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Abstract.  Parametric resonance of shear deformable composite skew plates subjected to non-uniform 

(parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew 

plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts 

the numerical results for thick skew plate. The total energy functional is derived for the skew plates from 

total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential 

energy contains membrane energy, bending energy, additional bending energy due to additional change in 

curvature and shear energy due to shear deformation, respectively. The total energy functional is solved 

using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials 

(BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-

Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric 

resonance region with higher order approximation. These boundaries are traced by the periodic solution of 

Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-

thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate 

have been investigated. The investigation also includes influence of different types of linearly varying 

loading and parabolically varying bi-axial loading. 
 

Keywords:  skew plate; BCOPs, parametric resonance; non-uniform in-plane loading;  dynamic 

instability 

 
 
1. Introduction 
 

The composite plate is very well known in research community due to their beneficial 

properties such as high strength to weight ratio, high in-plane stiffness, damping, and their 

directional properties. Composite skew plates are used widely in many practical applications e.g., 

aircrafts, space vehicles, missiles, high-speed air craft and many complex structures. During their 

operational life, these structures are subjected to non-uniform in-plane static and dynamic 

loadings. For proper designing and evaluating the performances of structural systems, studies of 

parametric resonance of skew plates of different boundary conditions due to non-uniform and 

linearly varying in-plane loadings are important. 
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A number of research articles have been published on the parametric resonance characteristic of 
different rectangular plates using Bolotin’s method (Bolotin 1964). Srinivasan and Chellapadi 
(1986) investigated the dynamic instability of rectangular laminated composite plate subjected to 
uniform in-plane periodic loading using finite strip method (FSM). Bert and Birman (1987) 
studied the effect of shear deformation on the dynamic instability of simply supported anti-
symmetric angle-ply rectangular plates subjected to uniform in-plane periodic loading using 
Galerkin’s method. Takahashi and Konishi (1988) presented the dynamic instability of rectangular 
plate subjected to linearly varying in-plane periodic load. Moorthy et al. (1990) investigated the 
parametric instability of laminated composite plate under uniform in-plane load using finite 
element method. Chen and Yang (1990) presented the dynamic instability of laminated composite 
plates subjected to combine in-plane periodic compressive stress and bending stress. Ganapathi et 
al. (1999) worked on the non-linear dynamic instability of laminated composite plate under 
uniform in-plane periodic load under the framework of finite element method. Radu and 
Chattopadhyay (2002) studied the dynamic instability of delaminated composite under uniform in-
plane periodic loading using finite element method. Prakash and Ganapathi (2005) presented the 
dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates 
using finite element procedure. Patel et al. (2006) investigated the dynamic instability 
characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge 
loading within the frame work of finite element method. Udar and Datta (2007) investigated the 
problem of the occurrence of combination resonances in contrast to simple resonances in 
parametrically excited doubly curved panels subjected to non-uniform tensile in-plane harmonic 
edge loading. Ramachandra and Panda (2012) investigated dynamic instability of shear 
deformable composite plate subjected to non-uniform in-plane periodic loading. Here, the authors 
followed Galerkin’s method to reduce the partial differential equations into Mathieu type equations 
and Bolotin’s method was employed to trace the four zones of dynamic instability. Wang et al. 
(2013) studied the static and dynamic characteristics of composite plates subjected to an arbitrary 
periodic load in hygrothermal environments. The authors determined the regions of dynamic 
instability of the composite plate by solving the eigenvalue problems based on Bolotin's method. 
Chen et al. (2013) studied the dynamic instability of laminated composite plates under thermal and 
arbitrary in-plane periodic loads using first-order shear deformation plate theory. The authors used 
Galerkin’s method in conjunction with Bolotin’s method to determine dynamic instability regions 
of laminated plates in the thermal environment. 

There are many research works carried out on buckling and vibration of skew plate. Durvasula 
(1971) investigated the buckling problems of simply supported skew plates using the Rayleigh-
Ritz method, employing a double fourier sine series in oblique coordinates. Liew and Lam (1990) 
investigated the flexural vibration of skew plates by Rayleigh-Ritz method and followed Gram-
Schmidt orthogonalization process to generate two-dimensional orthogonal plate functions. Wang 
et al. (1992) worked on buckling of skew plates and corner conditions for simply supported edges 
by using Rayleigh-Ritz method. Flexural vibration of skew plates using boundary characteristic 
orthogonal polynomials in two variables is investigated by Singh and Chakraverty (1994). Wang 
(1997) used B-spline function in conjunction with Rayleigh-Ritz method for buckling analysis of 
skew composite laminated plates using first order shear deformation theory. Babu and Kant (1999) 
studied on two shear deformable finite element models for buckling analysis of skew fiber-
reinforced composite and sandwich panels. Buckling and transverse vibration of orthotropic non-
homogeneous rectangular plates of variable thickness are presented by Kumar and Lal (2011). 
Here, the author analysed the plate using two dimensional boundary characteristic orthogonal 
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polynomials in Rayleigh-Ritz method.   
Parametric resonance of composite skew plates has been investigated by many researchers. The 

parametric resonance of skew plate is considered first time by Merrit and Willems (1973) under 
uniform in-plane periodic loading. Liao and Cheng (1994) studied the influence of skew angle, 
stiffness scheme, lamination scheme on the dynamic instability of laminated composite plates and 
shells under uniform in-plane periodic load using 3-D degenerated curved shell element. Dey and 
Singha (2006) presented the parametric resonance regions of skew plates subjected to uniform 
periodic in-plane load using finite element approach. The authors investigated the skew plate with 
second order approximation i.e. first two terms of the fourier series of the assumed periodic 
solution has been considered. Wu and Shih (2006) obtained parametric resonance and non-linear 
response of laminated skew plates under periodic uniform in-plane loading. Galerkin’s method 
with proper mode shapes was employed and the governing partial differential equations were 
reduced into Mathieu equations. Incremental harmonic balance method is used to solve the non-
linear temporal equations of motion to obtain the region of parametric resonance. Lee (2010) 
studied the parametric resonance of laminated composite skew plate with central cut-out subjected 
to periodic uniform in-plane load using finite element method based on higher order shear 
deformation theory (HSDT). Noh and Lee (2014) analysed the parametric resonance of 
delaminated composite skew plate subjected to periodic uniform in-plane loading using finite 
element method based on HSDT. Authors investigated the skew plate with first order 
approximation and followed Bolotin’s method to plot the instability zones.  
In actual structures plates are a part of complex structural system and hence load coming on it is 
non-uniform. There is no work available in open literature on parametric resonance of skew plates 
under non-uniform in-plane edge loading. In the present investigation, parametric resonance of 
skew plates under parabolic and linearly varying edge loading is considered. Since the applied in-
plane edge load is not uniform, the resultant plate in-plane stresses distribution (σξ, ση and τξη) 
within the composite skew plate are evaluated from plane elasticity problem by minimizing the 
membrane strain energy using Ritz method.  The total potential energy functional of the skew 
plate is transformed from physical domain to computational domain using transformation 
equation. The orthonormal polynomials are generated by using Gram-Schmidt orthogonalization 
process. Boundary characteristics orthonormal polynomials (BCOPs) functions consist of the 
product of two dimensional linearly independent set of polynomial functions and a basis function. 
The basis function is formed from taking the product of the equations of the boundaries. To 
satisfying the essential boundary condition, each equation of the boundary is raised to the power of 
0, 1 or 2 corresponding to free, simply supported, or clamped edges. Following Rayleigh-Ritz 
method with BCOPs functions are used to reduce the total energy functional to ordinary 
differential equations (Mathieu-Hill equations). The boundaries of parametric resonance are traced 
by periodic solution of Mathieu-Hill equations with period T and 2T. The results are presented for 
different skew angles, span-to-thickness ratio, aspect ratio, static load factor, boundary conditions 
and various types of loadings on parametric resonance. Influence of biaxial loading on the 
boundary of parametric resonance is also investigated. 

 
 

2. Formulation 
 
Laminated skew plate of length ‘a’, width ‘b’ and composed of n layers of equal thickness is 

considered with the co-ordinate axes ξ-η in the in-plane directions and the z-axis in the thickness 
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Fig. 1(a) Geometry and parabolic periodic in-plane loading of the plate 
 

 
Fig. 1(b) Different type of linearly varying loading considered 

 
 
 
direction of the plate. The skew plate is edge loaded with parabolic in-plane loading as shown in 
Fig. 1(a). 

The different types of in-plane loading distributions studied in the present investigation other 
than parabolic in-plane loading are given in Fig. 1(b). The in-plane edge loading may be expressed 

as: 0 (1 ( )) xxN N
b

 . By taking various values of λ, we obtain different in-plane load 

distribution: uniform (λ=0), trapezoidal (λ=0.5), triangular (λ=1), partial tension (λ=1.5) and in-
plane bending (λ=2). For λ=1.5 and λ=2.0, some portion of the plate edge (dotted line) is subjected 
to tension as shown in Fig. 1(b). 

In the present investigation the higher-order shear deformation theory (HSDT) for laminated 
composite plates as proposed by Reddy and Liu (1985) is adopted. In this theory, the 
displacements of the middle surface are expanded as cubic functions of the thickness coordinate 
and the transverse displacement is assumed to be constant through the thickness. This 
displacement fields leads to the parabolic distribution of the transverse shear stress and zero 
transverse normal strain and hence no shear correction factors are used. The displacement fields 
may be written as 

3 2
1 1 ,(4 / 3 )[ ]    o o

xu u z z h w 
 

 

0  0.5  1  1.5  2 

a

b 

  x, 

 y         

 Nxx
  cosxx s tN N N pt

Nxx
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3 2
2 2 ,(4 / 3 )[ ]    



o o
y

o

v v z z h w

w w
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(1)

The above displacement fields can be rearranged as Soldatos (1991) 
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1 1 , 2 2 , where   ;   and ( ) [1 (4 / 3)( / ) ]     x yw w f z z z h     (3) 

Here u, v and w are displacement components along x, y, z directions respectively at a distance 
z away from mid plane and u0, v0 and w0 are displacement component of a generic point on the 
middle surface. φ1 and φ2 are rotations of the cross sections initially perpendicular to the x and y 
axes respectively. h is the thickness of the plate and ( ),x represents the differentiation with respect 
to x. The linear strain-displacement relations at a distance ‘z’ away from the mid-plane of a plate 
can be written as 
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and, o
x  o

y  and o
xy  are reference surface strains and are defined as 

 , , , ,,  ,     o o o o o o o
y y x x xy y xv u u v    (5) 

The expression for different strain energies for the plate over the domain are given by 
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where Um, Ub, Uab and US
 are membrane energy, bending energy, additional bending energy due to 

additional change in curvature and shear energy due to shear deformation respectively. The total 
Strain energy 
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The expression for the potential of the external load 
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where, Nxx, Nyy and Nxy 
are the in-plane loads in the x-direction, y-direction and in-plane shearing 

loads respectively. Kinetic energy expression may be expressed as 
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In the above formulation, plate stiffness Aij, Bij, Cij, Dij, Eij, Fij and Hij are defined as 
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where, N is the number of orthotropic layer and ijQ  is the transformed elastic constants of the 

layer. Um, Ub, Uab, US, V and T of the symmetric laminated composite skew plate over the domain 
in oblique co-ordinate system (non-orthogonal) are obtained by transformation relation and are 
represented as U*m, U*b, U*ab, U*S, V* and T* 
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The expressions for fi (i=1,2,…6) are given in Appendix A 
 

2.1 Plate prebuckling analysis 
 
In the present investigation, parabolically and linearly varying in-plane compressive dynamic 

edge loadings are considered (See Figs. 1(a) and 1(b)). In the case of linearly varying in-plane 
edge loading, the stress distribution within the skew plate coincides with the applied edge load i.e. 
stress distribution within the skew plate is uniform. However, for parabolic edge loading, the stress 
distribution within the skew plate is not uniform. In the case of parabolic in-plane load, initially 
the static component (Ns) of the in-plane loading is applied at the plate edge and stress fields 
within the skew plate are obtained by solving the plate membrane problem. The in-plane stress 
distributions are assumed to be uniform across the entire thickness. The correct stress distribution 
within the skew plate is the one which minimizes the membrane strain energy of the plate and 
satisfies the boundary condition of the problem. The membrane strain energy (Vm) of a plate of 
thickness ‘h’ of composite skew plate is given by 
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 where, 
2 2 2 2

2 2
12 1

zh / N k

ij ij ij
kh / zk

n , n , n , A Q dz Q dz  
  

    

  
     

  
    (16) 

where Qij is the transformed reduced stiffness, Ф is the stress function and [A*] is the extensional 
laminate stiffness in oblique co-ordinate system. The relationship between extensional laminate 
stiffness in oblique co-ordinate system and in Cartesian co-ordinate system is 

 * 1[ ] [ ] [ ][ ]  r T rA T A T  (17) 

Where the transformation matrix [TY] is 

 2 2

1               0             0

sin   cos   sin cos

2sin      0            cos

 
 

  
 
 

rT    
 

 (18) 

Following Timoshenko and Goodier (1960), Ritz method is adopted  to minimize the membrane 
strain energy of the skew plate in this study. The boundary conditions of the plate membrane 
problem are given here for parabolically varying uniaxial in-plane edge load (see Fig. 1(a)) 

 00, 0 ; 4 (1 )

0, 0 ; 0

   

  

b N N N
b b

b N N

 

 

 


 (19) 
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Table 1 All six constants of three layered [0/90/0] composite skew plate (ψ=30°, a/b=1, a/h =100) 

Types of In-plane Loading α1 α2 α3 α4 α5 α6 

Parabolic Load 0.188 1.327 -0.103 -0.025 -2.603 1.404 

Linearly Varying Load 0 0 0 0 0 0 

 
 
The stress function is assumed in the form of a series as 

 0 1 1 2 2 3 3 4 4 5 5 6 6       . . .               (20) 

where, αi (i=1,2,...6) are constants to be determined such that the membrane strain energy is 
minimized and boundary conditions are satisfied. In the present investigation, six terms are 
considered in Eq. (20) for accurate result. The stress function for the parabolic in-plane edge 
loading is assumed as 

 
2 2

2 2 2 2 2 2
0 1 2 3 4 5 62

2 ( ) ( ) ( ) ( )
3 2

          N a b
b b

                   (21) 

Substituting the Eqs. (21) and (16) in Eq. (15) and carrying out integration, an expression in 
second degree in αi (i = 1,2,…6) are obtained. The constants αi (i = 1,2,…6) are evaluated from the 
algebraic equations by minimizing membrane strain energy (Vm) Constants are tabulated in Table 1 
for a three layered [0/90/0] composite skew plate for parabolic in-plane loading 
 

2.2 Derivation of orthogonal polynomial 
 
Consider a skew plate with length ‘a’, breadth ‘b’ and thickness ‘h’. The skew plate domain in 

the x-y plane is transformed into unit square plate domain in ξ-η plane, by using the following 
transformation equation 

 sin ;  cos  x a b y b      (22) 

The following transformation rule is used to map any function of functional from x-y plane to 
ξ-η plane. 
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 (24) 

To generate orthogonal polynomials satisfying essential boundary conditions over the unit 
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Fig. 2 Mapping of the skew plate domain into a unit square plate domain 
 
 
square plate domain in ξ-η plane, following displacement fields are used 
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where ϒ is the order of approximation to get the desired accuracy, Uj, Vj, Wj, Kj and Ljare 
unknowns and jjjj  ˆ,ˆ,ˆ,ˆ and j̂  are boundary characteristics orthonormal polynomial  
functions which are generated on the standard square domain using the Gram-Schmidt process.  
Orthonormal polynomials ),(ˆ  j  over the region 0≤ξ≤1, 0≤η≤1 have been generated using  
linearly independent set of functions Fj=f*fj, j=1,2,3..., with 

 (1 ) (1 )  p q r sf      (26a) 

  2 2 3 2 2 31, , , , , , , , , ,...jf            (26b) 

The value of ‘p’ depends on the boundary condition on ξ=0, 1. At ξ=0, p=0, 1, 2 respectively 
for free, simply supported and clamped boundary condition. At ξ=1, q=0, 1, 2 respectively for free, 
simply supported and clamped boundary condition. In similar way, the value of r and s are chosen 
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for η=0, 1. 
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The inner product of the functions ϕi and ϕj can be defined as 

    
1 1

0 0
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The norm of the function ϕj is given by 
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The normalization has been done by 
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The total potential energy function ∏(U+V) and kinetic energy (TE) are transformed from x-y 
plane to ξ-η plane by using Eq. (23) and (24) Further, the orthonormal polynomial functions are 
substituted to get the energy function in ξ-η plane. The total potential energy and kinetic energy 
expression involves with different unknowns Uj, Vj, Wj, Kj and Lj. Rayleigh-Ritz method is used as 
follows to determine governing eigen value equation and are represented as 
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The Eq. (32) constitutes a set of 5ϒ simultaneous homogeneous algebraic equation called 
Galerkin’s equation and also referred as Ritz system. 
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2.3 Instability analysis of Mathieu equation 
 

The dynamic instability of the plate loaded by periodic uniform in-plane load Nxx=Ns+Nt cos pt 
analysed. The dynamic in-plane load has both static component (Ns) and dynamic component (Nt). 
Using Rayleigh-Ritz method, the ordinary differential equations i.e., Mathieu equations describing 
the plate linear dynamic instability was derived as follows 

       [ ] [ ] ( cos )[ ] 0   
L s t GM K N N pt K   (34) 

where [M], [KL] and [KG] are respectively the mass, linear and geometric stiffness matrices. In Eq. 
(34), the static and dynamic components are expressed as 

 and s cr t crN N N N   (35) 

where α and β are static and dynamic load factors respectively and Ncr is the static buckling load.  
The Eq. (34) is a second order differential equation with periodic coefficients. The critical 
buckling load is evaluated from the solution of linear eigen value problem by neglecting the mass, 
non-linear stiffness and time dependant load terms. Similarly the solutions of the eigen value 
problem associated with the differential equation neglecting terms containing Ns and Nt gives the 
natural frequencies. On the boundaries of the region of instability the differential equation system 
has periodic solution with period T or 2T. Two solutions with same period confine the region of 
instability and two solutions with different period confine the region of stability (Bolotin 1964). 
The solution of the Eq. (34) with period T and 2T, respectively, are assumed in the form of Fourier 
series as 

 0
2,4,6
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2 2





   k k
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kpt kpt
t a b  (36b) 

where ak and bk are arbitrary constants. Substituting Eq. (36a) or (36b) into Eq. (34) and equating 

the coefficients of identical sin
2

kpt
and cos

2

kpt
leads to a system of homogeneous algebraic 

equations in ak and bk. For a nontrivial solution the determinant of the coefficient matrix of ak and 
bk must vanish. The size of the above determinant is infinite as we have assumed the solution in 
the form of infinite series. The determinants are shown to be belonging to a class of converging 
determinant known as normal determinant (Bolotin 1964). The first order (from Eq. (37)) and 
second order (from Eq. (38)) approximation to boundaries of first regions of instability 
corresponding to period 2T is obtained by solving following two eigen value problems 
respectively.  
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Second region of instability with first order approximation (from Eqs. (39) and (40)) and 
second order approximation (from Eqs. (41) and (42)) corresponding to period T are determined 
from 
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Third region of instability (from Eq. (43) and (44)) and fourth region instability (from Eq. (45) and 
(46)) corresponding to period T and 2T are determined from, 
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             (46) 

where, K*=[K]−NS[KG] 

Solving for p4 from * 2
4( 2.25 )K Mp  and substituting for p3 of Eqs. (43) and (44) one can 

calculate third zone of instability of period 2T. Similarly solving for p4 from * 2
4( 9 )K Mp  and 

substituting for p3 of Eqs. (45) and (46) one can calculate fourth zone of instability of period T. 
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Table 2(a) Critical buckling coefficient (ki) isotropic square skew plates (a/b=1, a/h=100) for different skew 
angles (ψ) under uniform in-plane loading 

Type of Supports 
Skew angle 

(ψ) 
Dimensionless buckling coefficient (ki) 

Present solution Wang (1997) Babu and Kant (1999) 

Simply supported 
plate 

(SSSS) 

0° 
15° 
30° 
45° 

4 
3.826 
3.323 
2.559 

4.0 
3.824 
3.316 
2.525 

4.0 
3.830 
3.330 
2.557 

   Durvasula (1970) Wang et al. (1992) 

Clamped supported 
plate 

(CCCC) 

0° 
15° 
30° 
45° 

10.074 
9.431 
7.612 
5.110 

10.074 
9.462 
7.638 
5.110 

10.074 
9.479 
7.734 
5.172 

Note: ki=Ncrb
2 cos4 ψ/π2D 

 
Table 2(b) Critical buckling coefficients for isotropic and composite [0/90/0] square plate (a/b=1, a/h=100) 
under parabolic in-plane loading 

Type of 
Supports 

Buckling coefficients (ki) for isotropic plate 
Buckling coefficients (kc) for 

composite [0/90/0] plate 

Present 
Wang et al. 

(2007) 
Panda and Ramachandra

(2010) 
Present 

(Numerical) 
Present 

(ABAQUS) 
SSSS 5.24 5.24 5.24 27.50 27.51 
SCSC 9.19 9.19 9.17 34.38 34.39 
CSCS 9.05 9.05 9.03 93.93 93.63 
CCCC 13.57 13.58 13.55 97.64 97.01 

Note: kc=Ncrb
2/π2E22h

3, A 8-noded doubly curved thick shell element is used in ABAQUS 
 
 

3. Results and discussion 
 

The buckling load obtained from present method of solution for skew plate subjected to 
uniform in-plane loading and for rectangular plate with non-uniform in-plane loading are 
compared well with open literature and given in Table 2(a) and Table 2(b), respectively. 

The mechanical properties used in the present analysis for composite skew plate are: 
E11/E22=25, G12=G13=0.5 E22, G23= 0.2 E22 and v12=0.25. The dynamic instability regions are 

represented as a plot of dimensionless excitation frequency 
2

2
22

( ) 
pa

Eh




for composite skew 

plate against dimensionless dynamic load factor (β). The principal dynamic instability regions of 
simply supported (SSSS) eight layered cross-ply [(0/90/90/0)s] composite skew plate (a/b=1, 
a/h=100)  with skew angle ψ=0° and 30° are obtained from the present method are compared 
with Noh and Lee (2014) and is shown in Fig. 3(a) and Fig. 3(b), respectively. It is observed from 
figure that the principal instability regions with first order approximation are compared well with 
reference instability regions. 

Fig. 4 shows the first four instability zones of simply supported cross-ply [0/90/0] composite 
laminated skew plate (a/b=1, a/h=100, ψ=30°, α=0) under non-uniform (parabolic) in-plane 
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loading. The zone-I and zone- III instability zones correspond to period 2T, whereas, zone-II and 
zone- IV instability zones are for period T. It is reflected in the figure that for all the zones of 
instability, the width of instability increases with the increase of dynamic load factor. At a dynamic 

load factor (β) of 0.7, the widths (∆p) of instability are 1.1798
2

22
2

Eh

pa




, 0.1981
2

22
2

Eh

pa




, 

0.0576
2

22
2

Eh

pa




and 0.0143
2

22
2

Eh

pa




for zone-I, zone-II, zone-III and zone-IV, respectively. At 

any particular value of dynamic load factor, the width (∆p) of the zone of instability is the 
maximum for zone-I (principal zone) and minimum for zone-IV. Principal zone has greater 
practical importance due to its maximum width of instability. The width of instability zone is 
slightly decreases for higher order approximation as shown in Fig. 4. At a dynamic load factor (β) 
of 0.7, the difference of width of instability between first order and second order for zone-I is 

0.0324
2

22
2

Eh

pa




and for zone-II the difference of width is 0.0590
2

22
2

Eh

pa




. The principal zone 

of instability with second-order approximation results are presented in subsequent figures as it is 
more practical and accurate. 

The influence of skew angle on principal zone of instability of simply supported cross-ply 
[0/90/0] composite laminated skew plate (a/b=1, a/h=100, ψ=30°, α=0) under parabolic in-plane 
loading is presented in Fig. 5. At a dynamic load factor (β) of 0.7, the width of principal instability 

zones are, 1.0633
2

22
2

Eh

pa




, 1.0853
2

22
2

Eh

pa




, 1.1799
2

22
2
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


 and 1.4571
2

22
2

Eh

pa




 

for ψ=0°, 15°, 30° and 45°, respectively. It is observed that the skew plate becomes more unstable 
 
 

 
Fig. 3(a) Comparison of the principal instability region of a simply supported (SSSS) eight layered 
symmetric cross-ply [0/90/90/0/0/90/90/0] composite square plate (a/b=1, a/h=100, ψ=0°, α=0) 
subjected to uniform in-plane load 
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Fig. 3(b) Comparison of the principal instability region of a simply supported (SSSS) eight layered 
symmetric cross-ply [0/90/90/0/0/90/90/0] composite skew plate (a/b=1, a/h=100, ψ=30°, α=0) 
subjected to uniform in-plane load 

 

 
Fig. 4 Four instability zones of the SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/b=1, a/h=100, ψ=30°, α=0) subjected to parabolic in-plane loading 

 
 
as the skew angle increases. 

The effect of shear deformation for a three layered cross-ply [0/90/0] composite skew plate 
(a/b=1, ψ=30°, α=0) subjected to uniform in-plane loading is studied in Fig. 6. The influence of 
shear deformation on frequency becomes pronounced when the ratio of side to thickness 
decreases, resulting lesser width of instability zone. The width of principal instability zones for 
above square composite skew plate (ψ=30°) decreases with increase of plate thickness as expected.  
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Fig. 5 Principal instability zones of the SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/b=1, a/h=100, α=0) subjected to parabolic in-plane loading for different skew angle (ψ) 
 

 
Fig. 6 Principal instability zones of the SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/b=1, ψ=30°, α=0) subjected to parabolic in-plane loading for different span to thickness (a/h) ratio 
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 for side to thickness ratio a/h= 

100, 50, 20 and 10, respectively 
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Fig. 7 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/b=1, a/h=100, ψ=30°, α=0.25) for parabolic and different types of linearly varying in-plane loadings 
 
 
Fig. 7 represents the behaviour of three layered cross-ply [0/90/0] composite skew plate (a/b=1, 

a/h=100, ψ=30°, α=0.25) for different linearly varying in-plane loads. The linearly varying in-

plane loads are denoted by (1 ( ))s crN N
b

   and (1 ( ))t crN N
b

   where crN and crN are 

the intensity of static and dynamic components of compressive load at the edge y=0. By taking 
various values of λ, we obtain different in-plane load distribution: uniform (λ=0), trapezoidal 
(λ=0.5), triangular (λ=1), partial tension (λ=1.5) and pure bending (λ=2.0). The principal instability 
zones for the composite skew plate (a/b=1, a/h=100, ψ=30°, α=0.2) subjected to time dependent 
linearly varying in-plane loads with λ=0, 0.5, 1, 1.5 and 2.0 are represented as a plot of 

dimensionless excitation frequency 
2
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 against dimensionless dynamic load factor (β) of 

uniform loading. It is observed that the width of the dynamic instability region is the maximum for 
the uniform in-plane load and minimum for the pure bending case. This is because of the buckling 
load is minimum for uniform loaded panel and maximum for pure in-plane bending case. The 

width of the primary instability zones are, 0.9747
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dynamic load factor of 0.5 (note that the dynamic load factor corresponding to that of uniform 

loading). The width of the primary instability zones for parabolic loading is 0.8278
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The influence of aspect ratio (a/b) on principal instability zones of three layered cross-ply  
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Fig. 8 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/h=100, ψ=30°, α=0) subjected to parabolic in-plane loading for different aspect (a/b) ratio 
 
 

[0/90/0] composite skew plate (a/b=1, a/h=100, ψ=30°, α=0) subjected to uniform in-plane loading 
is shown in Fig. 8. In the present analysis, ‘a’ is kept constant and ‘b’ is varied. At a dynamic load 

factor (β) of 0.7, the width of principal instability zones are, 2.126
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 for a/b=2, 1.5, 1, and 0.5, respectively. It shows that as 

the aspect ratio (a/b) increases i.e., for the slender plate the width of instability region increase as 
expected. 

The edge restraint has a significant effect on principal instability zones of three layered cross-
ply [0/90/0] composite skew plate (a/b=1, a/h=100, ψ=30°, α=0) subjected to parabolic in-plane 
loading and it is presented in Fig. 9. In the present analysis, four different boundary conditions 
considered as follows: all edges simply supported (SSSS), loaded edges simply supported and 
other two edges clamped (SCSC), loaded edges clamped and other two edges simply supported 

(CSCS) and all edges clamped (CCCC). At a dynamic load factor (β) of 0.7, the width of the 

primary instability zones are, 1.1799
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 for SSSS, SCSC, CSCS and CCCC boundary conditions, respectively. Here, it 

is noted that more the edge restraint narrower is the width of zone of instability. Static in-plane 
parabolic load has also the influence on the width of principal instability zones of a three layered 
cross-ply [0/90/0] composite skew plate (a/b=1, a/h=100, ψ=30°) and has been shown in Fig. 10.  
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Fig. 9 Principal instability zones of three layered cross-ply [0/90/0] composite skew plates (a/b=1, 
a/h=100, ψ=30°, α=0) subjected to parabolic in-plane loading for different boundary conditions 

 

 
Fig. 10 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/b=1, a/h=100, ψ=30°) subjected to parabolic in-plane loading for different static load factor (α) 

 
 

For a dynamic load factor (β) of 0.4, the width of the primary instability zones are, 0.6816
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 for static load factor α=0, 0.25 and 0.5, 

respectively. It is concluded that the width of principal instability zone increases with increase of  
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Fig. 11 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates 
(a/b=1, a/h=100, ψ=30°) subjected to parabolic biaxial in-plane loading 

 
 
static load factor (α). In the present investigation, the effect of biaxial parabolic in-plane loading of 
a three layered cross-ply [0/90/0] composite skew plate (a/b=1, a/h=100, ψ=30°) has also been 

studied. The biaxial edge loading is denoted by the load ratio 0 ( ) xx

yy

N
N

N
 which is the ratio of 

compressive edge load in the x-direction (Nxx) to compressive (positive) or tensile (negative) edge 

load in the y-direction (±Nyy). For a dynamic load factor (β) of 0.4, the width of the primary 

instability zones are, 0.3605
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N
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N
=−0.5, 0, 0.5 and 1 respectively. Here, because of tensile loading in y-direction, the 

width of instability zone becomes narrower and this has been reflected in Fig. 11. 
 
 
4. Conclusions 
 

Parametric resonance of composite skew plates for various skew angles and support conditions 
based on higher order shear deformation theory (HSDT) subjected to non-uniform (parabolic) and 
linearly varying in-plane loading is studied. The total energy functional is derived and transformed 
from physical domain to computational domain using transformation equation. This functional is 
solved using Rayleigh-Ritz method with boundary characteristics orthonormal polynomials 
(BCOPs) functions. The parametric resonance regions are traced for the governing differential 
equation by following Bolotin’s method. The principal instability region is wider and has greater 
practical importance than other instability regions. Higher order approximation is required for 
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finding accurate instability zone for higher dynamic load factor. The instability region becomes 
wider with increases of skew angle. The width of instability obtained for uniform in-plane loading 
is more than linearly varying loadings and parabolic loading. The width of instability zone 
decreases with decrease of span to thickness ratio and increases with the increase of aspect ratio. 
For pure bending in-plane loading, the skew plate becomes unstable at a higher excitation 
frequency compared to other linearly varying in-plane loading. The instability zones become 
narrower with increase of edge restraint. The width of zone of instability is the maximum for skew 
plates with simply support in all four edges and minimum for clamped supported in all four edges. 
The width of zone of instability increases with the increase of static load factor. For biaxial 
loading, because of tensile loading at one edge of the skew plate and compression at other edge, 
the width of instability zone becomes narrower. 
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