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Abstract.  The influence of the interface imperfect bonding on the flexural wave dispersion in the bi-

layered hollow circular cylinder is studied with utilizing three-dimensional linear theory of elastodynamics. 

The shear-spring type model is used for describing the imperfect bonding on the interface between the layers 

and the degree of the imperfectness is estimated through the dimensionless shear-spring parameters which 

enter the mentioned model. The method for finding the analytical expressions for the sought values and 

dispersion equation are discussed and detailed. Numerical results on the lowest first and second modes are 

presented and analyzed. These results are obtained for various values of the shear-spring parameters. 

According to these results, in particular, it is established that as a results of the imperfection of the bonding 

between the layers the new branches of the dispersion related the first fundamental mode arise and the 

character of the dispersion curve related to the second mode becomes more complicated. 
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1. Introduction 
 

It is known that the non-destructive evaluation of various type imperfectness of the structure of 

the composite material is based on the measurement of the wave propagation velocity in those. To 

make correct conclusions from these measurement procedures it is necessary to have at hand 

theoretical results related to the influence of the structural imperfectness of composites (for 

instance, the bonding between the layers in the layered composites) on the propagation velocity (or 

on the dispersion) of the waves through which the non-destructive evolution is made. Therefore, 

the subject of the present paper which regards the study of the influence of the shear-spring type 

imperfectness of the bonding between the layers on the flexural wave dispersion in the bi-layered 

hollow circular cylinder has a great significance not only in the theoretical, but also in the 

application sense and is of great interest to various fields of modern natural science. Because the 

results of the theoretical investigations carried out in the present paper together with the 

corresponding experimental data can be employed for the non-destructive determination of the 

degree of imperfection of the contact between the layers of the cylinder.  

Moreover, the mentioned type results also are applied in geophysical and geotechnical  
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Fig. 1 The geometry of the bi-layered hollow cylinder 
 
 

engineering for determination of the soil stiffness profile.  
We consider here a brief review of the investigations which were made within the scope of the 

imperfect interface models summarized in paper Martin (1992). Simplification of model (Martin 
1992) to the shear-spring type imperfection of the contact conditions was made in a paper Jones 
and Whitter (1967). According to the subject of the present paper, we consider the investigations 
related to the compound cylinders. A review of the investigations related to the layered materials in 
the plane-strain state can be found in papers (Pecorari 2001, Leungvichcharoen and 
Wijeyewickrema 2003, Kadioglu and Ataoglu 2010, Zhou et al. 2012, Küçükarslan 2009, Kumara 
and Singh 2009, Liu et al. 2010, Huang and Liu 2010, Pang and Liu 2011). Moreover, a review of 
recent investigations related to the wave dispersion in compound cylinders was made in paper 
Akbarov (2013). Thus, we begin the review with paper Berger et al. (2000), in which the torsional 
wave propagation in a bi-material, imperfectly-compounded circular cylinder is studied and the 
imperfection of the contact condition is presented according to the model developed in Jones and 
Whitter (1967). In paper Kepceler (2010) investigations of a similar type were carried out for the 
initially stressed bi-material compound circular cylinder. Study of the shear- spring type 
imperfection on the longitudinal bi-material pre-strained compound solid and compound spring 
type imperfection on the hollow circular cylinders was made in papers Akbarov and Ipek (2010) 
and Akbarov and Ipek (2012). This seems to be all that has been done in the area of wave 
dispersion in compound circular cylinders. 

In the present paper, the investigations carried out in papers (Akbarov and Ipek 2010, Akbarov 
and Ipek 2012) are developed for flexural wave propagation in the bi-material compound hollow 
circular cylinder (Akbarov and Ipek 2015, Akbarov 2015). In other words, in the present paper the 
influence of the shear-spring type imperfectness of the bonding between the layers of the cylinder 
on the dispersion curves of the flexural wave propagation in this compound cylinder is studied. 
Investigations are carried out by utilizing the three-dimensional linear theory of elastodynamics.  

 
 

2. Formulation of the problem 
 
We consider the hollow (Fig. 1) compound cylinder and assume that the radius of the inner 
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circle of the cross section of the inner hollow cylinder is R .  
The thickness of the outer inner cylinders we denote through h(1) and h(2) respectively. 
We determine the position of the points of the cylinders in the cylindrical system of coordinates 

Orθz (Fig. 1). The values related to the inner and outer hollow cylinders will be denoted by the 
upper indices (2) and (1), respectively. Within this framework, let us investigate the flexural wave 
propagation along the Oz axis in the cylinders using the coordinates r, θ and z in the framework of 
the three-dimensional linear theory of elastodynamics. Thus, we write the basic relations of the 
linear theory of elastodynamics for the case under consideration. 

The equations of motion 
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The elastic relations 
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  In Eq. (2) conventional notation is used. 
  The boundary conditions on the outer surface of the outer hollow cylinder and inner surface of 
the inner hollow cylinders are 
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  Now we formulate the contact conditions on the interface surface between the inner and outer 
hollow cylinders. We assume that the contact conditions with respect to the forces and radial 
displacements are continuous and can be written as follows 
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At the same time, we assume that the shear-spring type imperfection occurs in the contact 
conditions related to the circumferential and axial displacements and, according to (Jones and 
Whitter 1967, Berger et al. 2000, Akbarov and Ipek 2010, Akbarov and Ipek 2012) these 
conditions are formulated by the following equations 
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(5)

Here, the dimensionless parameters F and F1 in Eq. (5) characterize the degree of the 
imperfection and the change range of these parameters is: 0≤F≤∞ and 0≤F1≤∞. Note that the case 
where F1=F=0 corresponds to complete contact, but the case where F1=F=∞ corresponds to full 
slipping contact conditions. At the same time, the case where F1=0 and F1=∞ under 0<F<∞  can 
be considered, which can be called complete and full slipping contacts with respect to the axial 
displacements, respectively, or the cases where F=0 and F=∞ under 0<F1<∞ can be called 
complete and full slipping contacts, with respect to the circumferential displacements, respectively. 
The aim of the present investigation is to study the influence of the shear spring type parameters F1 
and F on the character of the dispersion of the flexural waves in the compound solid cylinder 
under consideration. 

This completes formulation of the problem and consideration of the governing field equations. 
 
 

3. Solution procedure and obtaining the dispersion equation 
 
For solution of the eigenvalue problems, Eqs. (1)-(5), we use the representation proposed in 

Guz (2004) 
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Here the functions Ψ(k) and X(k) are the solutions of the equations 
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For the flexural waves we represent the functions Ψ and X as follows 
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Substituting Eq. (8) into Eq. (7) we obtain 
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In Eqs. (10) and (11), c is the phase velocity of the flexural waves. Thus, we find the solution of 
the equations in Eq. (9) as follows 
For the inner cylinder 
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Where 
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Table 1 The values of elastic constants of selected materials 

Materials Density (ρ×10-3)
Young's 

Module E×10-4 
Pois.’s 

ratio (ν) 
Velocity of wave 

of dilatation c2×10-3 

Steel (St) 7.795 kg/m3 19.6 MPa 0.27 3.152 m/s 

Aluminum (Al) 2.77 kg/m3 7.28 MPa 0.30 3179 m/s 

 
 

( ) ( )( ) ( )m m
n nj jE kr J kr  , ( ) ( )( ) ( )m m

n nj jD kr Y kr   if ( ) 2( ) 0m
j  , 1, 2,m   

( ) ( )( ) ( )m m
n nj jE kr I kr  , ( ) ( )( ) ( )m m

n nj jD kr K kr   if ( ) 2( ) 0m
j  , 1, 2,3j   (14) 

  In Eq. (14), Jn(x) and Yn(x) are Bessel functions of the first and second kind of the n-th order, 
In(x) and Kn(x) are Bessel functions of a purely imaginary argument of the n-th order and 
Macdonald functions of the n-th order, respectively. Thus, using relations Eqs. (6), (12)-(14) and 
(2) we obtain the dispersion equation 

det 0ij  , ; 1,2,...,12i j                          (15) 

For the compound solid cylinder from the boundary Eq. (3) and contact Eqs. (4) and (5) 
conditions, we do not give here the explicit expressions of βij, because they can easily be 
determined from the corresponding expressions given in paper Akbarov (2013). 

 
 

4. Numerical results and discussions 
 
Numerical results are obtained for the following pair of materials: the material of the inner and 

outer cylinders is steel (shortly denoted as St) and aluminum (shortly denoted as Al) respectively, 
and this pair of materials will be denoted as St+Al. 

All mechanical characteristics of these materials are given in Table 1 Note that the data given in 
the tables are selected according to (Guz 2004, Guz et al. 2000). Assume that n=1 in Eqs. (8)-(14) 
and, h(1)/R=0.1 and h(2)/R=0.3. Within these assumptions we analyze numerical results obtained by 
numerical solution of the dispersion equation Eq. (15). Note that this numerical solution is carried 
out by employing the algorithm and PC programs which were used in the previous papers by the 
authors such as (Akbarov 2013, Akbarov and Ipek 2010, Akbarov and Ipek 2012, Akbarov and 
Ipek 2015) and others. We recall that in the paper Akbarov (2013) the dispersion of the flexural 
wave dispersion in the finite pre-strained solid and hollow cylinders made of highly elastic 
material was studied and programs which were used under this studying were tested by the known 
classical results obtained, for example, in a paper Abramson (1957). Therefore, the PC programs 
used in the investigations carried out in the paper Akbarov (2013) after corresponding 
development and change are employed for the numerical solution of the dispersion equation Eq. 
(15). Consequently, the algorithm and PC programs used in the present numerical investigations 
have been already tested, although we will also consider below some fragments on the mentioned 
testing. Thus, consider the numerical results which are obtained in the following three cases: 

- in Case I it is supposed that F=0 and F1≥0; 
- in Case II it is supposed that F≥0 and F1=0; 
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Fig. 2 Dispersion curves of the first mode obtained in Case I 
 
 
- in Case III it is supposed that F≥0 and F1≥0. 
Where F and F1 are the shear-spring parameters which enter the contact conditions in Eq. (5). 

Dispersion curves related to the first mode are given in Figs. 2, 3 and 4, for the Cases I, II and III 
respectively.  First, we analyze the results related to Case I and note that the in the foregoing 
figures and in the figures which will be considered below the dispersion curve related to the 
complete contact case, i.e., to the case where F1=F=0 is depicted with the dashed line. According 
to Fig. 2, and other results which are not given here, it can be concluded that there exists such 
value of the parameter F1 (denote it by F*

1) before which (i.e., in the cases where F1<F*
1) two 

branches of the first mode appear. The dispersion curves which are above (below) the dispersion 
curves related to the complete contact case we call the first (the second) branch. However, in the 
cases where F1≥F*

1, the dispersion cure related to the first mode has a single branch and this 
branch approach to the dispersion curve related to the full slipping contact with respect to the axial 
displacements, i.e., with respect to the (1)

zu  and (2)
zu . For the cases under consideration it can be 

concluded that F*
1≈14 for the pair of the materials St+Al. It should be noted that, as follows from 

the Fig. 2 the second branches appear after a certain value of the dimensionless wavenumber kR  
(denote it by ( )sa

IkR ) for the pair of materials St+Al and we call it the cut off value of the  
dimensionless wavenumber in Case I. 

According to the numerical results illustrated in Fig. 2 we can write the following relation for 
the cut off values of the dimensionless wavenumber 

( )sa
IkR   as 1 0F   and ( ) 0sa

IkR   as *
1 1F F     (16) 

  Through Isa
fbc  and Isa

sbc  we denote the wave propagation velocity related to the first and 

second branches of the dispersion curves respectively, but through csa we denote the wave 
propagation velocity in the complete contact case between the cylinders for the pair of materials 
St+Al. As noted above, in the case where F1≥F*

1, the flexural wave in the first mode has a single 
branch and the wave propagation velocity related to this case we denote through 

*
Isac  for the pair 

of materials St+Al. 
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Fig. 3 Dispersion curves of the first mode obtained in Case II 
 
 
Thus, according to the foregoing notation and according to the results given in Fig. 2 we can 

write following relations 

Isa
fb sac c , *

Isa
sac c  for each (0, )kR  and *

Isa Isa
sbc c  for each (( ) , )sa

IkR kR   (17) 

Numerical results show that there exist the following limit relations 

 * , ,; ; ; min ;Isa Isa Isa
fb sb sa R St R Alc c c c c c as kR  , 

  *; ; 0Isa Isa
fb sac c c  as 0kR  , 0Isa

sbc  as ( )sa
IkR kR      (18) 

Where cR,St (cR,Al) is the Rayleigh wave velocity of the Steel (Aluminum). According to Eringen 
and Suhubi (1975), cR,St=2908.2 m/s and cR,Al=2948.2 m/s. Consequently, we can write that 
min{cR,St; cR,Al}=cR,St and max{cR,St; cR,Al}=cR,Al. 

Moreover, numerical results show that the dispersion curves obtained in the cases where F1≥F*
1 

approach a certain limit which corresponds to the dispersion curve constructed in the full slipping 
case with respect to the axial displacements. 

Now we analyze the dispersion curves related to Case II and constructed also for the first mode. 
These curves are illustrated in Fig. 3 for the pair of materials St+Al. The analyzes of these results 
show that in Case II the influence of the interface imperfect bonding of the layers of the cylinder is 
a similar in the qualitative sense with that observed in Case I. Consequently, there exists such 
value of the parameter F (denote it by F*) before which the dispersion curves related to the first 
mode has two branches: the first of them are above, but the second ones below the dispersion 
curves related to the complete contact case between the layers of the cylinder. 

We use the notation *
saF  for the value of the F* obtained for the pair of materials St+Al. It is 

established that * 4.8saF  . In the cases where F≥F* the first mode of the flexural wave in Case II 
has a single branch and wave propagation velocity related to these cases we denote through 

*
IIsac   
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Fig. 4 Dispersion curves of the first mode obtained in Case III 
 
 
for the pair of materials St+Al. Through IIsa

fbc  and IIsa
sbc  we denote the wave propagation velocity 

related to the first and second branches of the first mode for the pair of the materials St+Al. 
It follows from the Fig. 3  in Case II, as in Case I, the second branch has cut off values for the 

dimensionless wavenumber kR, i.e., the graphs related to the second branch appears after a certain 

value of kR (denote it by ( )sa
IIkR ) for the pair of materials St+Al. According to the numerical 

results shown in Fig. 3 we can conclude that 

( )sa
IIkR   as 0F   , ( ) 0sa

IIkR   as *
saF F   (19) 

Thus, using the notation described above, the following relations are established from the 
results illustrated in Fig. 3 

IIsa
fb sac c , *

IIsa
sac c for each (0, )kR  , *

IIsa IIsa
sbc c  for each (( ) , )sa

IIkR kR   (20) 

At the same time, we obtain the following estimation for the limit cases 

 * , ,; ; min ;IIsa IIsa IIsa
fb sb R St R Alc c c c c  as kR  , 

*; 0IIsa IIsa
fbc c   as 0kR  , 0IIsa

sbc   as ( )sa
IIkR kR      (21) 

Now we consider the results obtained in Case III which are illustrated in Fig. 4 for the pair of 
materials St+Al. Analyses show that the number of the branches of the first mode in Case III, as in 
the previous cases, depends on the value of the parameter F(=F1). So that, before a certain value of  
the parameter F(=F1) (denote it by *

01F ) the first mode has three branches. We use the notation 
*
01
saF  for the *

01F  for the pair of materials St+Al. It is established that *
01 4.8saF  . Moreover, it 

follows from the results that after *
01F  there exists a certain value of the parameter F(=F1)  

(denote it by *
02F ) before which, i.e., in the cases where * *

01 1 02( )F F F F    the first mode has 
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two branches. The value of *
02F  related to the pair of materials St+Al we denote by *

02
saF . It 

follows from the analyses of the numerical results that *
02 14saF  . Finally, in the cases where 

*
1 02( )F F F   the dispersion curves of the first mode has a single branch. 

The numerical results also show that in the cases where *
1 02( )F F F   the curves related to 

the first branch is above, but the curves related to the second and third branches are below the 
dispersion curve related to the complete contact case. It should be noted that the graphs related to 
the second and third branches appear after a certain value of the dimensionless wavenumber kR 
and, as above we call these values of kR the cut off values of that. The cut off values of the kR for 

the second and third modes we denote as ( )sa
sIIIkR  and ( )sa

tIIIkR  for the pair St+Al. The relations 

given below follow from the numerical results. 

( ) ; ( )sa sa
sIII tIIIkR kR   as 1( ) 0F F  , 

( ) 0sa
tIIIkR   as *

1 01( ) saF F F  , ( ) 0sa
sIIIkR   as *

1 02( ) saF F F        (22) 

Through IIIsa
fbc , IIIsa

sbc  and IIIsa
tbc  we denote the wave propagation velocity related to the first, 

second and third branches of the first mode for the pair of materials St+Al. At the same time, we 
use the notation 

*
IIIsac  for the wave propagation velocity related to the case where *

1 02( ) saF F F  . 
Using the foregoing notation we can write the following relations for the wave propagation 
velocities. 

IIIsa
fb sac c , *

IIIsa
sac c  for each (0, )kR  ; 

IIIsa IIIsa IIIsa
fb sb tbc c c   for each (( ) , )sa

tIIIkR kR  ; 

IIIsa IIIsa
fb sbc c  for each (( ) , )sa

sIIIkR kR        (23) 

  Moreover, the numerical results illustrated in Fig. 4 allows us to write the following estimations 
for the limit cases in Case III  

 * , ,; ; ; min ;IIIsa IIIsa IIIsa IIIsa
fb sb tb R St R Alc c c c c c  as kR  , 

*; 0IIIsa IIIsa
fbc c   as 0kR  , 0IIIsa

sbc   as ( )sa
sIIIkR kR , 

0IIIsa
tbc   as ( )sa

tIIIkR kR     (24) 

This completes the analysis of the results related to the first mode. Now we consider the results 
which regard the second mode. Note that the dispersion curves obtained in Cases I, II and III for 
the pair of materials St+Al are given in Figs. 5, 6 and 7 respectively. The results show that the 
second mode, as in the complete contact case, has a single branch. However, this branch before a 
certain value of kR (denote this value of kR through *( )sa

IkR  and *( )sa
IIkR ) for Case I and Case II 

for the pair of materials St+Al coincide almost with the dispersion curve obtained in the complete 
contact case. The relations given below take place for the noted values of the dimensionless 
wavenumber. 
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Fig. 5 Dispersion curves of the second mode obtained in Case I 
 

Fig. 6 Dispersion curves of the second mode obtained in Case II 
 
 

*( )sa
IkR   as 1 0F    and *( )sa

IIkR   as 0F  ; 

*( ) 0sa
IkR   as 1F    and *( ) 0sa

IIkR   as F       (25) 

  However, after of the value of kR indicated in Eq. (25) the dispersion curves obtained in Case I 
and in Case II are separated from the dispersion curve regarded the complete contact case and 
increase with kR. The obtained results allow us to write also the relations 

2 2 *2
sa Isa Isa
m m mc c c   , 2 2 *2

sa IIsa IIsa
m m mc c c      (26) 
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Fig. 7 Dispersion curves of the second mode obtained in Case III 
 
 

where 2
sa
mc , 2

Isa
mc , 2

IIsa
mc , *2

Isa
mc  and *2

IIsa
mc   are the wave propagation velocity in the second mode in 

the complete contact case, in Case I, in Case II, in the full slipping case with respect to axial 
displacements and in the full slipping case with respect to circumferential displacements 
respectively for the pair of materials St+Al. 

With this we restrict to consideration of the dispersion curves obtained for the second mode in 
Case I and in Case II. It follows from the foregoing analysis that the influence of the imperfect 
bonding between the layers of the cylinder has a certain rules determined by the expressions Eqs. 
(25) and (26). However, according to results given in Fig. 7 in Case III the mentioned influence 
has more complicated character. For instance, the relations which are similar to the Eq. (25) or 
(26) do not take place in Case III. However, the wave propagation velocity approach a certain limit 
one with F(=F1) and this limit one corresponds the full slipping case between the layers with 
respect to the circumferential and axial displacements simultaneously. Moreover, Fig. 7 shows that 
in contrast to the first mode for which the wave propagation velocity obtained under full slipping 
case is less than corresponding ones obtained under complete contact case, in the second mode the 
wave propagation velocity related to the full slipping case may be greater or less than that obtained 
for other possible cases. At the same time, according to Fig. 7 we can conclude that in Case III, as 
well as in the other two previous cases, the flexural wave propagation velocity of the second mode 
for the pair of materials under considerations approach the cR,Al 

as kR→∞. 
 
 

5. Conclusions 
 
Thus, in the present paper within the scope of the piecewise homogeneous body model by 

utilizing the three-dimensional linear theory of elastodynamics the influence of the imperfectness 
of the bonding between the layers of the bi-layered hollow cylinder on the flexural wave 
dispersion in this cylinder has been studied. The shear-spring type model is used for describing of 
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the imperfectness which characterizes the discontinuity of the axial and circumferential 
displacements of the constituents on the interface surface. For estimation of the degree of the 
imperfectness the dimensionless, so called shear spring parameters are introduced. The method for 
finding the analytical expressions for the sought values have been discussed and detailed. 
Numerical results on the lowest first and second modes are presented and analyzed in the three 
cases determined in the beginning of the previous section for the pair of materials St+Al. 
According to these analyses it can be made the following main conclusions: 

• As a result of the considered type imperfectness the new branches appear for the first mode. 
• The number of the mentioned branches depend on the values of the shear spring parameters. 
• The rules of the wave propagation velocity related to the branches are described through the 

expressions Eqs. (16)-(24). 
• The results obtained for the first mode can not be limited with the corresponding ones 

obtained in the complete and full slipping contact cases between the constituents of the cylinder. 
• The dispersion curves obtained for the second mode has only a single branch. 
• In Case I and in Case II the rules of the wave propagation velocity related to the second 

branch are described by the expressions Eqs. (25) and (26). 
• In Case I and in Case II the results for the second mode are limited , but in Case III do not be 

limited with the corresponding ones obtained under complete and full slipping contact cases 
between the layers of the cylinder. 

Although, the discussed results are obtained for the concrete selected pair of materials, these 
results have also a general meaning.  
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