
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 55, No. 2 (2015) 399-411 

DOI: http://dx.doi.org/10.12989/sem.2015.55.2.399                                           399 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8        ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 
 
 
 

Buckling analysis of filament wound composite cylindrical shell 
for considering the filament undulation and crossover 

 

Zhangxin Guo
1,2, Xiaoping Han2, Meiqing Guo1 and Zhijun Han1 

 
1
College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China 

2
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China 

 
(Received March 14, 2015, Revised May 29, 2015, Accepted June 17, 2015) 

 
Abstract.  The buckling equations of filament wound composite cylindrical shell are established. The 

coefficients Kij and Lij of the buckling equations are determined by solving the equations. The geometric 

analysis and the effective stiffness calculation for the fiber crossover and undulation region are respectively 

accomplished. Using the effective stiffness of the undulation region, the specific formulas of the coefficients 

Kij and Lij of the buckling equations are determined. Numerical examples of the buckling critical loads have 

been performed for the different winding angles and stacking sequences cylindrical shell designs. It can be 

concluded that the fiber undulation results in the less effect on the buckling critical loads Pcr. Pcr increases 

with the thickness-radius ratio. The effect on Pcr due to the fiber undulation is more obvious with the 

thickness-radius ratio. Pcr decreases with the length-radius ratio. The effect on Pcr due to the fiber undulation 

can be neglected when the ratio is large. 
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1. Introduction 
 

Due to their considerably higher strength-to-weight ratio, filament winding composite cylinder 

structural forms are widely used in the aeronautic and astronautics industry, energy resources and 

transportation, oceanographic engineering et al. So buckling and stability analysis for composite 

cylinders are of great practical importance, and have received considerable attention. 

Design and analysis for this kind of structures use the main assumptions of classical laminate 

theory (Erasmo et al. 2013, Sofiyev et al. 2014, Najafov et al. 2013). The influence of winding 

pattern on the mechanical response of filament wound glass/epoxy cylinders exposed to external 

pressure is studied by testing cylindrical specimens having stacked layers with coincident patterns 

in a hyperbaric testing chamber (Moreno and Douchin 2008). Anastasiadis and Simitses (1993) 

published the results for very long shells under external pressure and three construction materials: 

boron/epoxy, graphite/epoxy and Kevlar/epoxy. They concluded that for radius-to-thickness ratio 

of 7.5 most stacking sequences for all materials considered lead to buckling failure before strength 

failure. 

Messager (2001) investigated the influence of the winding-induced thickness imperfections on  
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Fig. 1 Geometry of the cylindrical shell 

 

 

to the elastic buckling load of laminated cylinders. A specific formulation of an analytical 

Sanders-type model for the buckling of imperfect laminated cylinders under external pressure was 

developed. Numerical tests were performed for different lamination cases of thin-walled, 

imperfect, carbon/epoxy cylinders. For the imperfect cylinders, the buckling pressure reductions 

obtained from the analytical model were in good agreement with FEM results. Several authors 

(Francesco et al. 2013, Azam 2004, Francesco et al. 2014, Sofiyev 2014) have carried out both 

analytical and experimental investigations on the buckling analysis of composite structures but 

most of the work is dedicated to very thin shells. In order to achieve the same strength as metals in 

some applications we need to use thicker cylinders. This in many instances pushes us to undertake 

the buckling and stability analysis on thick cylinders (Kardomateas and Philobox 1995, Chen et al. 

2012). 

Simitses (1996) presented a review on the problem of buckling of moderately thick, laminated, 

composite shells subjected to destabilizing loads. In all the works reported in the literature, the 

analysis is based on higher-order shear deformation shell theory and/or first-order shear 

deformation shell theory with or without a shear correction factor. The effect of stacking sequence, 

radius-to-thickness ratio and length-to-radius is assessed. Carvelli et al. (2001) presented some 

achievements related to the determination of the buckling strength of medium thick composite 

shells subjected to external pressure. An investigation based on experimental, analytical and 

numerical results is illustrated with reference to a specific model of an under-water vehicle. The 

collapse pressures were compared to the design values derived from the available 

recommendations and to the experimental result obtained in an off-shore test. 

The filament-winding process introduces the fiber undulations and the nonorthogonality of the 

crossover geometry into thin-shell cylinders. The crossover of the fiber tows increase the 

likelihood of other manufacturing related defects such as resin-rich regions and fiber waviness. 

The fiber undulation regions possibile represent an initiation site for cracking. The increasing 

damage growth in the undulation region in turn lead to a stiffness decrease and the possibility of 

leaking in high interwoven structures. 

In this paper, the buckling equations of filament wound composite cylinders are established. 

The coefficients Kij and Lij of the buckling equations are determined by solving the equations. The 

geometric analysis and the effective stiffness calculation for the fiber crossover and undulation 

region are respectively accomplished. Using the effective stiffness of the undulation region, the 

specific formulas of the coefficients Kij and Lij of the buckling equations are determined. 

Numerical examples of the buckling critical loads have been performed for the different winding 

angles and stacking sequences cylinders designs. 
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2. Buckling equations and calculation 
 

The geometry and dimension of the cylindrical shell are shown in Fig. 1. In the above 

diagrammatic sketch, the x, y and z coordinates and the corresponding u, v and w displacements are 

measured in the axial, circumferential and radial directions, respectively, with respect to the 

cylindrical mean-surface. 

The strain-displacement relations are as follows (Messager 2001, Shen 1995, Elghazouli et al. 

1998) 
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The displacement functions are given by Soldatos (1992) 
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where {au av aw}
T 

is the eigen-displacement vector of the buckling problem; m and n are 

respectively the numbers of axial and circumferential half waves for characterizing the buckling 

mode, as shown in Fig. 2. 

The orthotropic constitutive law for the kth composite ply is given by 
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Fig. 2 The half waves mode of the buckling cylindrical shell 
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where )(k

ijQ
 

is the corresponding orthotropic, reduced, constitutive coefficients. 

The force and moment resultants related to the mean-surface are expressed in the following 

form 
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The three governing equations of equilibrium are as follows 
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Substituting Eqs. (1) to (4) in Eq. (5), the characteristic equilibrium of buckling problem can be 

expressed as follows 
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where p is the external pressure, [K] and [L] are all the three-order matrix, the corresponding Kij 

and Lij (i, j=1, 2, 3) terms are given by the following formulas 

2

66

2

1111 nAmAK   

nm
R

BB
AAK 







 
 6612

661212

2
 

2

6612

3

11
12

3113 )2( nmBBmBm
R

A
KK   

nm
R

BB
AAK 







 
 6612

661221  

402



 

 

 

 

 

 

Buckling analysis of filament wound composite cylindrical shell for considering the filament ... 

2

2

66

2

22

2

66

2

222

66

2

2222

232

R

mDnD

R

mBnB
mAnAK





  

2

22

3

22

2

66122

22

2

6612
22

23

)2(
)2(

R

nB

R

nDnmDD
nBnmBBn

R

A
K 


  

2

22

3

22

2

66122

22

2

6612
22

32

)4(
)2(

R

nB

R

nDnmDD
nBnmBBn

R

A
K 


  

22

6612

4

22

4

11

2

22

2

12

2

22
33 )2(2

)(2
nmDDnDmD

R

nBmB

R

A
K 


  

03121131211  LLLLL ， RL /122   

nLL  3223
,   Rn

m
L )

2
( 2

2

33                      (7) 

where Aij, Bij and Dij (i, j=1, 2, 6) terms are respectively the classical laminate stiffness coefficient 

of stretching, coupling and bending. The relevant calculating formulas are given by 
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   The minimum generalized eigenvalue of Eq. (6) is calculated, and then the buckling critical 

load can be obtained. 

 

 

3. Buckling equations of considering the filament undulation and crossover 
    

3.1 Geometric analysis of fiber crossovers and undulations 
 

Fiber tow crossovers and undulations within helical layers can be considered as a special form 
 

 

 
Fig. 3 The fiber winding patterns 
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Fig. 4 The detailed structure of the fiber undulation 

 

 
of defects (Guo et al. 2010, Jensen and Pai 1993). As shown in Fig. 3, the repetitive 

diamond-shaped patterns are formed on the filament-wound cylinders by two crossover layers. In a 

helically-wound layer, there are two regions containing fiber crossovers, namely the helical 

undulation region and the circumferential undulation region. The repetitive unit is divided into two 

areas: one is the uniformly laminated area where tows do not undulate, and the other is the 

undulation area that contains fiber crossovers and undulations. The helical and circumferential 

regions form the borders of the laminate region, which is in effect a laminate of unidirectional 

plies. 

The detailed structure of fiber undulations is shown in Fig. 4. The x-y-z coordinate axis is along 

the principal direction of material, and the global cylinder coordinate is r--z. The two important 

angles used for calculating the local stiffness are the filament-winding angle  and the inclination 

angle  due to the fiber undulation. It is noteworthy that  is the in-plane transformation angle and 

 is the out-of-plane transformation angle. 

The mid-surface shape of the undulation fiber tow is determined by a cosine function as 
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where hu(x) is the centerline of the undulating fiber tow, h is the thickness of the fiber tow, x is the 

distance along the undulation, and Lu is the length of the undulation region. 

The inclination angle  of the undulating layer with respect to the filament-wound cylinder 

shell is then expressed by 
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3.2 Calculation for the stiffness of the undulation region 
 
The curved fiber-bundles can be regarded as an assembly of a large number of infinitesimal 

segments in the undulation region. Hence, the laminated plate theory is applicable for each 

segment along the undulation direction. Considering that  is the angle between the principal 

coordinate of material and the off-axis coordinate (situated in the horizontal plane at a particular 

location, see Fig. 4), the principal stiffness C for the infinitesimal segment can be transformed into 

the off-axis stiffness C by 
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where l1, m1, n1, l2, m2, n2 are the directional cosines as afunction of  angle respectively. The 

relationship between [T] and [T] is 
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Thus, the material stiffness along the undulation varies with the point. Further, the 3D stiffness 

of the fiber tow at a point can be converted to the effective 2D form through the two angles of  

and . In addition, the assumptions of laminate theory are still applicable, i.e., γxz=0, γyz=0 and 

z=0. Then, for an undulated layer, the 2D effective stiffness Q
*
ij is obtained as 
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where Cij are the 3D stiffness parameters of the undulating tow but in the local coordinate system. 

Assume that the effective stiffness of the fiber undulation was already known, the equivalent 

stiffness of the whole filament composites is then calculated by using lamination theory 
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where Aij, Bij and Dij are stiffness constants of stretching, stretching-bending coupling and bending, 

respectively. The average stiffness constants for the undulation of a filament-wound tow is then 

determined by numerically integrating as 
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In general, the stiffness constants of the combined layup are evaluated in terms of the 

mid-plane of the composite laminate. However, for filament-wound cylinders, the evaluation must 

be carried out in terms of a non-midplane by using the parallel axis theorem, and then transformed 

by 





M

k

k

ijij AA
1

)(
 

)( )(

1

)( k

ijk

M

k

k

ijij AdBB  


 

)2( )(2)(

1

)( k

ijk

k

ijk

M

k

k

ijij AdBdDD  


 

2
)(

2

1

1

k
k

m

mk

t
t

T
d  





                           (17) 

where the stiffness coefficients Aij, Bij and Dij are based on the reference surface (paralleling the 

filament-wound cylinder shell), and M is the number of filament-wound layers. dk is the centerline 

distance of the k-th component from the reference surface. In Eq. (17), T is the thickness of the 

filament-wound cylinder while tm and tk are the thickness of the m-th and k-th component 

laminates, respectively. 

After the stiffness constants of the undulating tows with respect to the local coordinate system 

are determined, they are then transformed to those in terms of the global coordinates of the 

cylinder by 
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with the transformation angle  being 

  90         
                       (19) 

    
3.3 Buckling equations 

    

After considering fiber undulation, the elastic orthotropic constitutive law for the kth composite 

ply is given by 
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According to Eqs. (1), (2), (4), (5), and (20), the final expression of the eigenvalue problem of 
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buckling for filament wound composite cylinders can be expressed as follows 
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The calculation of Eq. (21) leads to the lowest eigenvalue, then the critical external pressure Pcr 

can be obtained. The corresponding Kij
 
and Lij (i, j=1,2,3) terms in Eq. (21) are detailed as follows 
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(b) stacking sequence [905/10/905] 
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(c) stacking sequence [90//90//90//90]s 

Fig. 5 Critical pressure for cylinders 
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Fig. 6 Critical pressure for cylinders 

 

 

where Aij, Bij and Dij (i, j=1,2,6) are the stiffness constants for the undulation region, and the 

specific calculation of these terms are detailed in Guo et al. (2010), Jensen and Pai (1993). 

 
 
4. Calculating illustration and discussion  
    

By using the above mentioned calculation model, the buckling critical loads of filament wound 

composite cylinders are obtained. The geometry dimensions of the considered cylinder are 76.2 

mm in diameter, 228.6 mm in length and 3.46 mm in thickness. The thin-walled cylinder is 

composed of 10 composite cross-plies of equal thickness. The constituting material is a carbon 

fiber reinforced epoxy resin. The orthotropic in-plane mechanical characteristics are: E1=156 GPa, 

E2=9.65 GPa, G12=5.47 GPa, 12=0.3, where subscripts 1 and 2 denote respectively the 

longitudinal and perpendicular directions of fibers. 
Fig. 5 presents respectively the different winding angles and winding sequence cylinder 

designs, and the relevant buckling critical loads Pcr. It is seen that the fiber undulation results in 

the less effect on Pcr, and the effect due to the fiber undulation is much weakened with  increasing 

the numbers of the hoop (90) winding layers. From Fig. 5(a) for the ± helical layer case, we can 

see that Pcr is strongly dependent on the winding angles, and become larger with winding angles. 

Pcr for =90 case is almost three times compared with =0 case, and increase rapidly between 

=30 to =70. In contrast to Fig. 5 (b) and (c), we can see that, when the ± layer is wound on 

the hoop (90) layer and the winding sequence is different, the variation of Pcr is notable. For the 

winding sequence cylinder design [905/10/905], Pcr increases at the beginning and attain the 

maximum at =30, and then drops with the winding angle. For the cylinder design 

[90/±/90/±/90/±/90]s, Pcr increases steeply at the beginning and then change gradually with the 

winding angle, and reach the maximum at =90. 

Fig. 6 depicts the effect of the thickness-radius ratio. Pcr increases with the thickness-radius 

ratio, and the changing level gradually increased. Besides, the effect on Pcr due to the fiber 

undulation is more obvious with the thickness-radius ratio. This may be explained as that the 

increase of thickness-radius ratio results in the relevant increase of helical layers, so the effect on  
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Fig. 7 Critical pressure for cylinders 

 

 

Pcr due to the fiber undulation is enhanced. 

Fig. 7 describes the effect of the length-radius ratio. Pcr decreases with the length-radius ratio, 

and the declination level is obvious. Moreover, the effect on Pcr due to the fiber undulation is more 

obvious when the length-radius ratio is small, and the effect can be neglected when the ratio is 

large.  
 
 

5. Conclusions 
 

• Considering the fiber undulations and nonorthogonality crossover, the buckling equations of 

filament wound composite cylindrical shell are established. Numerical examples of the buckling 

critical loads have been performed for the different winding angles and stacking sequences 

cylindrical shell designs.  
• The fiber undulation results in the less effect on the buckling critical loads Pcr, and the effect 

is much weakened with increasing the numbers of the hoop (90) winding layers. 
• Pcr increases with the thickness-radius ratio. The effect on Pcr due to the fiber undulation is 

more obvious with the thickness-radius ratio. 
• Pcr decreases with the length-radius ratio. The effect on Pcr due to the fiber undulation can be 

neglected when the ratio is large. 
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