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Abstract.  Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper 
presents how to model congestion on bridges and how the maximum dynamic stress of bridges change 
during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to 
traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is 
applied to the maximum static moment under static loading. This paper presents an algorithm to solve the 
governing equation of the bridge as well as the equations of motions of two real European trucks with 
different speeds, simultaneously. It will be shown, considering congestion in eight case studies, the 
maximum dynamic stress and how far from the mid-span it occurs during the passing of one or two trucks 
with different speeds. The congestion effect on the maximum dynamic stress of bridges can make a 
significant difference in the magnitude. By finite difference method, it will be shown that where vehicle 
speeds are considerably higher, for example in the case of railway bridges which have more than one railway 
line or in the case of multiple lane highway bridges where congestion is probable, current designing codes 
may predict dynamic stresses lower than actual stresses; therefore, the consequences of a full length analysis 
must be used to design safe bridges. 
 

Keywords:  bridge; dynamics; congestion; maximum dynamic stress; stress analysis; finite difference 
method; DLA (dynamic load allowance) 
 
 
1. Introduction 
 

One of the most important problems facing design and structural engineers is the cognition and 
analysis of dynamic behavior of bridges subjected to moving forces (moving loads, moving 
masses and moving vehicles). In general mechanics parlance the loads that vary in both time and 
space are called moving loads. For instance, transport engineering structures are subjected to such 
loads. In recent years increasingly higher speeds and weight of vehicles have had a great influence 
in all branches of transport. As a result, vibrations and dynamic stresses far larger than ever before 
occur in structures and media over or in which the vehicles move. 

Jeffcott in 1929, Steuding in 1943 and Odman in 1951 studied first the influence of a moving 
mass on the dynamic response of a structure (Akin and Mofid 1989). Many approximations were 
involved in their solution which made it impractical. Fryba (1972) wrote a helpful book containing 
almost all of the previous work in the field of vibration of solids and structure under moving loads. 
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Zheng and Cheung (2000) studied the vibration of vehicles on compressed rails on a 
viscoelastic foundation. They utilized a theoretical and analytical approach to solve the problem 
considering resonance parameters as well. Other papers have been written considering acceleration 
of moving mass, friction between moving mass and bridge (Wang 1998), cantilever beams 
(Siddiqui et al. 1998), large free vibrations (Siddiqui et al. 2003), and curved beams (Wang 2005). 

Dehestani et al. (2009) investigated critical influential speed for moving mass problems on the 
beams with different end conditions. In other research, Mofid et al. (2010), presented two methods 
to determine the dynamic behavior of viscoelastic beams subjected to moving mass. Cantero et al. 
(2009) calculated the maximum dynamic stress on simply supported bridges traversed by moving 
vehicles. 

Bridge codes have different approaches in considering dynamic effects due to moving traffic. 
For example, the American Association of State Highway and Transportation Officials 
(AASHTO) (2012), defines a factor called DLA (Dynamic Load Allowance), which considers the 
dynamic effects of moving vehicles and applies them to the maximum static stresses. For fatigue 
and fracture the AASHTO proposes the DLA to be 1.15 and 1.33 for all other limits states for all 
spans (O’Connor and Shaw 2000). In the Eurocode EN 1991-2 (2003) different load models based 
on experimental results from a number of countries, are defined. For each load model, different 
dynamic factors obtained from numerical simulations are used. Dynamic effects are combined 
with static results to obtain characteristic values by using these dynamic factors. 

During 2011 to 2014, many studies, particularly considering the moving oscillator effects on 
the bridge behavior, have been done in different universities and research institutions (Gasic et al. 
2011), (Zhang et al. 2013), (Chang et al. 2014). 

In summary, because of the importance of bridges safety, many researches and simulations are 
being carried out to predict the dynamic amplification factors by different universities and 
institutions all over the world. But congestion is not investigated well in previous studies and 
usually the researchers assume that the congestion is neglected. Furthermore, analyzing the 
influence of congestion with respect to variation of truck speeds, bridge spans and road profiles 
and its effect on variation of the dynamic amplification factors has many significances as well. In 
this paper, the problem definition is supplied and afterwards an algorithm to solve the governing 
equation of actual European trucks moving on different bridges considering congestion, is 
presented. The present work extends the scope of previous studies by considering actual truck 
moving instead of moving mass problem (Dehestani et al. 2009, Mofid et al. 2010) and by 
considering congestion for the beam loading (Cantero et al. 2009). The critical velocities for 
congestion of two trucks to get maximum beam dynamic stresses are numerically calculated. 

In this paper, the following assumptions are made. First, the beam dynamic characteristics are 
described by Euler-Bernoulli beam equation. Furthermore, the beam is assumed to be of constant 
cross-section with uniform mass distribution and is hinged at both ends. Second, the effects of 
inertia for both the beam and the moving truck are taken into account with the gravitational effect 
of load. Third, the trucks move with two different but constant speeds and are guided in such a 
way that the probable uplifts of tires are considered in the analyses. The objectives of this 
investigation are: (1) to formulate the solution of the problem in the general form, (2) to present a 
practical and precise technique for determining the dynamic response of a Euler-Bernoulli beam, 
considering congestion, (3) to verifying the model with previous studies, and (4) to study the 
important factors such as moving truck velocity, congestion and beam length in the dynamic 
amplification factors which cause more dynamic stresses in bridges. 
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Fig. 1 Beam general model 
 

 

Fig. 2 Beam carrying moving load 
 
 

2. Problem definition 
 

For an Euler-Bernoulli beam under static load case, the governing equation is 
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Fig. 1 shows an Euler-Bernoulli beam carrying an oscillating load P(x,t) which can vary with 
time and location.  

The equation of motion of the Euler-Bernoulli beam can be expressed in the form (Fryba 1972) 
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Where y(x,t) is the vertical deflection of the beam at location x and instant t, I is the second 
moment of the area, E is the modulus of elasticity, ωb is the damped circular frequency and μ is the 
constant mass per unit length of the beam. 

Fig. 2 shows a moving object which is travelling at a constant horizontal velocity C along the 
beam.  

The equation of motion of the Euler-Bernoulli beam for moving load case can be expressed in 
the form (Fryba 1972) 
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Where δ is the Dirac function. 
If the mass of the moving object has been taken into account in writing the dynamic governing 

equation, the problem is in the form (Fryba 1972) 
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Where c is the vehicle speed (Fryba 1972). 
If there are some springs and dampers between the moving object and the beam surface, the 

problem becomes more complicated. The equations of motion for this kind of system, which is 
called a moving oscillator, can be expressed in the form (Cantero et al. 2009) 
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Where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the 
suspension system. u is the vector of DOF’s displacement of the system. F is the force vector 
between the moving object and the beam surface and is a function of both y(x,t) and u. The 
dimension of mass, damping and stiffness matrices is the same as the number of DOF of the 
system. The main difficulty in this problem is that Eqs. (6) and (7) are coupled and must be solved 
simultaneously. 
 
 
3. Bridge model considering congestion 
 

Regarding Hamilton’s principle, the governing equation of the Euler-Bernoulli beam of length 
L, second moment of area I, modulus of elasticity E and constant mass per unit length , can be 
written as 
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Where y(x,t) is the vertical displacement of the beam due to the force F(x,t) at section x and 
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time t. ωb is the damped circular frequency and for small damping ratios ξ, it is given by (Cantero 
et al. 2009) 
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Where ωj are natural frequencies of the bridge.  
For a force moving at speed c the term F(x,t) in Eq. (8) must be replaced by δ(x−ct)F(x,t), 

where δ is the Dirac function.  
As a result, for a system with two trucks with n and m axles, the governing equation can be 

written as  
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For a beam carrying two vehicles at different speeds and different locations, the equations of 
motion of the vehicle models, Eq. (7), can be expressed in the form 

1111111 FuKuCuM                                                      (13) 

2222222 FuKuCuM                                                      (14) 

Where M1 and M2 are mass matrices, C1 and C2 are damping matrices, K1 and K2 are stiffness 
matrices of the two vehicle models. u1, u2, F1 and F2 are vectors of generalized coordinates and 
forces for each vehicle model. 

The vehicle tires are prevented from uplift (negative force) by the following condition 
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Where n is the number of vehicle axles and ybridge,i,j is the displacement of the beam and ri,j is 
the road profile, respectively, underneath the ith axle of j vehicle at instant t. The coupled Eqs. (12), 
(13), (14) and (15) must be solved simultaneously. 
 
 
4. Numerical solution 
 

The beam is divided into more than 200 elements depended on different spans. The more the 
span, the more the element number to reach more accurate results but the analyses last more. 
Using the finite difference method, Eq. (12) can be solved for an assumed force vector Fti (t) 

which consists of F1 and F2. In finite difference method, for the estimation of y(4)(xn ,t), i.e., 
4
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the two Eqs. (16) and (17) can be obtained by Taylor expansion. The Eq. (16) estimates y(4)(xn ,t) 
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by the displacement of the five adjacent nodes but the Eq. (17) uses seven adjacent nodes, which is 
more accurate. 

4
2112)4(

)(

),(),(4),(6),(4),(
),(

x

txytxytxytxytxy
txy nnnnn

n 


                       (16)  

4

321123
)4(

)(

),(
6

1
),(2),(

2

13
),(

3

28
),(

2

13
),(2),(

6

1

),(
x

txytxytxytxytxytxytxy
txy

nnnnnnn

n






   (17) 

Where y(4)(xn ,t) is the fourth derivative of vertical displacement with respect to x. 
In estimating the second derivative of displacement with respect to time, i.e., 
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In addition, F1 and F2 must satisfy the Eqs. (13) and (14). These two equations can be solved by 
the Wilson-θ method to calculate u1 and u2. The Wilson-θ method is essentially an extension of the 
linear acceleration method in which a linear variation of acceleration from time t  to time t+Δt is 
assumed (Cantero et al. 2009). The equation must be satisfied at time tn+θ=tn+θΔt with θ≥1. 
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By substituting Eqs. (20) and (21) into Eq. (19), nu can be found by solving the non-linear 
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From which the displacement and velocity at tn+1 can be obtained by using the standard 
Newmark formulae. 
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In the Wilson-θ method, it is assumed β=1/6 and γ=1/2 (Cantero et al. 2009). The parameter θ 
is often chosen to be 1.42. 
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Finally, by using Eq. (15) and displacement vectors, force vector Fti(t) can be found, which 
would probably not be the same as the Fti(t) assumed at the beginning of the analysis. That Fti(t), 
obtained by trial and error, is merely a “good” estimate of the accurate value. This process could 
be done first for each time increments and afterwards for each velocity of truck increments to 
calculate the DAF and COP in a wide range of velocities. The DAF (Dynamic Amplification 
Factor) is the ratio of maximum dynamic stress, due to a moving vehicle, to maximum static stress, 
due to constant weight of the vehicle, near the mid-span of the beam. COP (Critical Observation 
Point) is defined as the point on the beam where the maximum bending stress occurs. 

Different end condition of the beams can be modeled by using different boundary conditions. 

For the hinged end condition, which is assumed in this paper, the boundary condition is 0
2
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The algorithm of problem solving process is shown in Fig. 3. 
 
 

5. Maximum dynamic bending stresses 
 

Regarding strength of materials science, for a beam with symmetric section under bending 
moment, the equation of the maximum bending stress in a particular beam section is 
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Where I is the second moment of area, M is the bending moment at the specified section and h 
is the height of the section. In addition, the bending moment and curvature in the beam have a 
relation 
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Therefore, to find the maximum bending stress through the beam length, the maximum 
curvature, i.e., y′′, must be found in each time interval. 
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Fig. 3 The algorithm of problem solving process 
 
 
6. Vehicle model (Case studies) 
 

The aim of the simulation is to consider a beam in two different situations. First, analyzing the 
bending stresses in the beam as only one vehicle passes over; and second, analyzing again as the  
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Table 1 Five-axle model parameters 

Dimensional data: m Mass and inertia data 

a1=−0.13 Tractor sprung mass, mT:   4500   kg 

a2=1.10 Tractor pitch moment of inertia, IT:   4604   kg.m2 

b1=0.5 Semi-trailer sprung mass, mS:   31450   kg 

b2=2.5 Semi-trailer pitch moment of inertia, IS:   16302   kg.m2 

b31=1.30   b32=2.40 Tractor front axle unsprung mass, m1:   700   kg 

b33=3.50 Tractor back axle unsprung mass, m2:   1100   kg 

b4=4.15    b5=2.15 Semi-trailer axle unsprung mass, m31,m32, m33:   750   kg 

Spring rates: kN/m Viscous damping rates: kNs/m 

k1=400 c1= 10 

k2=1000 c2= 10 

k31=k32=k33=750 c31=c32=c33=10 

kt1=1750  

kt2=3500  

kt31=kt32=kt33=3500  

 
Table 2 Beam model parameters 

Length, L 25 m 

Young’s modulus, E 3.5×1010 N/m2 

Section inertia, I 1.3901 m4 

Mass per unit length, μ 18358 kg/m 

Damping, ξ 3 % 

 
Table 3 Beam model parameters for 15, 35, 70 m span 

L = 15 m 
Section inertia, I: 0.5273 m4 

Mass per unit length, m: 28125 kg/m 

L = 35 m 
Section inertia, I: 3.4162 m4 

Mass per unit length, m: 21752 kg/m 

L =70 m 
Section inertia, I: 19.5313 m4 

Mass per unit length, m: 30752 kg/m 

 
 

same two vehicles pass over with different speeds and different bridge span lengths. 
A five-axle European truck model is used to verify and compare the results with Cantero et al. 

(2009). The vehicle parameters are shown in Table 1. 
In Table 2, main beam model parameters, which Cantero et al. (2009) used, are listed. 
In addition for beam lengths of 15, 35 and 70, DAFs and COPs were also calculated. The 

section inertia and mass per unit length for each beam length are listed in Table 3. The other 
parameters, like modulus of elasticity and damping, remain the same as 25 m bridge model. 

The analysis for each beam is conducted with two different road profiles. First a smooth profile 
and second a sinusoidal road profile with 1 cm amplitude and 5 m wave length. The sinusoidal  
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Fig. 4 European truck model 
 
 

road profiles are calculated because bridge surfaces in real engineering have imperfections and are 
not smooth because of the construction process. 

The vehicle model consists of tractor, semi-trailer and suspensions (Fig. 4). It can be noted that 
yS, i.e., the vertical displacement of the semi-trailer, has a geometrical relationship 

STTS bbyy  45                                                          (31) 

Where yT is the vertical displacement of the tractor, yi (i=1, 2, 31, 32, 33) are the vertical 
displacement of suspensions, θT and θs are the pitch of tractor and semi-trailer, respectively. 

Consequently, each vehicle model has eight independent degrees of freedom. The equations of 
motion of the vehicle models can be expressed in the form of Eqs. (13) and (14). u1, u2, F1 and F2 
are vectors of generalized coordinates and forces for each vehicle model. 
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Where (Fti)j is the force under the tith tire of jth vehicle applied to the bridge surface. The tires 
are prevented from uplift (negative force) by the following condition 

          

2,1

33,32,31,2,1

0,



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j

i

trtxytyKF jiibrijtijti

                                        (34) 

Where ybr(xi,t) is the displacement of the beam and ri(t)j is the road profile, respectively, 
underneath the ith axle of j vehicle at instant t. 

Truck mass matric, M, stiffness matric, K, and damping matric, C, are computed as below 
(Cantero et al. 2009) 
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7. Model validation 
 

7.1 Comparison with published moving oscillator model 
 

The results obtained by present numerical method have been first compared with analytically 
simulated results and published results from the literature. Cantero et al. (2009) calculated the  
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M=8900  kg 
m=1100  kg 
c=4E4  Ns/m 
K=2E6  N/m 
k=3.5E6  N/m 
v=30  m/s 
 
 

Fig. 5 Moving oscillator model 
 

  

(a) Smooth profile, Cantero et al. model (solid) 
and present model (dashed) 

(b) Sinusoidal profile, Cantero et al. model (solid) 
and present model (dashed) 

Fig. 6 Verifying the model with Cantero et al. (2009) for 25-meter bridge 
 
 

maximum dynamic stress on simply supported bridges traversed by moving vehicles. Congestion 
and its influences on DAF were not investigated. So, this analysis, with the same truck and beams 
properties, is done to compare the results with Cantero et al. (2009) to make sure about the 
approach accuracy. Cantero et al. (2009) used the method of finite Fourier integral transformation 
to separate the Eq. (6) by defining the total bending moment in the beam as the sum of two 
bending moments, which Fryba (1972) suggested, but in this paper the finite difference method 
have been used to solve the Eq. (12). Furthermore, Cantero and Obrien have released a benchmark 
file to verify their results with the other models. They have defined Normalized Bending Moment 
(NBM) as the ratio of the influence line of bending moment or stress in the middle of the beam to 
the maximum static bending moment or stress for a moving oscillator problem. They used a 
moving oscillator problem shown in Fig. 5 and calculated NBM for a 25-meter beam, introduced 
in Table 2, for two different surface profile: smooth profile and a sinusoidal profile with 1 cm 
amplitude and 5 m wave length. 

By using finite difference method and the algorithm described in section 4, NBMs for the same 
moving oscillator problem are computed. In Fig. 6, the numerically obtained response (NBM)  
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Fig. 7 Damping effect of the bridge (L=25 m) at 1.5% (solid), 3% (dashed), 5% (dotted) and 7% 
(dash-dotted) 

 
 

sample has been compared with analytically-numerically simulated response sample found in 
Cantero et al. (2009) for two smooth and sinusoidal road profiles. The comparison of response 
sample exhibits close agreement between them. The differences are less than 0.5% and are due to 
different time interval sizes and different approaches. As a result of this accuracy and verification, 
the described approach is reliable. 
 

7.2 Effect of damping 
 

Finding an appropriate damping value for an actual structure is not easy. To investigate the 
importance of damping on the bridge response and Dynamic Amplification Factor (DAF), some 
analyses are performed for a moving truck, described in Fig. 4, on a 25-meter span bridge, 
describe in Table 2, with different damping ratios (1.5%, 3%, 5% and 7%). The results on DAF are 
presented in Fig. 7, showing that the lower the damping ratio, the higher the dynamic response but 
in the same shape, because the bridge is underdamped, i.e., ξ<<1 . 

Cantero et al. (2009) calculated the effect of damping on variation of DAF on the same bridge 
span. Again, the results differ only less than 2% which is negligible. The differences in accuracy 
between the two are due to different time interval sizes and different approaches. 

 
 

8. Results and discussions 
 
8.1 Dynamic Amplification Factor (DAF), Critical Observation Point (COP) and Critical 

Influential Speed (CIS) 
 
Simulations were carried out to analyze the influence of speed, bridge length and road profile  
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(a) DAF at smooth profile (solid) and sinusoidal 
(dashed) 

(b) COP at smooth profile (dot) and sinusoidal 
(cross) 

Fig. 8 Influence of only one truck speed on DAF and COP of the bridge (L=15 m) 
 
 

on the Dynamic Amplification Factors (DAF’s) and Critical Observation Points (COP’s). Critical 
Influential Speed (CIS) is defined as the speed of moving truck in which the beam experiences the 
maximum dynamic amplification factor (DAF) with respect to time variation. According to the 
results, CIS can be obtained by scrutinizing the variation of the DAF with respect to variation of 
the speeds for the moving truck. In order to examine the presented numerical method for moving 
truck problems and also obtain the CIS values at the same time, the method was carried out for 
beams, described in Tables 2-3. 

The speed is increased in 0.5 m/s intervals between 1 to 60 m/s (3.6 to 216 km/hr) and the 
damping ratio is assumed 3% in the analyses.  The analysis for each beam is conducted with two 
different road profiles. First a smooth profile and second a sinusoidal road profile with 1 cm 
amplitude and 5 m wave length. Furthermore, the bridge spans are suggested to be 15, 25, 35 and 
70 (4 cases). Each simulation contains a full dynamic problem with 8-DOF moving truck with 
different speeds on a beam with several nodes and the total passing time divided into more than 
2000 intervals. The beam is divided into 200 elements for 15 and 25-meter spans and 300 elements 
for 35 and 70-meter spans. The time that last the vehicle passes the entire beam is divided into 
2000, for short span and high speed, to 7000, for long span and low speed, time intervals depended 
on the speed of the truck and the beam span. The results are shown in Figs. 8-11 

In Fig. 8(a), the influence of speed of one truck passing on a 15-meter length bridge with two 
different kind of surface profile (smooth and sinusoidal wave) on DAF is presented. As can be 
seen, the DAF’s are nearly 1 in low speed (like static loading) and increases when the speed 
increases. The DAF is increased at some critical speeds because of the resonance phenomenon, 
when the loading frequency is near to the natural frequency of the bridge. However, the higher 
truck speeds, the higher dynamic response of the bridge (DAF) in general. In addition, the 
sinusoidal wave surface profile rather than smooth profile had considerably effect on having larger 
DAF. For the 15-meter smooth beam the maximum DAF is 1.233 which occurs at the 45 m/s 
speed (CIS). In addition, for the same length bridge but with a sinusoidal road surface, the 
maximum DAF is 1.569 at the CIS=49.5 m/s.  

In Fig. 8(b), the influence of the speed of one truck passing on a 15-meter length bridge with  

124



 
 
 
 
 
 

Congestion effect on maximum dynamic stresses of bridges 

 
 

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50 55 60

D
A

F

Truck speed  (m/s)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 5 10 15 20 25 30 35 40 45 50 55 60

C
O
P
  (
%
 o
f 
L)

Truck speed  (m/s)

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45 50 55 60

D
A

F

Truck speed  (m/s)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 5 10 15 20 25 30 35 40 45 50 55 60

C
O
P
  (
%
 o
f 
L)

Truck speed  (m/s)

  
 
   

(a) DAF at smooth profile (solid) and sinusoidal 
(dashed) 

(b) COP at smooth profile (dot) and sinusoidal 
(cross) 

Fig. 9 Influence of only one truck speed on DAF and COP of the bridge (L=25 m) 
 

 

(a) DAF at smooth profile (solid) and sinusoidal 
(dashed) 

(b) COP at smooth profile (dot) and sinusoidal 
(cross) 

Fig. 10 Influence of only one truck speed on DAF and COP of the bridge (L=35 m) 
 
 

two different kind of surface profile (smooth and sinusoidal wave) on the COP is presented. As 
can be seen, the location of COPs are not the same for all the truck speeds and are changing in the 
middle half of the beam span. 

The influence of the speed of one truck passing on a 25-meter length bridge on DAF and COP 
are presented in Fig. 9(a) and 9(b), respectively. Same attitude is seen and in this case for the 
smooth beam the maximum DAF is 1.136 which occurs at the 60 m/s speed and for the sinusoidal 
beam, the maximum DAF is 1.227 at the CIS=24 m/s. The results show that the DAF tends to 
increase in general attitude but some local maximum points occurs which are due to forcing 
frequencies when they are too close to the natural vibration frequencies of the bridge beam. 

Figs. 10-11 present the influence of the speed on a 35-meter length and 70-meter length bridge, 
respectively. Again, some local maximum points occurs which are due to resonance phenomenon. 
Furthermore, COPs occur in the middle half of the beam between 0.35-0.65 of bridge span which  
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(a) DAF at smooth profile (solid) and sinusoidal 
(dashed) 

(b) COP at smooth profile (dot) and sinusoidal 
(cross) 

Fig. 11 Influence of only one truck speed on DAF and COP of the bridge (L=70 m) 
 
 

is predictable. 
Existing bridge design codes of a conservative nature are still adequate for designing highway 

bridges at normal traffic speeds. For instance, AASHTO defines a factor called Dynamic Load 
Allowance (IM). The static effects of the design truck shall be increased by 1.33 for the dynamic 
load allowance. This approach is conservative at normal truck speeds on a smooth surface profile 
but when the congestion of trucks with higher speeds moving on an unsmooth road profile is 
considered the problem becomes more complicated. In this case the dynamic load allowance or 
impact factor may increase up to more than 1.5 as illustrated in Figs. 8(a), 10(a) and 11(a). 
Furthermore, based on the results, COP in dynamic analysis is not exactly at the same location as 
in static analysis. 

In addition, it must be noted that the damping effect of soil when in contact with some buried 
structural components such as footings can decrease the real dynamic load allowance but is not 
considered in this analysis. 

 
 8.2 Effect of bridge span and velocity 
 
The span length of the bridge is an important factor which decides DAF or the impact factor in 

most of the bridge design codes. Combined effect of bridge span and speed of the truck on DAF is 
not fully identified. Fig. 12 shows the DAF with variation of velocity and bridge span. It has been 
found that when the bridge span increases from 15 to 70 m, the maximum DAF decreases by the 
amount of 10%, when the truck speed is between 30 m/s to 45 m/s. Although increasing span 
shows a decreasing trend in DAF similar to the earlier studies, when the speed is less than 30 m/s, 
the increment found in the present case is not very significant for the range of span 15-70 m. 

 
8.3 Effect of bridge surface smoothness and speed 
 
The surface smoothness and speed of the truck are two most influential factors that can cause 

increased dynamic amplification factor and rapid degradation of the bridge. Bridge dynamic 
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amplification factor has been found by changing bridge surface smoothness for smooth condition 
to sinusoidal condition as mentioned before with change in truck speed. Fig. 13 shows that 
sinusoidal condition of road induces more dynamic bending stress in the bridge when the truck 
moves over it and also can be catalyzed by truck speed. Resonance phenomenon can cause 
significant increases of DAF in some local critical speeds, for instance near 7 m/s truck speed in 
70-meter bridge span. 

 
 

 

Fig. 12 Dynamic amplification factor with change in truck speed and bridge span 
 

 

Fig. 13 DAF for a sinusoidal road profile with change in truck speed and bridge span 
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(a) First truck speed=5 m/s (18 km/hr) (b) First truck speed=10 m/s (36 km/hr) 

   

(c) First truck speed=15 m/s (54 km/hr) (d) First truck speed=20 m/s (72 km/hr) 

   

(e) First truck speed=25 m/s (90 km/hr) (f) First truck speed=30 m/s (108 km/hr) 

Fig. 14 Influence of congestion and second truck speed on DAF of the bridge (L=15 m) at smooth 
profile (solid) and sinusoidal (dashed) 
 
 
8.4 Effect of congestion 

 
To consider the congestion, the first truck speeds are 5, 10, 15, 20, 25 and 30 meters per second 

(6 cases+no congestion case). The second truck speed is increased in 0.5 m/s intervals between 1 
to 60 m/s (119 cases). The bridge spans are suggested to be 15, 25, 35 and 70 (4 cases) and two 
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different kinds of surface profile (smooth and sinusoidal wave) are considered. So, the number of 
moving truck simulations were therefore 7×119×4×2=6664. 

Again, each simulation contained a full dynamic problem with 8-DOF moving truck with 
different speeds on a beam with several nodes and the total passing time divided into more than 
2000 intervals. Furthermore, the beam is divided into 200 elements for 15 and 25-meter spans and 
300 elements for 35 and 70-meter spans. The time that last the vehicle passes the entire beam is 
divided into 2000, for short span and high speed, to 7000, for long span and low speed, time 
intervals depended on the speed of the truck and the beam span. The initial front to front distance 
between the two trucks is assumed to be 20 meters which varied during the motion because of their 
different speeds. The results are presented in Figs. 14-17. 

Figs. 14(a)-(f), show the influence of congestion and second truck speed on DAF of the bridge 
for 15-meter length bridge having two different road profile: smooth profile (solid) and sinusoidal 
profile (dashed). As can be seen, the DAF tends to increase in general attitude but some local 
maximum points could be seen which were due to forcing frequencies which are too close to the 
natural vibration frequencies of the bridge beam.  

Fig. 15 shows the effect of congestion and second truck speed on DAF of the bridge for 25-
meter bridge. 

 
 

 
 

 
 
 

(a) First truck speed=5 m/s (18 km/hr) (b) First truck speed=10 m/s (36 km/hr) 

 
 
 

(c) First truck speed=15 m/s (54 km/hr) (d) First truck speed= 20 m/s (72 km/hr) 

Fig. 15 Influence of congestion and second truck speed on DAF of the bridge (L=25 m) at smooth 
profile (solid) and sinusoidal (dashed) 
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(e) First truck speed=25 m/s (90 km/hr) (f) First truck speed=30 m/s (108 km/hr) 

Fig. 15 Continued 
 
 
Figs. 16-17 present the influence of congestion and speed on 35-meter length and 70-meter 

length bridge, respectively. Discussing about the obtained results considering congestion is in the 
next section (see section 8.5). 

 
 

 

(a) First truck speed=5 m/s (18 km/hr) (b) First truck speed=10 m/s (36 km/hr) 
 

(c) First truck speed=15 m/s (54 km/hr) (d) First truck speed=20 m/s (72 km/hr) 

Fig. 16 Influence of congestion and second truck speed on DAF of the bridge (L=35 m) at smooth 
profile (solid) and sinusoidal (dashed) 
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(e) First truck speed=25 m/s (90 km/hr) (f) First truck speed=30 m/s (108 km/hr) 

Fig. 16 Continued 
 

 
 
 
 

(a) First truck speed=5 m/s (18 km/hr) (b) First truck speed=10 m/s (36 km/hr) 
 

(c) First truck speed=15 m/s (54 km/hr) (d) First truck speed=20 m/s (72 km/hr) 

Fig. 17 Influence of congestion and second truck speed on DAF of the bridge (L=70 m) at smooth 
profile (solid) and sinusoidal (dashed) 
 
 
8.5 DAF variation by congestion, different truck speeds and bridge spans 
 
The results considering congestion are summarized in Table 4 for the two different road  
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(e) First truck speed=25 m/s (90 km/hr) (f) First truck speed=30 m/s (108 km/hr) 

Fig. 17 Continued 
 

Table 4 The summary of results and the maximum DAF and CIS of different bridge spans and truck speeds  

L=15 m L=25 m L=35 m L=70 m 
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   m/s m/s m/s m/s
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v2=0 
Smooth 1.233 45.0 1.136 60.0 1.161 60.0 1.243 60.0

Sinusoidal 1.569 49.5 1.227 24.0 1.546 60.0 1.573 7.0

v2=5 m/s 
Smooth 2.005 12.0 2.002 10.0 1.999 9.0 2.006 7.5

Sinusoidal 2.125 11.0 2.117 9.0 2.138 8.5 2.432 7.0

v2=10 m/s 
Smooth 2.027 23.5 2.018 20.5 2.016 18.0 2.012 14.5

Sinusoidal 2.317 24.0 2.254 20.5 2.158 18.5 2.117 13.5

v2=15 m/s 
Smooth 2.137 36.0 2.055 30.0 2.057 27.0 2.016 22.0

Sinusoidal 2.383 51.5 2.211 31.0 2.218 26.5 2.060 22.5

v2=20 m/s 
Smooth 2.208 43.5 2.097 42.5 2.046 42.0 2.045 29.5

Sinusoidal 2.641 46.5 2.157 36.5 2.126 43.5 2.060 29.0

v2=25 m/s 
Smooth 2.164 55.5 2.171 50.0 2.112 45.5 2.033 36.0

Sinusoidal 2.535 60.0 2.350 49.0 2.284 60.0 2.066 59.0

v2=30 m/s 
Smooth 2.027 60.0 2.157 56.5 2.106 53.5 2.073 53.5

Sinusoidal 2.155 60.0 2.257 57.5 2.390 60.0 2.260 59.5
 
 

profiles. One of the most important parts of the results is the critical influential speed and its 
relevant DAF. 

Since dynamic amplification factor depends on several variables, in this section the results of 
congestion considering different speeds for the two trucks moving simultaneously on the bridge 
are investigated. The first row of Table 4 shows the results without considering congestion and 
only one truck is passing on the bridge. In this case for the smooth road profile, it is seen that 
existing bridge design codes, with defined DAF as 1.33, are still adequate for designing highway 
bridges but in the case of sinusoidal road impact factor may be increased up to 1.5, so the 
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AASHTO is not conservative here, based on performed case studies. It is obvious that these 
outcomes are not general and need more experimental researches.  

The other rows of Table 4 show the DAF for the congestion of two trucks moving 
simultaneously with two different road profile. It has been found that when the congestion is 
considered, dynamic amplification factor increases up to the amount of 2 or more, irrespective of 
bridges span. Although the codes consider a minimum distance between the heavy trucks moving 
on the bridge, but if the bridge to be designed, is in an area where the congestion of high-speed 
trucks is probable, the bigger DAF should be chosen by the designer with the help of analytical or 
numerical methods, for instance the present approach. This methods need more efforts in 
comparison with using simple values for DAF from the codes, but in some cases it is unavoidable. 

To emphasis, it must be mentioned that some of the presented comments in this section would 
not be true in general and need more tests and numerical or analytical researches to be imported in 
future bridge codes. 
 
 
9. Conclusions 
 

In this paper, a model for simply supported Euler-Bernoulli beams under moving trucks 
considering congestion was presented. In this model, the governing equation of the beam, by using 
finite difference method, and the equations of motion of two moving trucks, by using Wilson-θ 
method as well as the trial and error method, were solved simultaneously. Some test problems 
(different bridges with different spans, 4 cases, different road profiles, 2 cases, different first truck 
speeds, 119 cases and different second truck speeds, 7 cases, so 6664 cases in total) for different 
bridges were solved by this algorithm and the results were compared to the results obtained by 
Cantero et al. (2009). Good agreement was observed in the case of moving oscillator problem as 
well as damping effect on DAFs which were analyzed by Cantero et al. (2009). This approximate 
technique can be applied to beam structures and bridges which are subjected to moving vehicle 
loading. 

• This paper presents an algorithm to solve the governing equation of the bridge as well as the 
equations of motions of two real European trucks with different speeds, simultaneously. 
Furthermore, this paper shows the variation of maximum dynamic stress during the passing of one 
or two trucks at different speeds. The congestion effect on the maximum dynamic stress of bridges 
can make a significant difference in magnitude. 

• Existing bridge design codes which have a conservative nature but are still adequate for 
designing highway bridges at normal traffic speeds. For instance, the AASHTO defines a factor 
called Dynamic Load Allowance (IM). The static effects of the design truck shall be increased by 
1.33 for dynamic load allowance. This approach is conservative at normal truck speeds on a 
smooth surface profile but when the congestion of trucks with higher speeds moving on an 
unsmooth road profile is considered the problem becomes more complicated. In this case the 
dynamic load allowance or impact factor may increase up to 2.2 as illustrated in the article.  

• Where vehicle speeds are considerably higher, for example in the case of railway bridges 
which have more than one railway line or in the case of multiple lane highway bridges where 
congestion is probable, based on case studies investigated in this paper, the current designing 
codes may predict the dynamic stresses lower than actual stresses and the consequences of a full 
length analysis must be used to design safe bridges. In other words, if the bridge to be designed, is 
in an area where the congestion of high-speed trucks is probable, the bigger DAF should be chosen 
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by the designer with the help of analytical or numerical methods, for instance the present 
approach. 

• It has been found that when the bridge span increases from 15 to 70 m, the maximum DAF 
decreases by the amount of 10%, when the truck speed is between 30 m/s to 45 m/s. Although 
increasing span shows a decreasing trend in DAF similar to the earlier studies, when the speed is 
less than 30 m/s, the increment found in the present case is not very significant for the range of 
span 15-70 m. 

• Based on the results, COP in dynamic analysis is not exactly at the same location as in static 
analysis. Therefore, the structural and design engineers should attend this point in their designs. 

• Since dynamic amplification factor depends on several variables, resonance phenomenon can 
make a significant differences in the magnitude of DAF at some local critical speeds. 

• Regarding trucks and trains industry improvements and transportation developments, 
designing high-speed bridges will be needed in near future. Consequently, the new bridges and 
highways codes should make changes in their bodies based on new researches correlated with 
experiments, either in situ or on lab models, particularly in calculating DAF. 

Finally, it must be noted that the damping effect of soil when in contact with some buried 
structural components such as footing can decrease the real dynamic load allowance but is not 
considered in this article. 
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