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Abstract.  In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are 

studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are 

derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of 

motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale 

methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations 

of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of 

the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear 

problem. The effects of the various axial tension parameters and different nonlocal parameters as well as 

effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are 

estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases. 
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1. Introduction 
 

Nano-sized structures have gained considerable interest in scientific research studies in the last 

two decades due to their superior electrical and mechanical properties. Due to these superior 

properties, nanostructures are used by scientists in various areas such as sensor technologies, 

composites and electromechanical systems.  

Nonlocal continuum theory proposed by Eringen (1983, 2002) has been used to model the 

nanostructures. The nonlocal continuum theory was initially applied to nanotechnology by 

Peddison et al. (2003). After this study, many scientific researchers have used the nonlocal models 

in the nanostructure analysis.  

Nonlocal continuum mechanics is used on the column buckling of multiwalled carbon 

nanotubes (MWCNTs) (Sudak 2003). Nonlocal Euler Bernoulli and Timoshenko beam theories 

were applied to study the static deformation of micro and nano rods and tubes (Wang and Liew 

2007). The nonlocal elasticity theory of Eringen was developed to study the bending, buckling and 

free vibration of nanobeams (Aydogdu 2009, Reddy 2007, Thai 2012). Wave propagation of single 

walled carbon nanotubes (SWCNTs) based on the nonlocal beam models was investigated to 
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obtain the influences of nonlocal effects on the wave properties (Lu et al. 2007). Buckling of 
SWCNTs and MWNTs due to the axial compressive loads were studied by molecular mechanics 
simulation (Sears Batra 2006). The axial vibration of single walled carbon nanotube embedded in 
an elastic medium is studied using nonlocal elasticity theory (Main and Jones 2007a). Exact 
analytical solutions were formulated by Main and Jones for free vibrations of tensioned beams 
with an intermediate viscous damper (Main and Jones 2007b) and tensioned beams with a viscous 
damper attached transversely near a support (Main and Jones 2007c). Tensioned pipes conveying 
fluid and carrying a concentrated mass (Öz and Boyaci 2000, Öz 2002) and axially traveling 
tensioned beams in contact with a stationary mass (Öz 2003) were considered to investigate the 
natural frequencies. Nonlinear transverse vibrations of a tensioned beam resting on multiple 
supports (Baǧdatlı et al. 2011) and transverse vibrations of an axially accelerating beam resting 
(Baǧdatlı et al. 2011) on simple supports were investigated using the Euler- Bernoulli beam 
model. Tensioned beam on an elastic foundation were considered to find the classical critical 
speed and deflection response (Adams 1995). Nonlinear vibrations of an axially moving mid-
supported and multi-supported string have been investigated. There are non-ideal supports 
allowing minimal deflections between ideal supports at both ends of the beam (Bağdatli and Uslu 
2015) and at both ends of the string (Yurddaş et al. 2013, Yurddaş et al. 2014). A cantilever beam 
attached to an axially moving base in fluid was studied to investigate the free vibration and 
stability based on Galerkin approach (Ni et al. 2014). Kural et al. (2012), studied string–beam 
transition problem and they found approximately solution by using perturbation methods. Kural et 
al. (2015) were investigated the size effects of beam behavior by adding “Modified Couple Stress 
Theory” to “Hamilton Principle” and perturbations methods. 

Transverse vibration of nanobeam subjected to an initial axial tension based on the nonlocal 
stress theory is presented, with considering the effects of the dimensionless nanoscale parameter 
and pre-tension on natural frequencies (Li et al. 2011, Lim et al. 2009a). Lim et al. (2010) 
analyzed the transverse free vibrations of axially moving nano-beams subjected to axial tension 
based on nonlocal stress elasticity theory. Also this author and its coauthors (Lim at al. 2009b) 
presented a new nonlocal stress variational principle approach for the transverse free vibration of 
an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end to obtain the 
relationship between natural frequency and nanoscale. Vibrational properties of an axially moving 
SWCNT with simply supported ends (Kiani 2013) and of an axially loaded non-prismatic SWCNT 
embedded in two parameter elastic medium (Mustapha and Zhong 2010) were studied using 
nonlocal Rayleigh beam model. The nonlinear primary resonance of nanobeam with the axial 
initial load were investigated based on the nonlocal continuum theory, with the influences of small 
scale effect, axial initial load, mode number, Winkler foundation modulus and the length to the 
diameter (Wang and Li 2014). Bağdatli (2015) was studied vibration of nanobeam using nonlocal 
beam theory for different boundary conditions. A new methodology were applied to detect the free 
vibration response of different nano-Timoshenko beams with different boundary conditions, 
material exponents and nonlocality parameters on the fundamental frequencies of nanobeam 
(Eltaher et al. 2014). Free and force axial vibrations of damped nonlocal rods were investigated 
(Adhikari et al. 2013). Vibration analysis of coupled nanobeam system under initial compressive 
pre-stressed condition were presented using Eringen nonlocal Elasticity model to detect the pre-
load effects on the nonlocal frequencies (Murmu and Adhikari 2012). Coupled mechanical and 
electronic behaviors of SWCNT under applied electric field and tensile loading were investigated 
by the use of quantum mechanics (Guo and Guo 2003). A nonlocal Euler-Bernoulli beam model 
with axial prestress was established based on the nonlocal elasticity theory (Lu 2007).  
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 Up to now, various aspects of vibrations of nanobeam have been addressed; however, 
vibrations of tensioned nanobeam have not been thoroughly assessed. Here in, nonlinear transverse 
vibrations of a tensioned nanobeam under two boundary conditions are studied using nonlocal 
Euler-Bernoulli beam theory. The nanobeam is stretched during vibration due to immovable 
supports. Transverse forcing and damping terms are also added in the problem. Exact natural 
frequencies are calculated for two boundary conditions, different axial tension parameters (vp) and 
different nonlocal parameters (). The method of multiple scales, a perturbation technique, is used 
to solve the nonlinear equations approximately. The first terms in the expansions lead to the linear 
problem. The natural frequencies are calculated exactly and showed for different parameters and 
conditions. The addition of nonlinear terms then introduces corrections to the linear problem. The 
amplitude and phase modulation equations are determined from the nonlinear analysis. Free 
vibrations and forced vibrations with damping are investigated in detail. The effects of stretching 
on the nanobeam vibrations are considered for nonlocal parameters and sup-port conditions. 

Up to now, various aspects of vibrations of nanobeam have been addressed; however, 
vibrations of tensioned nanobeam have not been thoroughly assessed. Here in, nonlinear transverse 
vibrations of a tensioned nanobeam under two boundary conditions are studied using nonlocal 
Euler-Bernoulli beam theory. The nanobeam is stretched during vibration due to immovable 
supports.  Transverse forcing and damping terms are also added in the problem. Exact natural 
frequencies are calculated for two boundary conditions, different axial tension parameters (vp) and 
different nonlocal parameters (). The method of multiple scales, a perturbation technique, is used 
to solve the nonlinear equations approximately. The first terms in the expansions lead to the linear 
problem. The natural frequencies are calculated exactly and showed for different parameters and 
conditions. The addition of nonlinear terms then introduces corrections to the linear problem. The 
amplitude and phase modulation equations are determined from the nonlinear analysis. Free 
vibrations and forced vibrations with damping are investigated in detail. The effects of stretching 
on the nanobeam vibrations are considered for nonlocal parameters and support conditions. 

       xdVxTxxKx
V

  ˆˆ,ˆˆˆ                          (1) 

  )ˆ(:)ˆ(ˆ xxCxT                              (2) 

where x̂  is a reference point within domain V; σ( x̂ ) and ε( x̂ )are the second order tensors 
representing stress and strain fields, respectively; )ˆ(xT is the classical, macroscopic stress tensor 
at point x̂ , C( x̂ ) is the fourth order elasticity tensor, K(| x̂ − x̂ ′|, γ) is the nonlocal modulus or 
attenuation function. Typically, K(| x̂ − x̂ ′|, γ) is a function of material constant  and the Euclidian 
distance | x̂ − x̂ ′| (Eringen 1983, 2002). The material constant  defined as e0a/L depends on the 
internal characteristic lengths a, external characteristics lengths L and e0 is a constant appropriate 
to each material. The parameter e0a is the nonlocal parameter revealing the small-scale effect on 
the responses of nanoscale structures. 

The solution of nonlocal elasticity problems is very hard to solve mathematically because of the 
spatial integrals in the nonlocal relations. But, these integropartial equations can be approximately 
transformed to equivalent differential constitutive equations by using Green’s function (Nayfeh 
and Mook 1979, Peddieson et al. 2003). Therefore, the constitutive relation is given as follows 

   Te  22
0a1                                (3) 

where 2 is the Laplacian operator. The nonlocal constitutive relation for a homogeneous isotropic 
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Euler-Bernoulli beam takes the following form 

       xExex ˆˆaˆ 2
0                               (4) 

where E is the elasticity modulus.  
 
 
3. Equations of motion  
 

Governing equations of the tensioned nanobeam derived Lagrange’s equations from Hamilton’s 
Principles. The Lagrange equations of the proposed model is given in Eq. (5), ŵ  denotes the 
transverse displacement of the nanobeam section between supports, ρA is the mass, EI is flexural 
rigidity, L is the length of the nanobeam, e0a is the nonlocal parameter of nanobeam, t̂  is the 
time, EA is longitudinal rigidity and P̂  is the axial tension force on nanobeam.  
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  (5) 

where ( • ) shows respect to d/d t̂  and ( )′ shows respect to d/d x̂ . The kinetic energy of the beam, 
the elastic energy in bending, the elastic energy in extension due to stretching of the neutral axis 
and the elastic energy due to axial tension are written in Eq. (5), respectively. The equations of 
motion and boundary conditions for the boundary condition cases for the nanobeam in 
dimensional form is obtained by applying Hamilton’s principle and performing the necessary 
algebra as follows 
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        (6) 

The boundary conditions can be shown as follows 

Simple-Simple Case: 

0)1(ˆ,0)0(ˆ
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Clamped-Clamped Case: 
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(7)

The dimensionless quantities are related to the dimensional ones through the following 
relations 
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where R is the radius of gyration of the nanobeam cross-section with respect to the neutral axis. 
Using the Eq. (8) into the Eq. (6) yields 

 iv
L

p
iv

p
iv wwdxwwvwwvww 2

0

22222

2

1  







               (9) 

The non-dimensional form of boundary conditions can be shown as follows 

Simple-Simple Case: 

0)1(,0)0(

0)1(,0)0(


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ww

ww
 

Clamped-Clamped Case: 

0)1(,0)0(

,0)1(,0)0(
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

ww

ww
 

(10)

 
 
4. Multiple scales method 
 

The multiple scales method will be used to solve the problem (Nayfeh and Mook 1979). 

  wFwwdxwwvwwvww iv
L

p
iv

p
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   (11) 

The multiple scales method will be applied to the partial differential equation system and 
boundary conditions directly (Nayfeh and Mook 1979, Nayfeh 1981). There is no quadratic non-
linearity, that’s why one can write an expansion of the form 

);T(x,Twε);T(x,Tεwεx,tw 201
3

200);( 
                    (12) 

where  is a small parameter that the deflections are small. This procedure models a weak non-
linear system. T0=t and T2=2t are the fast and slow time scales. The forcing and damping terms are  
ordered as expressed below so that they are counter effect of nonlinearity,  3~   and 

FF 3~  the time derivatives are written in terms of the new time variables ∂/∂t=D0+εD2,  
∂2/∂t2=D0

2+2εD0D2, where Dn=∂/∂Tn. One obtains equations of motion after expansion as follows 
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Solution of the first order of expansion gives natural frequency values and a solvability 
condition is obtained from the third order of expansion. The first order of perturbation is linear 
given in the Eq. (13); the solution may be represented by 
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      xYcceTATTxw iω  0T

2200 ,, (15)

where A(T2) complex amplitudes and cc stands for their conjugate of the preceding terms. Y(x) 
estimated the following equations and boundary conditions. Substituting Eq. (15) into Eq. (13), 
one has 

0222222  YvYYγYvY p
iv

p
iv                      (16) 

The solution of the equations can be sought by assuming the following shape function and 
boundary conditions 

xixixixi ececececxY 4321
4321)(                      (17) 

S-S Case: 0)0( Y , 0)0( Y , 0)1( Y , 0)1( Y  

C-C Case : 0)0( Y , 0)0( Y , 0)1( Y , 0)1( Y                  (18) 

Numerical values of n is calculated by using Eq. (16) and Eq. (17) as follows 
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When the boundary conditions are applied the frequency equations can be obtained. Since the 
homogenous problems described by Eq. (13) have a non-trivial solution, the inhomogenous Eq. 
(14) has a non-secular solution only if the following solvability condition is determined as 
explained in reference (Nayfeh and Mook 1979). 
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and substituting Eq. (20) into Eq. (14), we eliminate the terms producing secularities. Here 
W(x,T0,T2) stands for the solution related with non-secular terms. One obtains 
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where cc stands for complex conjugate of preceding terms and NST stands for non-secular terms. 
We also assume that excitation frequency is close to one of the natural frequencies of the system; 
that is 

)( 2
2 T                                (22) 

where σ is a detuning parameter of order 1, the solvability condition for Eqs. (22)-(21) are 
obtained as follows 
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in Eq. (24) can be written in terms of a real amplitude a and a phase  
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Then amplitude and phase modulation equations can be obtained as follows 
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where, θ=σT2−ψ. The Eqs. (25)-(26) will be solved for steady-state case in the next section and 
variation of nonlinear amplitude will be discussed. 

 
 
5. Numerical results 
 

In this section numerical studies for frequencies will be shown for different cases. Firstly, the 
linear natural frequencies for different support conditions will be calculated. Then, the nonlinear 
frequencies for free, undamped vibrations will be calculated. For this case, by taking =f==0, 
one obtains 

0D2 a  and 0aa   (constant)                     (27) 

from Eq. (27). Here a0 is the steady-state real amplitude. The non-linear frequency is  
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where λ is the correction coefficient due to nonlinear terms. At the steady state, D2a=0, D2ψ=0 
become zero. The frequency detuning parameter is as follows 
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Table 1 and Table 2 show the linear frequencies and nonlinear correction terms for the first 
frequencies for simple-simple case and clamped-clamped case in different axial tension parameters 
(vp) and different nonlocal () parameters, respectively. The effects of support conditions, 
stretching parameters and nonlocal parameters are given. Generally, when the  values increase, 
the linear frequencies decrease, but the correction terms increase. It can be seen in the tables that 
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nonlocal linear frequencies are smaller than the local linear frequencies for both type of boundary 
conditions. Local (classical) linear frequencies can be obtained by applying the nonlocal parameter 
equals  to zero value. Furthermore, the small-scale effects play an important role in the analysis of 
nanobeam. When vp values increase, the linear frequencies increase, but the correction term 
decreases and same  values as shown in Tables 1-2. With increasing the vp values, the system 
becomes more stiffness than previous. So, this phenomenon increases the frequencies of the 
system. Supporting condition has also an effect on the stiffness of system. When Tables 1 and 2 
are compared according to the supporting conditions, frequencies corresponding to the clamped-
clamped boundary condition are higher than the simple-simple boundary conditions.  
 
 
Table 1 The first five frequencies and correction term due to nonlinear terms for different vp and values for 
Simple-Simple support condition 

vp=0 

 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 9.8696 8.3569 6.1456 4.6254 3.6488 2.9936 2.048773 1.551272
 39.4784 24.5823 14.5951 10.1219 7.7030 6.2051 6.267525 3.131692
 88.8264 41.6285 22.7743 15.4680 11.6787 9.3722 8.365816 4.705771
 157.9140 58.3803 30.8121 20.7621 15.6308 12.5268 12.55852 6.278218
 246.7400 74.8398 38.7818 26.0338 19.5731 15.6762 14.65403 7.850006
 1.8506 2.1855 2.9719 3.9487 5.0055 6.1011 8.9147 11.7737 

vp=1 

 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 10.3575 8.9279 6.9020 5.5914 4.8149 4.3395 3.75061 3.503719
 39.9753 25.3726 15.8901 11.9135 9.9406 8.8307 7.538504 7.020393
 89.3250 42.6821 24.6475 18.1131 15.0073 13.2915 11.31849 10.53426
 158.4130 59.7175 33.2761 24.2689 20.0558 17.7436 15.09638 14.04741
 247.2400 76.4705 41.8422 30.4056 25.0967 22.1920 18.8734 17.56026
 1.7634 2.0457 2.6462 3.2665 3.7933 4.2088 4.86966 5.21281 

vp=5 
 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 18.5513 17.7926 16.8674 16.3748 16.1262 15.9907 15.84101 15.78438
 50.4530 39.8905 34.6407 33.0063 32.3465 32.0229 31.69087 31.57163
 100.5525 62.8776 52.3386 49.5976 48.5495 48.0468 47.53886 47.35827
 169.9546 85.7677 69.9802 66.1733 64.7469 64.0684 63.38634 63.14474
 258.9386 108.4874 87.5930 82.7421 80.9420 80.0890 79.23363 78.93114
 0.9845 1.0265 1.0828 1.1154 1.1326 1.1422 1.15297 1.15711 

vp=10 
 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 32.9298 32.5084 32.0114 31.7546 31.6271 31.5582 31.48266 31.4542 
 74.2050 67.4695 64.5047 63.6419 63.3023 63.1375 62.96977 62.90985
 129.5098 103.0319 96.9604 95.5086 94.9686 94.7126 94.45595 94.36519
 201.8120 138.5627 129.3861 127.3673 126.6321 126.2865 125.9419 125.8204
 292.4973 173.9972 161.7963 159.2224 158.2944 157.8599 157.4277 157.2757
 0.5546 0.5618 0.5706 0.5752 0.5775 0.5787 0.580135 0.58066 

288



 
 
 
 
 
 

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory 

Table 2 The first five frequencies and correction term due to nonlinear terms for different vp and values for 
Clamped-Clamped support condition 

vp=0 
 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 22.3733 18.2894 12.9047 9.5092 7.4236 6.0566 4.119695 3.112145
 61.6728 36.4239 21.1398 14.5656 11.0565 8.8954 5.963916 4.481861
 120.9034 54.5240 29.9624 20.4589 15.4924 12.4530 8.343044 6.268465
 199.8594 71.6126 37.8277 25.5073 19.2093 15.3971 10.28442 7.718526
 298.5555 88.4869 46.1502 31.0922 23.4182 18.7740 12.54335 9.414965
 12.3026 12.5277 12.8090 12.9590 13.0342 13.0750 13.1198 13.13672

vp=1 
 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 22.6464 18.8739 14.0491 11.1922 9.5799 8.6193 7.455771 6.976571
 62.0450 37.3649 22.8894 17.0634 14.2126 12.6189 10.77206 10.03415
 121.3117 55.7801 32.3596 23.9146 19.8783 17.6391 15.05528 14.02559
 200.2882 73.1787 40.8153 29.7922 24.6313 21.7975 18.55245 17.26638
 298.9973 90.3642 49.7660 36.2970 30.0157 26.5691 22.62263 21.05843
 12.2877 12.5158 12.8023 12.9555 13.0323 13.0739 13.11951 13.1366 

vp=5 
 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 31.25623 31.17285 31.00693 30.62057 29.61107 28.35411 28.34307 28.31456
 70.3486 55.3389 48.7107 46.7678 46.0002 45.6272 45.24704 45.11111
 130.7192 80.2328 68.0636 65.2087 64.1739 63.6914 63.21382 63.04665
 210.3133 103.9103 85.4674 81.0826 79.4455 78.6679 77.88691 77.61043
 309.4094 150.3101 103.9232 98.6683 96.7555 95.8585 94.96596 94.65218
 11.9874 12.3816 12.7703 12.9472 13.0297 13.0730 13.83763 13.839965

vp=10 
 0.1 0.2 0.4 0.6 0.8 1 1.5 2 
 61.6260 61.0054 59.7866 57.0162 50.0189 40.9932 40.27869 40.21717
 91.2643 90.9340 90.2787 90.0690 89.9852 89.9443 89.90258 89.88765
 166.7472 157.8793 156.3955 125.5434 125.5115 125.5110 125.5991 125.6250
 238.8921 239.4884 257.2408 156.0310 155.3685 155.0592 154.7520 154.6441
 339.8710 346.8556 354.3935 189.8461 189.2122 188.9391 188.6853 188.6007
 11.4550 12.3028 12.7636 12.9462 13.0295 13.0729 13.39438 13.41505

 
 

Nonlinear frequency versus amplitude curves are plotted in Figs. 1-6 for different  values, 
different vp and different modes. In Figs. 1-2, the variation of nonlinear frequency is plotted for the 
first mode and vp=1 when =0-0.2-0.4-0.6-0.8-1-1.5-2. From this figures, as nonlocal parameter () 
increases, the nonlinear frequencies decrease. However, with increasing the nonlocal parameter () 
influence of amplitude to the nonlinear frequency has been increased. Figs. 3-4, the variation of 
nonlinear frequency is plotted for different modes when vp=1 and =0.4. From this figures, as 
modes increases, the nonlinear frequencies increases. It can also be observed that with increasing 
of the axial tension parameter vp, the influence of amplitude to the nonlinear frequency has been 
increased. In Figs. 5-6, the variation of nonlinear frequency is plotted for the first modes when 
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=0.4. From this figures, as the effect of axial tension (vp,) increases, the nonlinear frequencies 
increase. The same phenomena can also be observed with increasing the mode number.  

 
 

 
Fig. 1 Nonlinear natural frequency versus amplitude for vp=1 and different nonlocal parameters 
(first mode, S-S Case) 

 

 
Fig. 2 Nonlinear natural frequency versus amplitude for vp=1 and different nonlocal parameters 
(first mode, C-C Case) 
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Fig. 3 Nonlinear frequency versus amplitude for different modes (S-S Case, vp=1 and =0.4) 

 

 
Fig. 4 Nonlinear frequency versus amplitude for different modes (C-C Case, vp=1 and =0.4) 

 
 

Frequency response curves are presented in Figs. 7-12. The detuning parameter shows the 
nearness of the external excitation frequency to the natural frequency of the system. Several 
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figures are drawn using Eq. (29) assuming f =1 and damping coefficient =0.1. Figs. 7-8 show the 
influence of nonlocal parameter on the frequency response curves for S-S and C-C case, 
respectively. It can be seen that for two boundary conditions, the hardening effect is increased by 
increasing the nonlocal parameter. Hence, the nonlocal parameter is very important for a particular 
 
 

 
Fig. 5 Nonlinear frequency versus amplitude for =0.4 (first mode, S-S Case) 

 

 
Fig. 6 Nonlinear frequency versus amplitude for =0.4 (first mode, C-C Case) 
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Fig. 7 Forcing frequency-amplitude curves for vp=1 and different nonlocal parameters (first mode, S-S Case)
 

 
Fig. 8 Forcing frequency-amplitude curves for vp=1 and different nonlocal parameters(first mode, C-C Case)
 
 
system. Figs. 9-10 denotes the mode number effect on the hardening nonlinearity. The first five 
mode numbers are considered and compared. The axial tension parameter vp=1 and nonlocal 
parameter =0.4 is taken. It can be observed in the figures that the amplitude is larger and the 
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width is broader for the primary mode (mode1). Figs. 11-12 show the frequency response curve 
for the simple-simple and clamped-clamped boundary conditions, respectively. It can be observed 
in the same figures that increasing the axial tension parameter vp, the amplitude reaches lower 
value both type of boundary condition. The frequency response bending to the left side is called 
 
 

 
Fig. 9 Forcing frequency-amplitude curves for different modes (S-S Case, vp=1 and =0.4) 

 

 
Fig. 10 Forcing frequency-amplitude curves for different modes (C-C Case, vp=1 and =0.4) 
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Fig. 11 Forcing frequency-amplitude curves for =0.4 (first mode, S-S Case) 

 

 
Fig. 12 Forcing frequency-amplitude curves for =0.4 (first mode, C-C Case) 

 
 
the softening nonlinearity, but to the right side is called the hardening nonlinearity. So, the 
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by increasing the vp values.  
When axial tension decreases, the jump region and maximum amplitude increases. Similarly, 

the jump region and maximum amplitude increases, when nonlocal parameter decreases. On the 
other hand, the jump region and maximum amplitude increases, when mode values decreases and 
vice versa.  
 
 
6. Conclusions 

 
The vibrations of nanobeam having different boundary conditions are presented as nonlocal 

Euler-Bernoulli beam type. The equation of motion is derived including axial tension and 
stretching of the neutral axis. The multiple scales method is used to acquire approximate solutions. 
For linear problem, exact solutions for natural frequencies and numerical values are investigated. 
For the non-linear problem, correction terms to linear problem are acquired. Nonlinear terms of the 
perturbation series appear as corrections to the linear problem. Nonlinear free and forced 
vibrations are given in detail. The effects of the  and vp are determined. As  increases, natural 
frequencies decrease and correction terms increase. As vp increases, natural frequencies increase 
and the correction terms decrease. Axial tension and stretching of the neutral axis cause a 
hardening nonlinearity type. The behavior is of hardening type in all figures. Nonlocal parameter 
() and axial tension parameter (vp) has an effect on the jump region.  
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