the integration constants. Further substitution of the resulting integration 

constants into Eq. (9) yields an integral equation in ϕ(ξ). 

 
2.2 Boundary conditions 

 

For a Rayleigh beam under variable axial force, including a concentrated axial force at the end 

of the beam and a variably distributed axial force, the beam rotation (θ), the bending moment (M) 

and the shear force (V) can be stated by the following relations (Li et al. 2013) 

       

2

2

3 3

3 2

( , ) ( , )

( , ) ( , ) (10)

( , ) ( , ) ( ) ( , ) ( , )

x t x t
x

M x t EI x t
x

V x t EI x t N x x t x t
xx x

I
t


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

  

 
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

 



   
   

  

 (10) 

Regarding the relationship (2), the relations (10) can be expressed as follows 
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Fig. 2 shear force acting on the end mass of the cantilever beam 

 

 

      

2
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d
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
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


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
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
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 (11) 

it has been assumed that the Rayleigh cantilever beam has a lumped mass at free end. Therefore, 

the shear force is of non-zero value at the free end of the beam (Fig. 2).  

Regarding the variables introduced in relations (4), the boundary condition of the shear force at 

free end of the beam is obtained as follows (Clough and Penzien 1975) 
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 In which M  is the lumped mass at free end of the beam and 
M

AL



 is applied. The other 

boundary conditions are established as follows 
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Substituting ϕ=0 into (9) as well as 0
d

d




 into (8) and setting ξ=0 leads to 

       3 4 0 (14)C C   (14) 

Similarly, Substitution of 
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into (6) and M=0 into (7) as well as setting 

ξ=1, yields, respectively 
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As it’s obvious in Eqs. (15) and (16), ϕ(1) is initially unknown. Therefore, it necessitates extra 

equation for uniquely determination of C1 and C2. Setting C3=C4=0and ξ=1 in Eq. (9) yields 
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Elimination of ϕ(1) from Eqs. (15), (16) and (17), results in the coefficients C1 and C2 to be 

determined by the following relations 
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where 
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Substitution of the integration constants into (9) yields an integral equation as follows 
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In Eq. (22), functions  f1(ξ,s) and f2(ξ,s)  are expressed by the following relations 
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

 

 (23) 

 
 
3. Free vibration in axial deformation 

 
3.1 Case1: cantilever beam 
 

The analysis of free vibration associated with axial motion of a bar can be carried out in a 

manner similar to the case of flexural vibration of Rayleigh beam. The free vibration equation of 

motion is 

       
   

2

2
[ ( , )] ( , ) 0 (24)EA x x t m x x t

x x t
 

  
 

    
(24) 

In which EA(x) and ϑ(x,t) are the axial stiffness and longitudinal displacement of the beam. 

Using the solution 

         (25), ( ) i tx t x e   (25) 

And introducing the following variables 

       

2 2, (26)
x

L
L

     (26) 

Eq. (24) can be written in the form 

       
   

d d
[ ] ( ) 0, 0 1 (27)

d d
EA m 


    

 
   

 (27) 
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In order to transform Eq. (27) to its weak form, both sides of Eq. (27) are integrated twice with 

respect to ξ within the range 0 to ξ. The resulting integral equations are as follows 

       
    1

0

d
( ) (28)

d
s sEA m ds C




 

   (28) 

       
      21

0

( (s) ) (2 )) ( 9EA m EA ds Cs s s C



          
 

(29) 

 
3.1.1 Boundary conditions 
For axial vibration of a non-prismatic cantilever beam the following boundaries conditions are 

introduced (Clough and Penzien 1975)  

       

1 1

0, (0, ) 0, 0

d d (30)
1, (1, ) 0 ( ) ( ) 0 ( ) ( ) 0

d d

i t

t or

N t or EA e EA

 

  

      
 

 

  


   
       

   

 (30) 

In which N(1,t) is the axial force acting on the free end of the beam. Substituting ϕ=0 into (29) 

and setting ξ=0 as well as substituting N(1,t)=0 into (28) and setting ξ=1 yields, respectively 

        1

2

0

1

(31)

0

( )

(32)

m dC s s

C

s 



  (31) 

         

 1

2

0

1

(31)

0

( )

(32)

m dC s s

C

s 




 

(32) 

Substitution of the integration constants into (29) yields an integral equation as follows 

       

1

1 2

0 0

( ) ( ) ( , ) ( )d ( , ) ( )d 0 (33)EA f s s s f s s s



           (33) 

In Eq. (33), functions f1(ξ,s) and f2(ξ,s) are expressed by the following relations 

       

1

2

( , ) ( ) ( ) ( )

( , ) (
(34)

)

f s s m s EA s

f s m s

  

 

  

    (34) 

 
3.2 Case2: cantilever beam with end discrete spring 
 

In this section, it is assumed that there is a discrete spring at the free end of the cantilever beam 

(Fig. 2). The analysis method is exactly the same as what was stated in section 3.1. The difference, 

however, is that, the axial force is of non-zero value at the free end of the beam. Other boundary 

condition is assumed unchanged. In this case, the boundary conditions are stated as follows (Kelly 

2007) 
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Fig. 2 axial vibration of the non-prismatic cantilever beam with end discrete spring 

 

 

       

1

0, (0, ) 0, 0

(35)

d
, ( ) ( , ) ( , ) 0 ( ) ( ) (1)

dx L

t or

x L EA x x t K L t or EA KL
x



  

     
 




  




             

 (35) 

In which K is spring stiffness. If the boundary conditions introduced in (35) are applied to Eqs. 

(28)-(29), the integration constants are determined. Introducing the integration constants into Eq. 

(29) yields the integral equation as follows 

        

1

1 2

0 0

( ) ( ) ( , ) ( )d ( , ) ( )d 0 (36)EA f s s s f s s s



           (36) 

In which the functions f1(ξ,s) and f2(ξ,s) are expressed by the following relations 

         

 

1

2

(37)(1)

(1) (1) (1

( , ) ( ) ( ) ( )

( , ) ( ) (1 ) ( )
)

KL E

f s s m s EA s

E
f s A s s

A KL
m

EA KL EA KL EA
s m s

KL

  





 




  

  

 
  


            

 (37) 

 
 
4. Torsional vibration with an attached mass moment of inertia 

 

The governing differential equation for free torsional vibration of a bar is as follows 

       

2

2
(x, t) (x, t) 0 0 (38)JG J x L

x x t
  

   
         (38) 

Where G, J, ρ and θ(x,t) are the shear modulus, polar moment of inertia of the cross section, 

density of the bar and angular displacement of the bar, respectively. Using the solution 

θ(x,t)=ϕ(x)e
iωt

 and introducing the variables: 
x

L
  and 

2 2L

G

 
  the following differential 

equation is obtained 

       

2

2

d
( ) 0, 0 1 (39)

d


 


     (39) 
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Both sides of Eq. (39) are integrated twice with respect to ξ within the range 0 to ξ. The 

resulting integral equations are as follows 

       

 

1

0

0

21

d
( ) (40)

d

( ( ) 4) ( 1)

ds C

d

s

Cs Cs s












  

 

 





 

(40) 

         
 

1

0

0

21

d
( ) (40)

d

( ( ) 4) ( 1)

ds C

d

s

Cs Cs s












  

 

 




 

(41) 

The boundary conditions of a cantilever bar with an attached mass moment of inertia at the end 

are as follows (Kelly 2007) 

       

2

1

0, (0, ) 0, 0

d (42)
1, ( ) (1)

d
m

t or

GJ I L



  

    




  


 
  

 

 (42) 

In which Im is attached mass moment of inertia. By introducing mI

JL



 and applying the 

boundary conditions into Eqs. (40)-(41), the following equations are obtained for C1 and C2 

       

 

1

1

1

1

2

0

0

((1)

0 (43)

1 )

)

(1 ( )

C s

C

ds

ds Cs s









 




  










 





 (43) 

By elimination of ϕ(1) from relations (43), the coefficients C1 and C2are determined. 

Substitution of the integration constants into Eq. (41) yields an integral equation as follows 

       

1

1 2

0 0

( ) ( , ) ( )d ( , ) ( )d 0 (44)f s s s f s s s



          (44) 

In which the functions f1(ξ,s) and f2(ξ,s) are expressed by the following relations 

       

1

2

2

(45)

( , ) ( )

( , ) (1 )
1 1

f s s

f s s

  

 
  

 

 

   
     







   

 (45) 

 
 
5. Flexural vibration with distributed elastic support 

 

In this section, the free vibration of flexural beam which supported transversely by distributed 

elastic springs of the type shown in Fig. (3) is investigated. 
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Fig. 3 Flexural cantilever beam supported transversely by distributed elastic springs 

 

 

The free vibration equation of motion for this system is given by (Clough and Penzien 1975) 

            
2 2 2

2 2 2
( , ) ( , ) ( , ) 0 (46)D x x t m x x t K x x t

x x t
  

   
   

    
 (46) 

In which D(x)=EI(x) and K(x) are bending stiffness and stiffness of the distributed springs, 

respectively. Similar to previous sections, the transverse displacement of the beam is assumed as 

         (47), ( ) i tx t x e 
 (47) 

And also for further convenience, the following variables are introduced 

       

2 4, (48)
x

L
L

     (48) 

Substituting relations (47)-(48) into Eq. (46) leads to 

       
 

2 2

2 2

d d
( ) ( ) 0, 0 1 (49)

d d
D m


  


 



 
    

  
 (49) 

In which:  4( ) ( )m L K m    .  

Both sides of Eq. (49) are integrated twice with respect to ξ within the range 0 to ξ. The 

resulting integral equations are as follows 

       

2

12

0

( ) ( ) ( ) ( ) (50)
d d

D m s s ds C
d d



   
 

 
  

  
  (50) 

       
2

1 22

0

( ) ( ) ( ) ( ) ( ) (51)
d

D s m s s ds C C
d



     


   
 

(51) 

Further, integration from both sides of Eq. (51) twice with respect to ξ from 0 to ξ yields 

       

2
21

2 3

0

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) (52)

2 2

Cd s
D D D s m s s ds C C

d




        


 
       

  
  (52) 

              
3

3 21 2
3 4

0

( )
( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) (53)

6 6 2

C Cs
D s D s D s m s s ds C C




       
 

         
  


 
(53) 

665



 

 

 

 

 

 

Mehrdad Mohammadnejad 

Eqs. (50)-(53) are used for determination of the integration constants C1, C2, C3 and C4. 

 
5.1 Boundary conditions 
 

The boundary conditions are established as follows 

       

0

2

2

1

2

2

1

0, 0

d
0, 0 ( ) 0

d

d d
1, 0 ( ) ( ) 0 (54)

d d

d
1, 0 ( ) ( ) 0

d

or

V or D

M or D







 

   


   
 

   








 


       

   
          


 
    
   

 
(54) 

Substituting ϕ=0 into (53) as well as ϕ=θ=0 into (52) and setting ξ=0 leads to 

       3 4 0 (55)C C 

 
(55) 

Similarly, Substitution of V=0 into (50) and M=0 into (51) as well as setting ξ=1, yields, 

respectively 

       

 
1

1

2

0

0

1

( )d (56)

( ) ( )d (57)

m s C

sm s s

s s

s C







  
 





 

(56) 

            

 
1

1

2

0

0

1

( )d (56)

( ) ( )d (57)

m s C

sm s s

s s

s C







  
 




 

(57) 

Substitution of the integration constants into (53) yields an integral equation as follows 

       

1

1 2

0 0

( ) ( ) ( , ) ( )d ( , ) ( )d 0 (58)D f s s s f s s s



           (58) 

In Eq. (58), functions f1(ξ,s) and f2(ξ,s) are expressed by the following relations 

       

   
3

1

2 3

2

)
( , ) ( ) ( )

6

s
( , ) ( )

2 6

(
2

(59)

s
f s s D s s s

f s m s

D m


 

 



 

 
 


 







 
 

 (59) 

 
 
6. Flexural vibration including viscose damping 

 

In this section, the governing differential equation for free vibration of a non-prismatic 

cantilever beam including viscose damping is converted to its weak form. The governing 
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differential equation is obtained as follows 

       
     

2 2 2

2 2 2
( , ) ( , ) ( , ) 0 (60)D x x t m x x t C x x t

tx x t
  

    
   

    
 (60) 

In Eq. (60) C(x)=a0 m(x) is damping resistance per unit velocity which depends on both 

coefficient a0 and mass per unit length m(x). a0 is called mass proportional damping coefficient and 

can be calculated as follows 

       
0a 2 (61)n n   (61) 

In relation (61) ζn and ωn are damping ratio and natural frequency corresponding to nth mode. 

The lateral displacement of the beam is assumed as a harmonic vibration as follows 

         (62), ( ) tx t x e   (62) 

In which α is an unknown complex coefficient. Substitution of relationship (62) into Eq. (60) 

and assumption of 
x

L
  leads to 

       
 

2 2

2 2

d d
( ( ) 0, 0 1 (63)

d d
)D m


  


 



 
    

  
 (63) 

In which    2 4 4( ) L m Lm C    . As can be seen, Eq. (63) is similar to Eq. (49) and also, 

since viscose damping not changes the boundary conditions of flexural beam, the relations (59) 

calculated in section (5) can be used for determination of unknown coefficient α. Of course it must 

be noted that  4 (( )) sL Km m s   in section (5) is replaced by    2 4 4( ) L m Lm C     

obtained in this section.  

 
 
7. Establish the system of linear algebraic equations 

 

In the previous sections, the governing differential equations for free lateral, axial and torsional 

vibration of the beams were converted into the following integral equations 

       

1

1 2

0 0

1

1 2

0 0

( ) ( ) ( , ) ( )d ( , ) ( )d 0 for non-uniform beams

( ) ( , ) ( )d ( , ) ( )d 0 for uniform beams (64)

D f s s s f s s s

f s s s f s s s





      

     


   





  


 

 
 (64) 

In which D(ξ) is the stiffness function that is equal to: EA(ξ) for axial vibration, and EI(ξ)for 

lateral vibration. The functions f1(ξ,s) and f2(ξ,s) were introduced for each case. The mode shape 

function ( )s is the unknown parameter in the integral Eq. (64). In order to solve the integral Eq. 

(64) and to determine the corresponding natural frequencies, the mode shape function of the 

vibration is approximated by the following power series 

      0

( ) (65)

R
r

r

r

c  


  
(65) 

667



 

 

 

 

 

 

Mehrdad Mohammadnejad 

Where Cr are unknown coefficients and R is a given positive integer, which is adopted such that 

the accuracy of the results is sustained. Introducing Eq. (65) into integral Eq. (64) leads to 

       

1

1 2

0 0 0

( ) ( , ) d ( , ) d 0 (66)

R
r r r

Cr

r

D f s s s f s s s



   


 
   
 
 

    (66) 

Both sides of (66) are multiplied by ξm and integrated subsequently with respect to ξ between 0  

and1 . This results in a system of linear algebraic equations in Cr 

       

 1 2

0

( , ) ( , ) ( , ) 0 0,1,2,..., (67)

R

r

r

G m r F m r F m r c m R



     (67) 

In which functions G(m,r), F1(m,r) and F2(m,r) are expressed as follows 

       

1

0

1

1 1

0 0

1 1

2 2

0 0

( , ) ( )d

( , ) ( , ) d d (68)

( , ) ( , ) d d

r m

r m

r m

G m r D

F m r f s s s

F m r f s s s



  

  

  



 














 

 

 (68) 

The system of linear algebraic Eq. (67) may be expressed in matrix notations as follows 

     

     

 

0
( 1) ( 1) ( 1) 1 ( 1) 1

(0,0) (0,0) (0,0) (0,1) (0,1) (0,1) .......... (0, ) (0, ) (0, )
1 2 1 2 1 2

(1,0) (1,0) (1,0) (1,1) (1,1) (1,1) ........... (1, ) (1, ) (
1 2 1 2 1 2

A C
R R R R

G F F G F F G R F R F R
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(69) 

In which [A] and [C]T are matrix coefficients and unknowns vector transpose, respectively. In 

order to obtain the natural frequencies of the beam, the functions f1(ξ,s) and f2(ξ,s) are first 

obtained. Introducing these functions into (68), the functions G(m,r), F1(m,r) and F2(m,r) 

associated with the coefficients of matrix [A] are obtained next. The unknown parameter in the 

coefficients matrix [A] is therefore the natural frequency of the beam. [C]=0 is a trivial solution for 

the resulting system of equations introduced in (67). The natural frequencies are determined 

through calculation of a non-trivial solution for resulting system of equations. To achieve this, the 

determinant of the coefficients matrix of the system has to be vanished. Accordingly, a frequency 

equation in ω (which is a polynomial function of the order 2(R+1) is introduced. Given the fact 

that the mode shape function is approximated by the power series of (65), the results accuracy is 
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improved if more number of the series sentences is taken into account.  In this case, the order of 

polynomial is also increased accordingly. Hence, adoption of larger R yields more accurate results.   

 
 
8. Numerical examples 

 

In this section, several numerical examples are presented in order to verify the accuracy of the 

presented approach. The results of presented approach are compared with those obtained from 

other published references and finite elements software SAP-2000. For all following examples, the 

beam model is a cantilever beam.  

 
8.1 Rayleigh beam   
 
8.1.1 Effects of rotatory inertia and axial loading 
In this example, the first three dimensionless natural frequencies of Rayleigh beam with effects 

of rotational inertia and variable axial forces are calculated. The results are presented in Table 1. 

From Table 1 we find that our results are in excellent agreement with those in (Li et al. 2013) 

by Legendre polynomials.  

 
8.1.2 Effects of rotational inertia, tip mass and axial loading 
In this section, the first three dimensionless natural frequencies of Rayleigh beam with a 

lumped mass at free end under effects of axial forces are calculated. The results are presented in 

Table 2 and are compared with those obtained in (Li et al. 2013).  

 

 
Table 1 The first three dimensionless natural frequencies of Rayleigh beam with effects of rotational inertia 

and variable axial loading 

  r=0 r=0.1 r=0.2 r=0.3 

Axial force  present 
Li et al. 

2013 
present 

Li et al. 

2013 
present 

Li et al. 

2013 
present 

Li et al. 

2013 

α(ξ)=3(1−ξ) 

Ω1 2.7645 2.73 2.7018 2.70 2.5355 2.53 2.3138 2.31 

Ω2 21.437 21.45 18.629 18.63 14.206 14.2 11.056 11.06 

Ω3 61.107 61.13 46.055 46.1 31.079 31.08 22.850 22.84 

α(ξ)=−4+3(1−ξ) 

Ω1 4.9734 4.99 4.8776 4.88 4.6172 4.6172 4.2558 4.25 

Ω2 24.237 24.24 21.095 21.1 16.03 16 12.375 12.38 

Ω3 63.586 63.58 47.86 47.86 32.187 32.18 23.62 23.62 

 
Table 2 The first three dimensionless natural frequencies of Rayleigh beam with a lumped mass at free end 

under effects of axial forces 

Axial force  β=0.5 β=1.5 β=3 

  present Li et al. 2013 present Li et al. 2013 present Li et al. 2013 

α(ξ)=3(1−ξ) 

Ω1 1.58701 1.58701 1.03567 1.03567 0.759029 0.75903 

Ω2 16.4605 16.46046 15.5679 15.56787 15.2939 15.29385 

Ω3 51.1569 51.14854 50.0547 50.04631 49.7438 49.73534 
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Table 3 The first dimensionless natural frequency of Rayleigh beam with effects of rotatory inertia, tip mass 

and axial loading 

  r=0.1 r=0.2 r=0.3 

Axial force  present 
Li et al. 

2013 
present 

Li et al. 

2013 
present 

Li et al. 

2013 

α(ξ)=−3(1−ξ) 
β=0.5 2.34792 2.4 2.29374 2.3 2.21094 2.2 

β=1 1.81794 1.8 1.79226 1.79 1.75172 1.75 

 
Table 4 The first five natural frequencies of a non-prismatic cantilever beam in axial deformation (rad/sec)  

 ω1 ω2 ω3 ω4 ω5 

Presented approach 1538 3277 5138 7049 8984 

SAP-2000 1537 3275 5131 7033 8950 

 

 

The first dimensionless natural frequency of Rayleigh beam with effects of rotatory inertia, tip 

mass and axial loading has been calculated and results have been presented in Table 3. 

The results presented in Table 3 show excellent agreement with those obtained in (Li et al. 

2013). By assumption of a constant axial force as: α(ξ)≡constant=α and calculation of a non-trivial 

solution for the system of Eq. (67) with R=1, the following equation is obtained for determining 

dimensionless fundamental frequency 

4 2 6 4 2 2 4

2 2 2 2 2

7 7560 2964 40 14

262080 48960 15120 2964 7 262080 7560 604800 0 (70)

r r r r r

r r

 

    

             

           

 (70) 

The first root of Eq. (70) is the first dimensionless fundamental frequency of the beam. Eq. (70) 

can be used for quick and approximate determination of the fundamental frequency of Rayleigh 

beam with effects of rotatory inertia, and constant axial loading.  

 
8.2 Free vibration in axial ceformation 
 
8.2.1 Non-prismatic cantilever beam 
In this section, the first five natural frequencies of a non-prismatic cantilever beam in axial 

deformation are obtained.  The beam is assumed to have a circular cross section with a linearly 

varying diameter as: d(ξ)=2−1.5ξ (0≤ξ≤1). The density of the beam (ρ), elastic modulus (E) and 

beam length (L) are adopted as: 
3

20.3943
ton

m
, 

8

2
2 10

KN

m
 and 5 m, respectively. The results are 

shown in Table 4 and are compared with those obtained using SAP-2000 software.  

 

8.2.2 Non-prismatic cantilever beam with end discrete spring  
The natural frequencies of a non-prismatic cantilever beam in axial deformation with end 

discrete spring are calculated in this example. The beam has the same material and geometric 

properties as the case 8.2.1. The stiffness of the discrete spring is 107 KN/m. The results are 

presented in Table 5.  
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Table 5 The first five axial natural frequencies of a non-prismatic cantilever beam in axial deformation with 

end discrete spring (rad/sec) 

 ω1 ω2 ω3 ω4 ω5 

Presented approach 1625.77 3371 5216 7112 9035 

SAP-2000 1625.8 3369 5209 7095 9002 

 

 

Fig. 4 the first four torsional dimensionless frequencies of a uniform bar with an attached mass 

moment of inertia 

 
 

8.3 Torsional vibration 
 

In this example, the first four torsional dimensionless frequencies of a uniform bar are 

calculated. Fig. 4 presents torsional dimensionless frequencies as a function of η. 

From Fig. 4 we find that the results obtained are in excellent agreement with those in (Kelly 

2007). The non-trivial solution of the system of Eq. (67) with R=1 results in the following equation 

for determining torsional dimensionless fundamental frequency 

                  6 4 272 9 720 312 720 0 (71)            (71) 

The first root of the Eq. (71) is the torsional dimensionless fundamental frequency. The Eq. 

(71) can be used for quick and approximate calculation of the torsional fundamental frequency of 

the beam.  

 
8.4 Flexural vibration with distributed elastic support 
 

In this section, the first five natural frequencies of flexural beam with distributed elastic support 

are calculated.  The beam is assumed to has a square cross section with a linearly varying width 

and height as: d(ξ)=h(ξ)=2−1.5ξ (0≤ξ≤1). The stiffness of the distributed elastic support is 

2
250000

KN

m
K  . The other material and geometric properties of the beam is the same as case  
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Table 5 The first five natural frequencies of a non-prismatic cantilever beam with distributed elastic support 

(rad/sec) 

 ω1 ω2 ω3 ω4 ω5 

Presented approach 445.13 1341.8 2984 5405 8612 
SAP-2000 445.38 1343.54 2991 5421 8647 

 
Table 6 The first five natural frequencies of a uniform cantilever beam with distributed elastic support 

(rad/sec) 

 ω1 ω2 ω3 ω4 ω5 

Presented approach 230.4 455.7 1137.26 2197 3620 
Clough and Penzien 1975 230.37 455.77 1137.32 2197 3620 

SAP-2000 230.38 455.57 1136.1 2194 3613 

 
Table 7 The first five natural frequencies of a non-prismatic flexural cantilever beam without effects of 

damping (rad/sec) 

ω1 ω2 ω3 ω4 ω5 

420.87 1334.7 2981.9 5403.5 8611.1 

 
Table 8 The first five roots of the frequency equation of a non-prismatic flexural cantilever beam with 

effects of viscose damping  

α1 α2 α3 α4 α5 

−168.4±385.9 i −534.5±1224.8 i −1195.3±2738.9 i −2168.1±4967.8 i −3458.5±7924.5 i 

 

 

8.2.1. The first five natural frequencies of the beam have been calculated and have been presented 

in Table 5. 

The first five natural frequencies of a uniform beam with d=h=0.5 m and L=5 m have been 

calculated and have been presented in Table 6.  

 

8.5 Flexural vibration including viscose damping 
 

In this example, the presented approach is used for free vibration analysis of a non-prismatic 

cantilever beam with effects of viscose damping. The beam of the case 8.4 is considered in this 

example. By setting C(ξ)=0 in the relations obtained, the first five natural frequencies of the beam 

without effects of damping are calculated. The results are presented in Table 7.  

By assumption of a constant damping ratio ξ=40% for all modes, the first five roots of the 

frequency equation have been calculated and have been presented in Table 8.  

The results of Table 8 shows that the roots of the frequency equation (αn n=1,2,...) are the 

complex numbers and are equal to    2= 1  in n n       or 0=  
2

in D

a
    where 

21D n    and a0 are damped natural frequency of the beam and mass proportional damping 

coefficient, respectively. And also, the complex norm of αn is 

   
2

2 21n n n n         .  
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9. Conclusions 
 

In this paper, the natural frequencies of the lateral, axial and torsional vibration of the 

uniform/non-uniform beams have been calculated. The proposed method is based on the 

conversion of the governing differential equation into its weak form integral equation. The mode 

shape function has been approximated by a power series, which allows the weak form integral 

equation to be transformed into a system of linear algebraic equations. The natural frequencies are 

determined by calculation of a non-trivial solution for system of equations. The various vibration 

problems such as: Rayleigh beam under variable axial forces, axial vibration of a bar with and 

without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, 

flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration 

of the beam with effects of viscose damping have been investigated. In the numerical examples 

presented in the paper, the natural frequencies of the beams were calculated and were compared 

with those given by other published references and available finite elements software. It was 

shown that the method proposed in the paper was reliable, efficient, and sufficiently accurate when 

compared with other references and numerical software. 
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