Structural Engineering and Mechanics, Vol. 55, No. 2 (2015) 435-459
DOI: http://dx.doi.org/10.12989/sem.2015.55.2.435 435
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Abstract. Parametric resonance of shear deformable composite skew plates subjected to non-uniform
(parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew
plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts
the numerical results for thick skew plate. The total energy functional is derived for the skew plates from
total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential
energy contains membrane energy, bending energy, additional bending energy due to additional change in
curvature and shear energy due to shear deformation, respectively. The total energy functional is solved
using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials
(BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-
Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric
resonance region with higher order approximation. These boundaries are traced by the periodic solution of
Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-
thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate
have been investigated. The investigation also includes influence of different types of linearly varying
loading and parabolically varying bi-axial loading.

Keywords: skew plate; BCOPs, parametric resonance; non-uniform in-plane loading; dynamic
instability

1. Introduction

The composite plate is very well known in research community due to their beneficial
properties such as high strength to weight ratio, high in-plane stiffness, damping, and their
directional properties. Composite skew plates are used widely in many practical applications e.g.,
aircrafts, space vehicles, missiles, high-speed air craft and many complex structures. During their
operational life, these structures are subjected to non-uniform in-plane static and dynamic
loadings. For proper designing and evaluating the performances of structural systems, studies of
parametric resonance of skew plates of different boundary conditions due to non-uniform and
linearly varying in-plane loadings are important.
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A number of research articles have been published on the parametric resonance characteristic of
different rectangular plates using Bolotin’s method (Bolotin 1964). Srinivasan and Chellapadi
(1986) investigated the dynamic instability of rectangular laminated composite plate subjected to
uniform in-plane periodic loading using finite strip method (FSM). Bert and Birman (1987)
studied the effect of shear deformation on the dynamic instability of simply supported anti-
symmetric angle-ply rectangular plates subjected to uniform in-plane periodic loading using
Galerkin’s method. Takahashi and Konishi (1988) presented the dynamic instability of rectangular
plate subjected to linearly varying in-plane periodic load. Moorthy et al. (1990) investigated the
parametric instability of laminated composite plate under uniform in-plane load using finite
element method. Chen and Yang (1990) presented the dynamic instability of laminated composite
plates subjected to combine in-plane periodic compressive stress and bending stress. Ganapathi et
al. (1999) worked on the non-linear dynamic instability of laminated composite plate under
uniform in-plane periodic load under the framework of finite element method. Radu and
Chattopadhyay (2002) studied the dynamic instability of delaminated composite under uniform in-
plane periodic loading using finite element method. Prakash and Ganapathi (2005) presented the
dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates
using finite element procedure. Patel et al. (2006) investigated the dynamic instability
characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge
loading within the frame work of finite element method. Udar and Datta (2007) investigated the
problem of the occurrence of combination resonances in contrast to simple resonances in
parametrically excited doubly curved panels subjected to non-uniform tensile in-plane harmonic
edge loading. Ramachandra and Panda (2012) investigated dynamic instability of shear
deformable composite plate subjected to non-uniform in-plane periodic loading. Here, the authors
followed Galerkin’s method to reduce the partial differential equations into Mathieu type equations
and Bolotin’s method was employed to trace the four zones of dynamic instability. Wang et al.
(2013) studied the static and dynamic characteristics of composite plates subjected to an arbitrary
periodic load in hygrothermal environments. The authors determined the regions of dynamic
instability of the composite plate by solving the eigenvalue problems based on Bolotin's method.
Chen et al. (2013) studied the dynamic instability of laminated composite plates under thermal and
arbitrary in-plane periodic loads using first-order shear deformation plate theory. The authors used
Galerkin’s method in conjunction with Bolotin’s method to determine dynamic instability regions
of laminated plates in the thermal environment.

There are many research works carried out on buckling and vibration of skew plate. Durvasula
(1971) investigated the buckling problems of simply supported skew plates using the Rayleigh-
Ritz method, employing a double fourier sine series in oblique coordinates. Liew and Lam (1990)
investigated the flexural vibration of skew plates by Rayleigh-Ritz method and followed Gram-
Schmidt orthogonalization process to generate two-dimensional orthogonal plate functions. Wang
et al. (1992) worked on buckling of skew plates and corner conditions for simply supported edges
by using Rayleigh-Ritz method. Flexural vibration of skew plates using boundary characteristic
orthogonal polynomials in two variables is investigated by Singh and Chakraverty (1994). Wang
(1997) used B-spline function in conjunction with Rayleigh-Ritz method for buckling analysis of
skew composite laminated plates using first order shear deformation theory. Babu and Kant (1999)
studied on two shear deformable finite element models for buckling analysis of skew fiber-
reinforced composite and sandwich panels. Buckling and transverse vibration of orthotropic non-
homogeneous rectangular plates of variable thickness are presented by Kumar and Lal (2011).
Here, the author analysed the plate using two dimensional boundary characteristic orthogonal
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polynomials in Rayleigh-Ritz method.

Parametric resonance of composite skew plates has been investigated by many researchers. The

parametric resonance of skew plate is considered first time by Merrit and Willems (1973) under
uniform in-plane periodic loading. Liao and Cheng (1994) studied the influence of skew angle,
stiffness scheme, lamination scheme on the dynamic instability of laminated composite plates and
shells under uniform in-plane periodic load using 3-D degenerated curved shell element. Dey and
Singha (2006) presented the parametric resonance regions of skew plates subjected to uniform
periodic in-plane load using finite element approach. The authors investigated the skew plate with
second order approximation i.e. first two terms of the fourier series of the assumed periodic
solution has been considered. Wu and Shih (2006) obtained parametric resonance and non-linear
response of laminated skew plates under periodic uniform in-plane loading. Galerkin’s method
with proper mode shapes was employed and the governing partial differential equations were
reduced into Mathieu equations. Incremental harmonic balance method is used to solve the non-
linear temporal equations of motion to obtain the region of parametric resonance. Lee (2010)
studied the parametric resonance of laminated composite skew plate with central cut-out subjected
to periodic uniform in-plane load using finite element method based on higher order shear
deformation theory (HSDT). Noh and Lee (2014) analysed the parametric resonance of
delaminated composite skew plate subjected to periodic uniform in-plane loading using finite
element method based on HSDT. Authors investigated the skew plate with first order
approximation and followed Bolotin’s method to plot the instability zones.
In actual structures plates are a part of complex structural system and hence load coming on it is
non-uniform. There is no work available in open literature on parametric resonance of skew plates
under non-uniform in-plane edge loading. In the present investigation, parametric resonance of
skew plates under parabolic and linearly varying edge loading is considered. Since the applied in-
plane edge load is not uniform, the resultant plate in-plane stresses distribution (o, o, and 7))
within the composite skew plate are evaluated from plane elasticity problem by minimizing the
membrane strain energy using Ritz method. The total potential energy functional of the skew
plate is transformed from physical domain to computational domain using transformation
equation. The orthonormal polynomials are generated by using Gram-Schmidt orthogonalization
process. Boundary characteristics orthonormal polynomials (BCOPs) functions consist of the
product of two dimensional linearly independent set of polynomial functions and a basis function.
The basis function is formed from taking the product of the equations of the boundaries. To
satisfying the essential boundary condition, each equation of the boundary is raised to the power of
0, 1 or 2 corresponding to free, simply supported, or clamped edges. Following Rayleigh-Ritz
method with BCOPs functions are used to reduce the total energy functional to ordinary
differential equations (Mathieu-Hill equations). The boundaries of parametric resonance are traced
by periodic solution of Mathieu-Hill equations with period T and 2T. The results are presented for
different skew angles, span-to-thickness ratio, aspect ratio, static load factor, boundary conditions
and various types of loadings on parametric resonance. Influence of biaxial loading on the
boundary of parametric resonance is also investigated.

2. Formulation

Laminated skew plate of length ‘a’, width ‘b’ and composed of » layers of equal thickness is
considered with the co-ordinate axes ¢-7 in the in-plane directions and the z-axis in the thickness
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Fig. 1(b) Different type of linearly varying loading considered

direction of the plate. The skew plate is edge loaded with parabolic in-plane loading as shown in
Fig. 1(a).

The different types of in-plane loading distributions studied in the present investigation other
than parabolic in-plane loading are given in Fig. 1(b). The in-plane edge loading may be expressed

as: N :No(l—/l(%)). By taking various values of A, we obtain different in-plane load

distribution: uniform (4=0), trapezoidal (1=0.5), triangular (1=1), partial tension (1=1.5) and in-
plane bending (1=2). For A=1.5 and 1=2.0, some portion of the plate edge (dotted line) is subjected
to tension as shown in Fig. 1(b).

In the present investigation the higher-order shear deformation theory (HSDT) for laminated
composite plates as proposed by Reddy and Liu (1985) is adopted. In this theory, the
displacements of the middle surface are expanded as cubic functions of the thickness coordinate
and the transverse displacement is assumed to be constant through the thickness. This
displacement fields leads to the parabolic distribution of the transverse shear stress and zero
transverse normal strain and hence no shear correction factors are used. The displacement fields
may be written as

u=u’+zg +2°(4/30°)[—p, — ']
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v=1" 4z, + 2 (4/30%)[~p, — ]
w=w’
The above displacement fields can be rearranged as Soldatos (1991)
u=u’—zw + f(2)4°
v=v o+ £y

w=wn’

where ¢ =@+ w5 5 @) =@, + ) and f(2) = 2[1- (4/3)(z/ h)*]
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(1

2)

)

Here u, v and w are displacement components along x, y, z directions respectively at a distance
z away from mid plane and »”, v’ and w' are displacement component of a generic point on the
middle surface. ¢, and ¢, are rotations of the cross sections initially perpendicular to the x and y
axes respectively. £ is the thickness of the plate and ( ), represents the differentiation with respect
to x. The linear strain-displacement relations at a distance ‘z’ away from the mid-plane of a plate

can be written as

£, =&y —zw’(;x +f(Z)¢l(;

&, =&y 2wl + [ (D)),

Vay = Vay = 22W5, + [ (D), + (D)
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Vie =V tw, = [ (2

and, &/ &) and y7, are reference surface strains and are defined as
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The expression for different strain energies for the plate over the domain are given by
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where U", U”, U* and U® are membrane energy, bending energy, additional bending energy due to
additional change in curvature and shear energy due to shear deformation respectively. The total
Strain energy

U=U"+U"+U"+U* (10)
The expression for the potential of the external load

0 T

6W0

ab

1 N Ny
=—= dxd

Zjﬁ o {NW MJ 6WO) ly (11)
3

where, N, N,, and N,, are the in-plane loads in the x-direction, y-direction and in-plane shearing
loads respectively. Kinetic energy expression may be expressed as
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In the above formulation, plate stiffness 4, B;, Cy, Dy, Ej;, Fj and Hy; are defined as
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where, N is the number of orthotropic layer and Q/. is the transformed elastic constants of the

layer. U", UP, U™, UP, V and T of the symmetric laminated composite skew plate over the domain
in oblique co-ordinate system (non-orthogonal) are obtained by transformation relation and are
represented as U™, U™, U™, U™, V' and T'
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The expressions for f; (i=1,2,...6) are given in Appendix A
2.1 Plate prebuckling analysis

In the present investigation, parabolically and linearly varying in-plane compressive dynamic
edge loadings are considered (See Figs. 1(a) and 1(b)). In the case of linearly varying in-plane
edge loading, the stress distribution within the skew plate coincides with the applied edge load i.e.
stress distribution within the skew plate is uniform. However, for parabolic edge loading, the stress
distribution within the skew plate is not uniform. In the case of parabolic in-plane load, initially
the static component (/) of the in-plane loading is applied at the plate edge and stress fields
within the skew plate are obtained by solving the plate membrane problem. The in-plane stress
distributions are assumed to be uniform across the entire thickness. The correct stress distribution
within the skew plate is the one which minimizes the membrane strain energy of the plate and
satisfies the boundary condition of the problem. The membrane strain energy (V™) of a plate of
thickness ‘%’ of composite skew plate is given by

* * *
All A12 Al6

5 Reg Reg
ym ZEQ Hon ¢ Apy Ay Ay My, rcosydédn (15)
n * * * n
1) Ayg Ay Ag <
2 2@ 22 h/2 _ N Zk _—
where, n;r =——, n,, =——, Ng, =— ,A,--= j Ql-~dz=2 I Qi.dz (16)
& 6772 nn 652 én 0&on ij i ij = ij

where Qj is the transformed reduced stiffness, ® is the stress function and [4 "] is the extensional
laminate stiffness in oblique co-ordinate system. The relationship between extensional laminate
stiffness in oblique co-ordinate system and in Cartesian co-ordinate system is

(A= T (4N T (17)
Where the transformation matrix [7"] is
1 0 0
T" =|siny cos’y siny cosy (18)
2siny 0 cosy

Following Timoshenko and Goodier (1960), Ritz method is adopted to minimize the membrane
strain energy of the skew plate in this study. The boundary conditions of the plate membrane
problem are given here for parabolically varying uniaxial in-plane edge load (see Fig. 1(a))

= = /P
=0,b N. =0; N, =4N,2a-1
¢ £ se =4Ng (=) (19)
n=0,b an:O;N,m=o
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Table 1 All six constants of three layered [0/90/0] composite skew plate (y=30°, a/b=1, a/h =100)

Types of In-plane Loading o ap a3 Oy as g
Parabolic Load 0.188 1.327 -0.103 -0.025 -2.603 1.404
Linearly Varying Load 0 0 0 0 0 0

The stress function is assumed in the form of a series as
D =Dy + oDy +a, Dy + a3 D3+, Dy +0sDs + gDy .. (20)

where, o; (i=1,2,...6) are constants to be determined such that the membrane strain energy is
minimized and boundary conditions are satisfied. In the present investigation, six terms are
considered in Eq. (20) for accurate result. The stress function for the parabolic in-plane edge
loading is assumed as

2 2
0 =2Ny LI (& a7 b (@ + n e+ i raséi vagr’) - 21)
Substituting the Egs. (21) and (16) in Eq. (15) and carrying out integration, an expression in
second degree in ; (i = 1,2,...6) are obtained. The constants ¢; (i = 1,2,...6) are evaluated from the
algebraic equations by minimizing membrane strain energy (¥) Constants are tabulated in Table 1
for a three layered [0/90/0] composite skew plate for parabolic in-plane loading

2.2 Derivation of orthogonal polynomial

Consider a skew plate with length ‘a’, breadth ‘b’ and thickness ‘4’. The skew plate domain in
the x-y plane is transformed into unit square plate domain in &-# plane, by using the following
transformation equation

x=a& +bnsiny; y =bncosy (22)

The following transformation rule is used to map any function of functional from x-y plane to
&7 plane.

o 1 0
ol |« 0 e
x|_| a (23)
O | | tany secy | 0
| Oy a b on
2 T e
— — 0 0 7
ox a o¢
o’ tan’y  sec’y  2tanysecy || O’
o || & » ab o’ @4
o ~ tanzw 0 secy Py
ooy | L@ ab— || agon |

To generate orthogonal polynomials satisfying essential boundary conditions over the unit
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Fig. 2 Mapping of the skew plate domain into a unit square plate domain
square plate domain in &-5 plane, following displacement fields are used
Y A
ﬁo(ﬁanat) = ZlUj(t)a] (5a’7)
j:
~0 Y A
v (5:77:0 = le](t)ﬂ] (§a77)
j:
~0 I A
W (&mt)= X W ()¢ (&) (25)
j=l

~ Y A

¢10(§577’t) = ZIK/(t)J/j (6377)
J=

~ Y A

¢20(§=77’t) = zle(t)5] (5577)
j=

where Y is the order of approximation to get the desired accuracy, U, V;, W,, K; and Ljare

unknowns and 0?]., ﬂAi,&i, ]?j and éA'j are boundary characteristics orthonormal polynomial
functions which are generated on the standard square domain using the Gram-Schmidt process.

Orthonormal polynomials ¢?j(§,77) over the region 0<¢<1, 0<y¢<1 have been generated using
linearly independent set of functions F;=f*f;, j=1,2,3..., with

f=Era=&yn (-ny (262)
f={Len s enr & Enén (26b)

The value of ‘p’ depends on the boundary condition on &=0, 1. At &=0, p=0, 1, 2 respectively
for free, simply supported and clamped boundary condition. At &=1, ¢g=0, 1, 2 respectively for free,
simply supported and clamped boundary condition. In similar way, the value of » and s are chosen
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for #=0, 1.
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27

(28)

(29)

(30)

€2))

The total potential energy function [[(U+V) and kinetic energy (7) are transformed from x-y
plane to & plane by using Eq. (23) and (24) Further, the orthonormal polynomial functions are
substituted to get the energy function in &~ plane. The total potential energy and kinetic energy
expression involves with different unknowns U, V), W,, K; and L,. Rayleigh-Ritz method is used as

follows to determine governing eigen value equation and are represented as

fu =1

Uy

AV

SIS

Vy

A}

[k -]

St

{0}

Ky

Al

Ly

(32)

(33)

The Eq. (32) constitutes a set of 5Y simultaneous homogeneous algebraic equation called
Galerkin’s equation and also referred as Ritz system.
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2.3 Instability analysis of Mathieu equation

The dynamic instability of the plate loaded by periodic uniform in-plane load N, =N,+N,cos pt
analysed. The dynamic in-plane load has both static component (N;) and dynamic component (N,).
Using Rayleigh-Ritz method, the ordinary differential equations i.e., Mathieu equations describing
the plate linear dynamic instability was derived as follows

[M{8}+[[K, 1= (N, + N, cos pt)[ K;1){5} = {0} (34)

where [M], [K,] and [K] are respectively the mass, linear and geometric stiffness matrices. In Eq.
(34), the static and dynamic components are expressed as

N,=aN, and N, =N, (35)

where a and £ are static and dynamic load factors respectively and N,, is the static buckling load.
The Eq. (34) is a second order differential equation with periodic coefficients. The critical
buckling load is evaluated from the solution of linear eigen value problem by neglecting the mass,
non-linear stiffness and time dependant load terms. Similarly the solutions of the eigen value
problem associated with the differential equation neglecting terms containing N, and N, gives the
natural frequencies. On the boundaries of the region of instability the differential equation system
has periodic solution with period T or 27. Two solutions with same period confine the region of
instability and two solutions with different period confine the region of stability (Bolotin 1964).
The solution of the Eq. (34) with period T and 27, respectively, are assumed in the form of Fourier
series as

5O =b+ Y (q, sin L 4p cos M- (36a)
k=2,4,6 2’ 2
kpt
5@t = Z (a, sin <! +b cos—— (36b)
k=1,3,5 2 2’

where a; and b, are arbitrary constants. Substituting Eq. (36a) or (36b) into Eq. (34) and equating

. kpt t .
the coefficients of identical sm% and COS%leadS to a system of homogeneous algebraic
equations in ¢, and b;. For a nontrivial solution the determinant of the coefficient matrix of @; and
b, must vanish. The size of the above determinant is infinite as we have assumed the solution in
the form of infinite series. The determinants are shown to be belonging to a class of converging
determinant known as normal determinant (Bolotin 1964). The first order (from Eq. (37)) and
second order (from Eq. (38)) approximation to boundaries of first regions of instability
corresponding to period 27 is obtained by solving following two eigen value problems
respectively.

K +0.58N, K, — O.25Mp12‘ =0 (37)

K" +0.58N_ K —-0.58N_ K. 025M 0
¢ , |-p ‘= 0 (38)

—-0.58N_ K, K™ —2.25Mp; 0 0
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Second region of instability with first order approximation (from Egs. (39) and (40)) and
second order approximation (from Egs. (41) and (42)) corresponding to period 7T are determined
from

‘K* —Mpf\ =0 (39)
K —-0.56N_K 0 0
ﬂ u’* G _plz ‘20 (40)
_ﬂNchG K 0 M
K -0.58N_K M 0
6 ™G _ ; ‘:0 (41)
~0.58N., K, K —4Mp} 0 0
K° -05BN,K, 0 0 0 0
~pBN_K, K ~0.58N,K;|-p;[0 M 0/=0 (42)
0 ~0.56N, K, K —4Mp} 0 00

Third region of instability (from Eq. (43) and (44)) and fourth region instability (from Eq. (45) and
(46)) corresponding to period T and 27 are determined from,

K" +0.58N K. —0.25Mp: 0.58N_ K, o @)
0.58N, K, K*—2.25Mp;
K -0.58N,.K;—025Mp; 0.58N,.K
ﬂ ™G p3 . ﬂ cr™™G -0 (44)
0.58N_ K, K" —2.25Mp;
K' —Mp? 0.58N,_,K; 0
0.58N..K, K —4Mp} 0.58N,K;|=0 (45)
0 0.58N_ K, K" —9Mp;
K 0.5BN_K, 0 0
N,K, K -Mp; 05BN,K 0
ﬂ cr'*G D3 . ﬁ cr*G -0 (46)
0 0.58N,K, K —4Mp; 05BN, K,
0 0 0.58N, K, K" —9Mp;

where, K'=[K]-Ns[K]
Solving for p, from (K* —2.25Mpf) and substituting for p; of Eqs. (43) and (44) one can

calculate third zone of instability of period 27. Similarly solving for p; from (K —9Mp?) and
substituting for p; of Egs. (45) and (46) one can calculate fourth zone of instability of period 7.
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Table 2(a) Critical buckling coefficient (k;) isotropic square skew plates (a/b=1, a/h=100) for different skew
angles (y) under uniform in-plane loading

Tvpe of SUpDOrts Skew angle Dimensionless buckling coefficient (k;)
P PP ) Present solution Wang (1997) Babu and Kant (1999)
. 0° 4 4.0 4.0
Slmpl?f;gp"“ed 15° 3.826 3.824 3.830
30° 3.323 3.316 3.330
(SSSS) 45° 2.559 2.525 2.557
Durvasula (1970) Wang et al. (1992)
0° 10.074 10.074 10.074
Clampe}i;;ppomd 15° 9.431 9.462 9.479
30° 7.612 7.638 7.734
(€CCo) 45° 5.110 5.110 5.172

Note: k=N,,b* cos* t///7r2D

Table 2(b) Critical buckling coefficients for isotropic and composite [0/90/0] square plate (a/b=1, a/h=100)
under parabolic in-plane loading

Buckling coefficients (k;) for isotropic plate Buckling coefficients (k) for

Type of composite [0/90/0] plate
Supports Present Wang et al. Panda and Ramachandra Present Present
(2007) (2010) (Numerical) (ABAQUY)
SSSS 5.24 5.24 5.24 27.50 27.51
SCSC 9.19 9.19 9.17 34.38 34.39
CSCS 9.05 9.05 9.03 93.93 93.63
Ccccc 13.57 13.58 13.55 97.64 97.01

Note: k,=N,b°/7°E>h’, A 8-noded doubly curved thick shell element is used in ABAQUS

3. Results and discussion

The buckling load obtained from present method of solution for skew plate subjected to
uniform in-plane loading and for rectangular plate with non-uniform in-plane loading are
compared well with open literature and given in Table 2(a) and Table 2(b), respectively.

The mechanical properties used in the present analysis for composite skew plate are:
E/En=25, G1,=G13=0.5 Ey», Gy= 0.2 E5 and v,=0.25. The dynamic instability regions are

pa | p
7°h \| Ey
plate against dimensionless dynamic load factor (f). The principal dynamic instability regions of
simply supported (SSSS) eight layered cross-ply [(0/90/90/0)s] composite skew plate (a/b=1,
a/h=100) with skew angle y=0° and 30° are obtained from the present method are compared
with Noh and Lee (2014) and is shown in Fig. 3(a) and Fig. 3(b), respectively. It is observed from
figure that the principal instability regions with first order approximation are compared well with
reference instability regions.

Fig. 4 shows the first four instability zones of simply supported cross-ply [0/90/0] composite
laminated skew plate (a/b=1, a/h=100, y=30°, 0=0) under non-uniform (parabolic) in-plane

represented as a plot of dimensionless excitation frequency € (= ) for composite skew
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loading. The zone-I and zone- 11 instability zones correspond to period 2T, whereas, zone-II and
zone- 1V instability zones are for period T. It is reflected in the figure that for all the zones of
instability, the width of instability increases with the increase of dynamic load factor. At a dynamic

2 2
load factor (B) of 0.7, the widths (Ap) of instability are 1.1798”—}; En , 0.1981”—}; En ,
pa*\ p pa*\ p

pa’ pa’

any particular value of dynamic load factor, the width (Ap) of the zone of instability is the
maximum for zone-I (principal zone) and minimum for zone-IV. Principal zone has greater
practical importance due to its maximum width of instability. The width of instability zone is
slightly decreases for higher order approximation as shown in Fig. 4. At a dynamic load factor (5)
of 0.7, the difference of width of instability between first order and second order for zone-I is

2 2
0.0576 % h 1By and 0.0143 % h B for zone-I, zone-II, zone-III and zone-1V, respectively. At
\ p \ p

2 2
0.0324”—}21 /h and for zone-II the difference of width is 0.0590”—}21 En . The principal zone
pa P pa Yo,

of instability with second-order approximation results are presented in subsequent figures as it is
more practical and accurate.

The influence of skew angle on principal zone of instability of simply supported cross-ply
[0/90/0] composite laminated skew plate (a/b=1, a/h=100, w=30°, a=0) under parabolic in-plane
loading is presented in Fig. 5. At a dynamic load factor () of 0.7, the width of principal instability

2 2 2 2
zones are, 10633 71 [E2 -y 0853 T By 999 TN B0 gy 4571 TR (B0
pa’\ p pa’\ p pa’\ p pa’\ p

for y=0°, 15°, 30° and 45°, respectively. It is observed that the skew plate becomes more unstable

5.0

4.5

4.0

1st order (Principal Region)
- ---2nd order (Principal Region)

= Noh and Lee (2014)
354

3.0

Dimensionless Excitation Frequency (Q)

2.5 T T T T T T y T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dynamic Load Factor ()

Fig. 3(a) Comparison of the principal instability region of a simply supported (SSSS) eight layered
symmetric cross-ply [0/90/90/0/0/90/90/0] composite square plate (a/b=1, a/h=100, w=0°, 0=0)
subjected to uniform in-plane load
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7.0
6.5 +

6.0

5.0+

4.5 1

4.0 -

Dimensionless Excitation frequency (€)

1st order approximation
1 - - - -2nd Order approximation
3.54 B Noh and Lec (2014)
3.0 : . . . . : .
0.0 0.2 0.4 0.6 0.8

Dynamic Load Factor ()

Fig. 3(b) Comparison of the principal instability region of a simply supported (SSSS) eight layered
symmetric cross-ply [0/90/90/0/0/90/90/0] composite skew plate (a/b=1, a/h=100, y=30°, a=0)
subjected to uniform in-plane load

—~
g 4
=] - - - - 1st order (Principal Region)
% 2nd order (Principal Region)
Esf T
£ T
=
g - —e- - Ist order (Secondary Region)
1 2 2nd order (secondary Region)
)
A
L T T R
‘E -~ 4
Rt
% 14 3rd Region of instability
= -----= 4th Region of Instability ST
0 T T v T T T T
0.0 0.2 0.4 0.6 0.8

Dynamic Load Factor (B)

Fig. 4 Four instability zones of the SSSS three layered cross-ply [0/90/0] composite skew plates
(a/b=1, a/h=100, y=30°, a=0) subjected to parabolic in-plane loading

as the skew angle increases.

The effect of shear deformation for a three layered cross-ply [0/90/0] composite skew plate
(a/b=1, y=30°, 0=0) subjected to uniform in-plane loading is studied in Fig. 6. The influence of
shear deformation on frequency becomes pronounced when the ratio of side to thickness
decreases, resulting lesser width of instability zone. The width of principal instability zones for
above square composite skew plate (y=30°) decreases with increase of plate thickness as expected.
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w
[

N e w - - w
[ < o < o f=]
1 | 1 | | 1

Dimensionless Excitation Frequency (Q)
o g
1

—
[¥3

. S -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dynamic Load Factor ()

Fig. 5 Principal instability zones of the SSSS three layered cross-ply [0/90/0] composite skew plates
(a/b=1, a/h=100, 0=0) subjected to parabolic in-plane loading for different skew angle ()

4.5

a/h=100
----a/h=50

Dimensionless Excitation Frequency ()

2.0 y T y T y T y T y T y T y y
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dynamic Load Factor (B)

Fig. 6 Principal instability zones of the SSSS three layered cross-ply [0/90/0] composite skew plates
(a/b=1, y=30°, 0=0) subjected to parabolic in-plane loading for different span to thickness (a/k) ratio

2

2
At a dynamic load factor (5) of 0.7, the width of principal instability zones are, 1.1799 zh By ,
\ p

pa
2 2 2
L1691 ZH (En 036 71 (B g 09806 71 [E2 for side to thickness ratio a/h=
pa\ p pa’\ p pa’\ p

100, 50, 20 and 10, respectively
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3.5

Uniform Load (2.=0)
- - - -Parabolic Load

~~~~~~ Trapezoidal Load (1=0.5)
254 — - Triangular Load (A=1)
S partial Tension (A=1.5)
------- Pure Bending (2=2)

Dimesionless Excitation Frequency (Q)

g T u T u T u :
0.0 0.1 0.2 0.3 0.4 0.5
Dynamic Load Factor (B)

Fig. 7 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates
(a/b=1, a/h=100, y=30°, 0=0.25) for parabolic and different types of linearly varying in-plane loadings

Fig. 7 represents the behaviour of three layered cross-ply [0/90/0] composite skew plate (a/b=1,
a/h=100, y=30°, 0=0.25) for different linearly varying in-plane loads. The linearly varying in-

plane loads are denoted by N, =aN,, (1—/1(%)) and N, =pN,, (1—/1(%)) where aN_,and AN, are

the intensity of static and dynamic components of compressive load at the edge y=0. By taking
various values of 1, we obtain different in-plane load distribution: uniform (4=0), trapezoidal
(4=0.5), triangular (4=1), partial tension (4=1.5) and pure bending (1=2.0). The principal instability
zones for the composite skew plate (a/b=1, a/h=100, y=30°, 0=0.2) subjected to time dependent
linearly varying in-plane loads with 4=0, 0.5, 1, 1.5 and 2.0 are represented as a plot of

2
h By against dimensionless dynamic load factor (f) of
\/ Yo,

dimensionless excitation frequency >
a

uniform loading. It is observed that the width of the dynamic instability region is the maximum for
the uniform in-plane load and minimum for the pure bending case. This is because of the buckling
load is minimum for uniform loaded panel and maximum for pure in-plane bending case. The

2 2
width of the primary instability zones are, 0.9747 7”2’ /i 0.7097 ”}2’ 1Ex 04640
a pa Yo

p P
2 2 2
”—}21 En , 0.2381”—}21 En and 0.03”—}21 En for A=0, 0.5, 1, 1.5 and 2.0, respectively for
pa*\ p pa*\ p pa*\ p

dynamic load factor of 0.5 (note that the dynamic load factor corresponding to that of uniform

2
loading). The width of the primary instability zones for parabolic loading is 0.82787[—}21 [i .
pa \ p
The influence of aspect ratio (a/b) on principal instability zones of three layered cross-ply
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Dimensionless Excitation Frequency (Q)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dynamic Load Factor (B)

Fig. 8 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates
(a/h=100, y=30°, 0=0) subjected to parabolic in-plane loading for different aspect (a/b) ratio

[0/90/0] composite skew plate (a/b=1, a/h=100, y=30°, a=0) subjected to uniform in-plane loading
is shown in Fig. 8. In the present analysis, ‘a’is kept constant and ‘b’ is varied. At a dynamic load

2 2
factor () of 0.7, the width of principal instability zones are, 2.126 il }21 En , 1.5123 il }21 En ,
\ p \ »

pa pa
7’h 7*h .
1.1799 — F nd 0.9147 — \/7 for a/b=2, 1.5, 1, and 0.5, respectively. It shows that as
pa’\ p pa*\ p
the aspect ratio (a/b) increases i.e., for the slender plate the width of instability region increase as
expected.

The edge restraint has a significant effect on principal instability zones of three layered cross-
ply [0/90/0] composite skew plate (a/b=1, a/h=100, y=30°, a=0) subjected to parabolic in-plane
loading and it is presented in Fig. 9. In the present analysis, four different boundary conditions
considered as follows: all edges simply supported (SSSS), loaded edges simply supported and
other two edges clamped (SCSC), loaded edges clamped and other two edges simply supported

(CSCS) and all edges clamped (CCCC). At a dynamic load factor () of 0.7, the width of the

2
primary instability zones are, 1.17997[—}21 =22 10280— En 07417— En
pa’\ p N\ op N\ op

2h 22
pa’\ p

is noted that more the edge restraint narrower is the width of zone of instability. Static in-plane
parabolic load has also the influence on the width of principal instability zones of a three layered
cross-ply [0/90/0] composite skew plate (a/b=1, a/h=100, y=30°) and has been shown in Fig. 10.

0.7333

for SSSS, SCSC, CSCS and CCCC boundary conditions, respectively. Here, it
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6 7 ——SSSS
----SCSC

Dimensionless Excitation Frequency (Q)

T T T T T T T T T T T T T T
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Dynamic Load Factor (B) of SSSS Skew Plate

Fig. 9 Principal instability zones of three layered cross-ply [0/90/0] composite skew plates (a/b=1,
a/h=100, y=30°, 0=0) subjected to parabolic in-plane loading for different boundary conditions
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Fig. 10 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates
(a/b=1, a/h=100, y=30°) subjected to parabolic in-plane loading for different static load factor ()

For a dynamic load factor () of 0.4, the width of the primary instability zones are, 0.6816

2 2
En h En and 0.945 h En for static load factor o=0, 0.25 and 0.5,
\/ p P

respectlvely. It is concluded that the width of prmmpal instability zone increases with increase of
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Fig. 11 Principal instability zones of SSSS three layered cross-ply [0/90/0] composite skew plates
(a/b=1, a/h=100, y=30°) subjected to parabolic biaxial in-plane loading

static load factor (a). In the present investigation, the effect of biaxial parabolic in-plane loading of
a three layered cross-ply [0/90/0] composite skew plate (a/b=1, a/h=100, w=30°) has also been

studied. The biaxial edge loading is denoted by the load ratio N, (= N’“) which is the ratio of
w
compressive edge load in the x-direction (N,,) to compressive (positive) or tensile (negative) edge

load in the y-direction (ﬂ:Nyy) For a dynamic load factor (8) of 0.4, the width of the primary
E22 E22 E22 E22
P

instability zones are, 0. 3605 — , 0. 7741 — 1. 3216— and 2. 132

for N, (= %) =-0.5, 0, 0.5 and 1 respectively. Here, because of tensile loading in y-direction, the
pag
width of instability zone becomes narrower and this has been reflected in Fig. 11.

4. Conclusions

Parametric resonance of composite skew plates for various skew angles and support conditions
based on higher order shear deformation theory (HSDT) subjected to non-uniform (parabolic) and
linearly varying in-plane loading is studied. The total energy functional is derived and transformed
from physical domain to computational domain using transformation equation. This functional is
solved using Rayleigh-Ritz method with boundary characteristics orthonormal polynomials
(BCOPs) functions. The parametric resonance regions are traced for the governing differential
equation by following Bolotin’s method. The principal instability region is wider and has greater
practical importance than other instability regions. Higher order approximation is required for
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finding accurate instability zone for higher dynamic load factor. The instability region becomes
wider with increases of skew angle. The width of instability obtained for uniform in-plane loading
is more than linearly varying loadings and parabolic loading. The width of instability zone
decreases with decrease of span to thickness ratio and increases with the increase of aspect ratio.
For pure bending in-plane loading, the skew plate becomes unstable at a higher excitation
frequency compared to other linearly varying in-plane loading. The instability zones become
narrower with increase of edge restraint. The width of zone of instability is the maximum for skew
plates with simply support in all four edges and minimum for clamped supported in all four edges.
The width of zone of instability increases with the increase of static load factor. For biaxial
loading, because of tensile loading at one edge of the skew plate and compression at other edge,
the width of instability zone becomes narrower.
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